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H Y PER FIN E INTERACTIONS VERSUS INTRINSIC SYMMETRIES OF  
M ANY-ELECTRON SYSTEMS IN NEAR-SURFACE REGIONS
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A bstract. T h e  p ap er aim s a t  unifying various types o f  hyperfm e in terac tions from  the view point of 
F insler geom etry  and  supercom plex structu res, reflecting the  in trinsic  sym m etries o f m any-electron  
system s, w ith special reference to  near-surface regions.

INTRODUCTION

The paper is an extended version of [1 , 2] with special attention paid to 
near-surface regions.

The core of the subject are hyperfirte interactions. They seem to be quite 
important and not yet satisfactorily developed as far as many-particle systems are 
concerned. They include, in fact, various types of couplings between electromagnetic 
and other interactions, all of them of the third and fourth orders with respect to 
the annihilation and creation operators.

In the present paper a unification of the hyperfme interactions is proposed 
from the viewpoint o f Finsler geometry and supercomplex structures [3 , 4 ], 
reflecting the intrinsic symmetries o f the system. The unification is proceeded by 
a separate discussion of hyperfine interactions for paramagnets in connection  
with the generalised Langevin equation, for ferromagnets in connection with 
Oguchi’s theorem, and for ferroelectrics in connection with solitary waves.

The intrinsic symmetries of a many-electron system give rise to the 
construction of a suitable supercomplex structure and the corresponding 
hamiltonian. Then it is possible to derive from the latter a kind of generalised 
Breit equations which can be interpreted as generalised Fueter equations 
generating holomorphic mappings in the hypercomplex analysis corresponding 
to the supercomplex structure in question. An explicit relationship is given 
between those mappings and the spinors involved in the generalised Breit 
equations. In this sense the paper is a natural continuation o f [5 , 6 ].
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The general procedure is then applied to the three particular cases of 
hyperfme couplings discussed before, including some examples which seem to 
show the usefulness o f the procedure.

After the section on Langevin-type equations in supercomplex geometry, as 
an example, an application to paramagnetic binary alloys of the type АЛВ, is 
given, including calculations o f the configurational entropy and the temperature 
dependence of the order pirameters [ 7 , 8 ].

The second quantization and Oguchi’s theorem in supercomplex geometry 
give a theoretical proof of the dependence of the band structure on temperature 
with a possibility of numerical calculations and corrections to the electron 
correlation functions as well as explain the influence of the higher order 
correlation on the relaxation processes.

In connection with the third particular case concerned with ferroelectrics, it 
appears that the generalised Breit equations always generate a generalised 
Kadomtsev-Petviashvili system of equations having, in general, soliton solutions. 
The application to the vibrational properties of ferroelectrics includes an 
observation that the theory o f vibrations of ultra-heavily doped semiconductor 
binary alloys oi the type G , _XPX, containing electrically inactive ions P , and 
electrically active ions P 2, has its natural counterpart for ferroelectric crystals of 
the K D P, TGS, and related types [9 -1 1 ].

In addition, the applicability of the general approach to Raman scattering is 
indicated, in particular in the case of near-surface regions.

The conclusions concentrate on an observation that the formulae obtained 
imply the occurrence of the dipole interactions which come from the spin 
orientations characterized in terms o f supercomplex structures. In the case of 
a system of electrons, bounded by a surface, the flux of the electromagnetic field, 
manifesting itself as a deformation of the space outside the object, determines in 
a natural way the demagnetizing fields existing in the region over the surface. The 
occurrence of those fields, experimentally measurable, enables us to determine 
the boundary conditions for solutions describing the electron density distribution 
inside the system. That is to say that the boundary conditions can be expressed via 
deformation of the metric in near-surface regions.

1. HYPERFINE INTERACTION FOR PARAMAGNETIC AND  
THE GENERALISED LANGEVIN EQUATION

In the case of free paramagnetic atoms, an external magnetic field applied to 
their source introduces a certain order and the decoupling effects occur when the 
electronic precession frequencies exceed considerably the hyperfme frequency
[1 2 ]. For paramagnetic crystals of the rare earths there, most probably, exists 
a kind of angular correlation resonance for certain values of an applied magnetic 
field which leads to crossings of hyperfine levels [13]. The time-dependent



hyperfme interaction appears when the paramagnetic relaxation time is sufficiently 
yet not too small. In the case o f paramagnetic ions in liquids they seem to be 
connected with coupling the electric moments o f the shell and rapidly fluctuating 
electric fields due to the Brownian motion. Other reasons are impacts and, 
consequently, direct displacements of atoms. In garnets, the hyperfine fields 
direction at the rare earth nuclei fluctuates even below the ferromagnetic Néel 
point [14, 15].

Omitting electromagnetic interactions in an anharmonic paramagnetic crystal  
we can consider it a system of coupled anharmonic oscillators with fluctuations of 
the crystallographic lattice. In that case we arrive at a generalised (inhomogeneous) 
Langevin equation [16, 17]

(d2/d t2) <q(6,  t)> =  - A  (0 ) (q (6 ,  , (1)

where q(0, t) denotes the thermal displacement at the instant t for an atom whose 
position and local fluctuations are described by the generalised co-ordinates 
Ô, <<?> is the average value of q calculated in the usual way in terms of the 
Gaussian distribution, the matrix A  (0) consists of the force constants [18, 19], 
and (t) is the stochastic force connected with the particle in question considered 
a Brownian particle embedded in the heat bath of the remaining particles. The 
description [1 5 ], which includes in fact only the phonon vibrations, leads to the 
effective formulae for the autocorrelation C-<łJ(0 . t ) q k( S , t + Ą : \  and the 
corresponding momentum autocorrelation of the related quantum operators. 
The method can also be extended to the case of scattering by liquids when the 
correlations of the particle velocities play an essential role. The inclusion of the 
electronic vibrations and the electron-phonon coupling to the hamiltonian leads, 
in general, to soliton solutions [ 2 0 ].

In the case when an adatom (i.e. an atom on the crystal surface) is the particle 
in question, the Langevin equation has the same form (1), but the solutions are 
essentially different [2 1 ]. The reason is that an adatom has its neighbours only in 
the half-space restricted by the surface. It gives new expressions for /1(0) and
&  (t), and new boundary conditions.

2. HYPERFINE INTERACTION FOR FERROMAGNETS, AND  
OGUCHI’S THEOREM

In ferromagnets, internal fields cause very strong perturbations. The resulting 
perturbation can, on the average, be treated in the same manner as an isotropic 
hyperfine interaction provided that the source is completely unpolarized and the 
Weiss regions are small enough. An isotope with a known excited state magnetic 
moment can serve, like in Mössbauer effect measurements, as a probe for 
investigating magnetic fields at the position of the nucleus [14] (solutions of 
diamagnetic substances in iron and rare earth metals in iron garnets and ferrites).



M ore generally, angular correlations have features in common with the 
M össbauer technique. Extending the method o f [13 ] to the electron spins S (5, t), 
we arrive at Oguchi’s theorem [22] stating that the third component Sz of 
S satisfies the equation

(д/at) <s45, o > = - а / т о  [ < m  o>  -  o > i .e . ] . (2)

where Tt  denotes the spin-lattice relaxation time and I.e. stands for ‘local 
equilibrium’.

Indeed, if in the considerations o f  [13 ] we replace formally

(3 /d t)< £ (M >  by <S‘( M > .  
then the counterpart of

(d2/d t2) < g ö ,  £)> becomes —(1/71)[ < ^ ,  t)-S*{S , t ) \ J  , 

as required.
Oguchi’s theorem implies the linear dependence o f  the energy of  the hyperfine 

interaction on the values o f the electron and nuclear spins [2 3 ]. For precise 
interrelations with the Mössbauer line shape in the case of diluted ferromagnetic 
alloy thin films we refer to [24].

3. HYPERFINE INTERACTION FOR FERROELECTRICS AND  
THE APPEARANCE OF SOLITARY WAVES

In analogy to the internal fields in ferromagnets it is natural to consider in 
a similar way the fields in ferroelectrics, especially the electric fields available to 
saturate the sample giving conditions similar to those in a single crystal (the 
isotopes N a T a 0 3, P b T i0 3, ВаТЮ 3, W 0 3, etc.). At present, in analogy to 
ВаТЮ 3, the so-called Perovskite structures are being studied in the Escuela 
Superior de Fisica y Matemâticas del Instituto Politecnico Nadonal in Mexico [25].

Experimental data and fenomenological considerations [2 6 ,2 7 ] show that in 
the case in question the counterpart of the equation (1) has soliton solutions. Even 
in the case of ferroelectric crystals presenting a molecular group (e.g. N a N 0 2) and 
a rather simple microscopic model [  26], a double sine-Gordon equation is obtained :

«U = s in u - y s in 2 u ,  (3)

where y is a real constant. One solution o f (3) is stable and can be interpreted as 
a m otion of a ferroelectric wall with electromechanical couplings.

The solutions in question express surface solitons if the maximum is attained 
on the surface of the crystal, i.e. at the end of the chain of atoms in the sense of the 
construction given in [1 7 ], pp. 48-49. On the basis of the côntinualized equations 
of the magnetoelasticity for ferromagnetic crystals, it is shown in [26 ] that Bloch 
walls in an infinite crystals and Néel walls in a thin elastic film can be represented 
by ‘magnetoelastic’ solitary waves.



4. THE FINSLER GEOMETRY

The Finsler geometry is a generalisation o f the Riemannian geometry [28]. 
Namely, let M be a real C°° -manifold o f dimension«. Then, let L :T M -* R + u  {o} 
be a positive-valued C“ -function defined on the bundle tangent to M with the 
following properties: (i) L (x , Y ) > 0  for every x e M  and Y e T x M, УФО, where 
T^M denotes the space tangent to M at x, (ii) L ( x ,k Y )  
=  kL(x, Y) for any positive number к and every x e M  and Уe  Tx M, (iii) locally,

det [(<d2/ d Y ]d Y m) L 2(x, У)] Ф0 for every x e M .

A manifold M with the function L is called a Finsler manifold.
Since L 2 is a hom ogeneous function o f degree 2 with respect to У, then

Ь2(х, Y )= '£ j gJm(x, Y) Y JY n ,
j ,m

where
9jm(x, Y) : = ± ( d 2/dYJdYm) L 2(x, Y) (4)

is called a Finslerian metric tensor. The Finsler geometry reduces to the 
Riemannian geometry whenever the metric (4) is independent of У.

In Finsler mechanics we assume a particle interacting with the electromagnetic 
field to be described by the function

L (x, x ) - ( £ a hJx!,xJ)112 +  £  AjXJ, 
k.j j

where [a ^ ] is a positive definite matrix consisting of the C00-functions defined on 
M and Aj  are arbitrary C°°-functions on M. It is clear that, in contrast to 
Riemannian geometry, in the Finsler geometry all the solitons are solutions o f the 
equations of m otion, i.e. o f the Euler-Lagrange equations [5, 2 0 ].

5. SUPERCOMPLEX STRUCTURES

We consider two finite-dimensional real vector spaces S and V, equipped with 
scalar prod ucts ( , )s and (, )K. Let (a , b)s e  R (the real number field), (b , a)s = (a , b)s , 
(ya,b)s = y ( a ,  b)s , and (a, b + c ) s = (a ,  b)s + (a ,c ) s whenever a, b , c e S  and y eR . 
For f . g e V ,  we suppose that ( g . f ) v = ö ( f ,  g)v , <5=1 or —1; the remaining 
postulates for ( ,  )K are the same as for ( ,  )s . Without any loss o f generality we can 
choose the basis (e j  of S so that

■ =  [ f e ,  £ß)s] =  diag (1......1, - 1 ....... - 1 ) .  (5)
I---------------------------- 1

p times

A multiplication o f elements of S by elements o f F  is defined as a mapping
S x  F -* F su ch  that, for / ,  g e V  and a . b e S , we have ( a + b ) f = a f + b f ,  u ( f + g )  
=  a f + a g ,

(a, a)s ( / ,  g)Y=(otf. &g)y (the generalised Hurwitz condition), (6 )



and for which there exists a unit element £0 in S with respect to the multiplication.
A particularly important case appears when the pair (V, S) is irreducible, Le. 

when it is not reducible. It is said to be reducible if there are real vector subspaces 
v i and V 2 ° f  V, 0  Ф Fj Ф V2, Vk ®  V2 =  V, such that the images of S x and S x V2 
under the multiplication are contained in Fj and V2, respectively. The irreducible 
pair (V, S) satisfying all the above conditions is called a ( pseudo-euclidean) 
Hurwitz pair [29, 3, 4 ].

Any Hurwitz pair induces a Clifford algebra with generators y„,a =  1 ......p — 1 ,
determined by the relations

C . =  iy .C p , Ca : =  [ c ) J , tfe = ( e l ,ee ej)y, ek : = x k‘e,, 
where a =  l , . . . , p ;  j , k = l , . . . , n  =  d im V , i denotes the imaginary unit, and the 
Einstein summation convention is assumed. The generators are chosen in the 
imaginary Majorana representation: they are purely imaginary and satisfy 
conditions analogous to those fulfilled by the familiar Dirac matrices 

ÿ . =  -V a ,  reya =  0 , yayß +  yfiya=2fjaßI,,, ß * a . ,
tfaß • =  1 ОГ 1,

where [rça<,] is defined in (5) and In denotes the identity n x n-matrix.
Define S„ by S„= —iya. Hence S2=  so each Sa determines a complex 

structure. Next we consider the ( p —2)-dimensional sphere Sp~2. For a point 
n e S p 2, ii =  (n1......n ,_x) with и̂  +  ... +  п2 _ 1 =  1 , we set

Jn =  ni S1+... +  np_ 1 Sp_ t 
which is also a complex structure. The complex structure J~ is called the 
supercomplex structure for the direction n.

Finally, consider a separable Hilbert space H over the field o f real numbers R. 
A pair (H , S) is called a pre-Hurwitz pair [30] if there exists a bilinear mapping 
/ :  H x  S-+ H satisfying

ll/(* . .у)11н =  1М Ы 1у11н for any x e S  and y e H ,
where || ||s and || ||H denote the norms of S and H, respectively. A pre-Hurwitz 
pair is called decomposable, if H has the decomposition

H =  ® “ =1 Vk , where (1^, S) are (euclidean) Hurwitz pairs.

In this case, choosing complex structures Jk on Vk, we define a (decomposable) 
supercomplex structure J  on H by

6. UNIFICATION OF VARIOUS TYPES OF HYPERFINE INTERACTIONS

The concept of unification o f various types o f hyperfine interactions, 
originated in [ 5 ,6 ]  and further developed in the present paper, involves the use of 
Finsler geometry and supercomplex structures.



In Section 3 we have already noticed that in certain cases the equation of 
motion has solutions. On the other hand, as remarked in Section 4, it is clear that, 
in contrast to Riemannian geometry, in the Finsler geometry all the solitons are 
solutions of the equations of motion, i.e. o f the Euler-Lagrange equations. 
Consequently, these equations can be regarded as

(â/ëS) [u,(f/dus) F = 0 , where u = u ( S , t ) ,  F = f ( u ,  u„ u j ,  (7)

and then compared, for instance, in the case o f ferroelectric- crystals, with the 
results of [26, 27].

Besides, m order to derive the hamiltonians involved in the intrinsic 
symmetries, we shall apply the concept o f supercomplex structure given in 
Section 5. Our motivation is the following: The success of the conpie.\ analysis 
has already been caused by the decomposition

(* î +  x l ) ( y \  +  y \)  =  (Xj >4 -  x 2 y 2)2 +  (*! y 2 +  x 2 y  i f , (8)

where x l etc. are real. Unfortunately, an analogous problem o f x ] + x \  being 
replaced by x \  +  x \  -f — x"0 has no solution, but is solvable if we go over to the 
Kałuża-Klein theories: ||x||2 = .r j 4 -... +  .'CgJk+4 —x \ ,  where к + 1  is a positive 
integer [3 1 ], interpreted as the numbet of particles [ 6 ].

Therefore, considering the inclusion of the hyperfine interactions to the 
hamiltonian, we follow the spirit o f the Kałuża-Klein theory of arbitrary order 
p =  8 fc +  5. We shall now in\estig; te a generalised Breit equation, including the 
pseudo-riemannian geometry (which can easily be replaced by a Finsler 
geometry, as indicated in Section 4) and the Clifford structures in the form of 
Hurwitz pairs and the related stipercomplex structures. This approach leads to 
further types of interactions connected with the richness of the Clifford algebras 
and reflecting the intrinsic symmetries o f the system.

For instance, already in the case o f two particles {k — 1), in contrast to the 
usual Pauli theory [3 2 ], instead of two systems of spin we have 24*= 16 systems 
of reduced spins. Two o f them correspond to the two particles in question, in our 
case to two electrons, while the others to 14 types of interactions. Explicit 
formulae will be given in the next section, showing that the additional spins 
enable us, in contrast to the Pauli theory, to preserve linearity in the sense of the 
Dirac programme concerning the one-particle problem.

7. GENERALISED BREIT EQUATIONS -  HEURISTIC INTRODUCTION

Consider a particle in space, treated as the space of  the particle. In the simplest 
case it is euclidean space with the orlh onorma 1 basis (eß, e} ek =  0Jk (the Kronecker 
symbol). If the particle Las mass and charge, ve deal with gravitational, 
electromagnetic, strong and weak fields in the partiel i rpace. The particle couples 
with these fields, described by Dirac-Maxwel! and Yan^-Müls equations. Its 
equation of motion, of the form



mx =  &r( t , x , x ) ,

includes the influence of those fields on the motion of the particle. We see that 
even in so simple a case as that of an individual elementary particle, the suitable 
equations are quite complicated.

Assume for a moment that the particle has only mass. The case has been 
considered by Einstein who discovered that one can obtain a correct equation for 
the particle space without gravitational field, albeit with a non-euclidean metric. 
This can be understood as the space of observations o f the particle. The curvature 
o f the space is connected with mass. By analogy to general relativity, we can 
construct the particle space whose geometry describes all four fields.

Consider, in particular, a vector space with basis (eß. The familiar formula 
gjk= ( ej, ek) gives the matrix of coefficients, called the metric of the space.

In our general case, the metric is supposed to be complex:

9 =  9t + i g a -

The first part expresses the electromagnetic field and the other the nuclear one. 
There are many metrics with those properties. We choose that which gives the 
Dirac-Maxwell and Yang-Mills fields in the form o f equations compatible with 
Dirac-M axwell system. Under those assumptions the particle is described by the 
system

=  0 , U r = - i e j ,  D iv £ = 0 ;  Z > r B- i T e , (9)

where D is the Dirac operator corresponding to the electromagnetic and nuclear 
fields, and j  is the current generated by }P. Г" and Г* are the spinor connections 
and e =  e jh c ,  where e0 denotes the electric charge of the electron.

Then, in [ 6 ] ,  a complex-analytical method of solving the system (9), based on 
linearization of the spinor connections, is given, which is equivalent to 
linearization of the metric of the space.

In a more general case, the external fields are not only self-electromagnetic 
and self-nuclear but, moreover, have to be considered the ones coming from the 
other particles in the same space, like in a crystal or in a solid state sample.

Thus, we have to turn our attention to the construction of an equation for 
a system o f mutually interacting particles. Let us concentrate on an arbitrary 
many-electron system in an external field. Irrespective of whether we are dealing 
with a thin film or a bulk, with an interior atom or an adatom with their nearest 
neighbours, we are interested in a system of fc +  1 electrons. If these electrons 
belong to n atoms, we have a decomposition fe +  l  =  /c1 +  ... +  fe„.

In 1930 G. Breit gave his equation for a two-particle system



where E  is the total energy: EU  =  hcd°U, Я (1) and Я (2) are the Dirac hamiltonians 
corresponding to each o f the two particles alone, and a 2 are the corresponding 
Dirac matrices, r t and r2 are the positions o f two electrons on which the wave 
function U  depends, and r 12 is the distance between the two electrons, while 
r12 =  r1- r 2.

A relativistic approach to the many-electron problem as a generalisation of 
the Breit equation for a many-particle case leads to the Dirac-Maxwell system. It 
has the form resembling the one-particle case:

6 « f 4 = 0 ;  D pr * =  - ie j< ;  D ivpr « = 0 ,  where p = 8 /c +  5 , (11)

and

Ö q =  Dq-t-(2/ftc)Äfot. q ś k + 1,

where Dq is the Dirac operator corresponding to the g-th particle alone , ) 4 is the 
current generated by V 9, (2/fic) ftfax denotes the interaction part of D* and Г 4 is 
the corresponding spinor connection [ 6] .

8. GENERALISED BREIT EQUATIONS AND DIRAC-MAXWELL SYSTEMS IN  
SUPERCOMPLEX GEOMETRY

We are going to formulate the previous considerations concerning the 
generalised Breit equations and the related hamiltonians in a more precise way.

According to the results of [ 6] ,  by [3 3 ,3 4 ,5 ] , the relativistic approach to the 
many-particle problem as a generalisation o f the Breit equation (10) leads to 
a system of Dirac-M axwell-like equations (11), where

Ö q= D q + (2/ftc){yq0 + 1,)-  l H qal, q < k + 1 , (12)

Dq= y q0Hq, H q is the hamiltonian and yqJ, j = 0 , ..., p — 1, are generators o f the 
Clifford algebra corresponding to the q-th electron, q =  1......k + 1; and

H L  =  ( W 2 £  -  ( J v - i « V )  +  Н Лет,

i * i  rJt

Щ'Ш = i  (hec)2 Z  -S~ ■
i*4. j i

Here, Iv stands (as before) for the identity v x v-matrix, v =  24*+3, r4 =  ieAq is the 
spinor connection, Aq denotes the self-electromagnetic field of the q-th electron, 
rj t  stands for the euclidean vector between the v'-th and q-th electrons, and rJt for 
their euclidean distance. Similarly, a* denotes the coefficient matrix for (yJ<r) :

yJq=a{*y'01.

From (12) we see that the total hamiltonian Я  is the sum of the hamiltonians 
H q and Я«,:



Н = = 1 ( Н Ч Щ ,
4

where Я* is the hamiltonian of the q-th individ ;я1 electron and Hfal is the part of 
the hamiltonian corresponding to the interaction.; between the <?-th electron and 
the remaining ones; it includes the demagnetizing term H$tm.

Now, we consider the Hurwit? pairs (S, V)—({x), {y}), discussed in Section
6  in connection with generalisations of (8 ) in the spirit of the generalised Hurwitz 
condition (6 ), and generalise the concept replacing S by a suitable fibre bundle 
ÆM, where M denotes the fibre space. The mathematical details of the procedure 
are given in [ 6 ] .  (In the case of one particle, k = 0, M can be chosen as the 
Cartesian product of the M inkowski space-time and the circle whose curvature is 
interpreted as the mass.) Then we consider the eigenvalue problem concerning the 
equation

J f — z ■/ for f e V ,  (13)

where T. M x  V -*V  is the multiplication, Tt M denotes the complexified space 
tangent to M at z, and J is the endomorphism corresponding to a complex 
structure of T2 M; cf. Section 5. The system corresponding to the intrinsic 
symmetries ofthepseudo-riemannian Hurwitz pair (âiM, F ).d im M = p ,d im  V = v ,  
is connected with the hamiltonian including interactions of higher orders with 
respect to the operators of annihilation and creation of electrons.

Consider the system (9) with the operators (10), which now reflects the 
intrinsic symmetries of the supercomplex geometry  of (â9M, V). The corresponding 
hamiltonian includes interactions of higher orders with respect to the operators 
o f annihilation and creation of electrons. We reduce the system of fc +  1 
interacting electrons coming from the n atoms in question to the system of fc + 1 
free electrons considered individually in the external 2 4* ’ 3-dimensional field 
caused by the remaining electrons, as described by the general Dirac-Maxwell 
system. Next, we multiply both sides of the Dirac-type equations in the system
(11) by suitable conjugate operators

D' =  D 40 +  D \ - i e \ 0 Aą0, where =  — Dg and D\ =  - D j  +  2 / vm,

where m - m 0 c/h and m0 denotes the rest mass of the electron. For the 
nonrelativistic energy ^ = ^ ' 0/ the system  we get a relativistic expression of 
the form

W = B 2(HiJ  +  B+(HlJ  +  B (l(HiJ + o ( . \ H lJ 3), Я 1о1= Х Я ? т , (14)

where B 2, ß 4 and Bt  are the terms of the second, fourth and sixth orders with 
respect to (Я 1о, ) 1/2 or, equivalently, with respect to the operators of creation and 
annihilation of electrons [ 6 ] .

The expressions obtained for the energy W =  ° f  the system of electrons, 
placed in a field characterized by the geometry corresponding to the 
pseudo-riemannian Hurwitz pair (âSM, V) in question, provide us with a starting



point for describing the system in terms of second quantization. Following the 
usual procedure o f the second quantization we arrive at an expression for the 
hamiltonian H, associated with the energy W, in the form

£  ^ 1'вдвд'+ 4  I  Ix „  x -a îa ïa p.a x.
X. V  Лрр'Г

+i E  b W p 4 - a » X ' aP'flA' +  °(Ha Afli'll3)> (15)
Хрым'р'к*

where a x resp. ax denote the creation and annihilation operators, while the matrix 
elements tu ., IXpi)‘X' and L xfntx.fi.x. contain the one-, two- and three-particle 
interactions, chosen according to the formula (14).

An analysis o f the expressions (14) and (15) shows that the linear dependence 
o f the energy of the hyperfine interactions on the values of electron and nuclear 
spins holds with accuracy to (|Hta,|3/2) or, equivalently, to о (||адад.||3/2). 
Therefore in strong fields there may occur nonlinear interactions, foreseen in 
a natural way by the theory.

9. LANGEVTN-TYPE EQUATIONS IN SUPERCOMPLEX GEOMETRY

As it has been observed in [2 0 ], the Langevin-type equations including the 
electron, phonon, and electron-phonon vibrations can be derived from the 
intrinsic symmetries of (&M, V)\ however, an effective construction is only 
initiated in [ 6] .

Precisely, in the case of a chain of atoms in a crystal, we have

H  =  H C +  H f +  H tp, (16)

where H c is caused by the electronic vibrations, Hp by phonon vibrations, and 
H tp by the electron-phonon coupling:

H e=  I  txx a +xa-x + \ U £ aX(a)al ( a ) a +x^ a)al {_a)- ц ^ а 1аХ •
i.x

X = ( v , j ,m ,a )  and A + l = ( v J + l ,m , f f ) ,

Hp= i M £ P2+ 4 a Z ( Ä 2+1- Ä 2) + ._, 
j j

j

The expressions are written in standard notation in the Hubbard approximation 
applied to (15) together with the pseudoharmonic approximation [17 ].

From the viewpoint o f the deformation o f  the metric, in particular in 
near-surface regions, the procedure leads to a positive solution of the problem, 
posed in [1 7 ], whether a generalised Langevin equation (1) or its counterpart, 
resulting from the hamiltonian (16), can be transformed to a Langevin equation 
by including the stochastic force & {t)  ó f (1) in a suitably curved geometry.



O f course, the simplest case occurs when we confine ourselves to the phonon 
vibrations. This is the case when the vibrational properties of ultra-heavily doped 
semiconductors are discussed [3 4 ]. In the next section, continuing the ideas o f the 
microscopic electronic theory of paramagnetic Co^Fej _x alloys [7 ] , we shall give 
an application of our approach to paramagnetic binary alloys of the type 
A jB i.* , including more general interactions: of the second and third orders.

One step further is a consideration o f the hyperfine interaction in connection  
with the electronic band structure of thin films o f semiconductors like CdTe [3 6 ], 
in particular the dependence of that structure on temperature, and with the 
photoreflectance o f radiofrequency sputtered thin films, for instance Cdx _ ,F exTe, 
x = 0 .0 0 , 0.05, 0.10 and 0.15 [3 7 ]. As far as paramagnets of the rare earths are 
concerned, in the Institute Politecnico Nacional, M exico, ceramic oxides are 
being studied [2 5 ]. Here L is a rare earth, M =  Sr or Ba, N  =  Cn and 6 < y < 6 .5 .  
These materials become diamagnets at low temperatures according to the 
superconducting character of these ceramics, as well as the Perovskite structures 
mentioned in Section 3.

In Poland, rich material in this direction may be found in several papers 
written or inspired by Profs. W. Pajewski and Z. Surowiak [3 8 ,3 9 ], in particular 
in connection with ferroelectrics.

10. APPLICATION TO PARAMAGNETIC BINARY ALLOYS OF THE TYPE A ^ . ,

According to [7 ] , the microscopic theory of paramagnetic C oIF e1 _x alloys is 
based on adapting the tight-binding hamiltonian in the Bethe lattice approximation

=  Z  e«aX  +  Z  Eßaß aß +  Z  taßal aß +  ° ( \H i J ) ’ (17)
a ß a*ß

where the alloy is supposed to have N  lattice sites subdivided into two equivalent 
sublattices a, ß  so that there are \  N  sites of type a and \  N  sites of type ß  labelled 
by a and ß, respectively. Each а-site has Z  sites of type ß  as its nearest neighbours 
and vice versa. We set

i N  N N N

1 = 1 .  1 -  I  . I - l  I -
a a= 1 ß a = łiV + l  a*ß a=lß = l

Following the approach in Sections 6  and 7, by the formulae (14)—(16), the 
hamiltonian (17) has to be improved by the term

/L H = Z  ^«(fl«eJ 2 +  Z  r ß(aßaß)2+  Z  ^ ß ß aa aaaß aß
a ß &*ß

+  Z  4 ( a X )3 +  Z  Aß(aß aß)i
a ß

+  Z  -̂‘oaaaßß(aaaa)2(aß aß) ~̂ Z  ^ßßßßoÄ.aß aß) (aa aa)
яФß лфß

+  o ( |H J 3). (18)



The electronic energy levels of atoms situated in the a and ß  sublattices, 
denoted by [a ]  and [/Г], take values eA resp. eB with the probabilities pA resp. 
where v =  [a ] in the case of £„, and v = [ /f ]  in the case of eß. The values Г A and AK 
resp. Г в and AB are taken with the probabilities pA resp. with analogous 
restrictions.

The interaction energy increments t^  o f those atoms take values t ^ ,  tBB and 
гАв=:(гААгввВ) 1/2 with the probabilities p[j £ \  pjffl, and p ^ \  respectively, where 
[a ß ]  stands for [а ]  [Д] etc. The interaction energy increments o f those 
atom s take values JaAaA, ^bbbb>  ^ a a b b  =  ( ^ a a a a ^ b b b b )  1 a n d  -^ a a a b  

= ( 7Л а а  ^ b b b b )1/4 with the probabilities Р ^ ^ .Й в в в 1. Paabb and pfâ%g , respectively. 
Analogous formulae for the interaction energy increments o f higher order will be 
published in [ 8 ] .

The probabilities in question are subjected to the constraints

£  p ™ =  I for I , J  =  (A, А ), (В, В), (А, В), (B, A),
I , J

+ № + № )  =  *■

\  (2?aaaa +  Paaab +  Pa aba +  Pabaa +  Pbaaa +  Pabbb 

+  Pbabb+ Pbbab +  Pbbba+ Pabab 

+  Pabba +  Pbbaa +  Pbaba +  Pbaab) =  x  > 

where in the last formula we have set pAAaa=Paaaa> etc- An analogous formula 
for the higher order probabilities will be published in [ 8] . The above formulae 
and the explicit form o f (14), given in [ 6 ]  (formulae (44)-(45)), show that from the 
viewpoint of magnetic interactions the contribution of the third addend 
(containing the energy increments on the right-hand side of (18) gives 
a contribution to AH lower by one order than the contribution o f the remaining 
addends.

The local Green functions Glv( со), calculated from the equations of motion [7 ]  :

(co- Ea) G ^  =  1 +  z ( - ^ - ~  tAAG?0 +  -? ĵ  tABG f t ) .
V Pa Pa /

(со — £д ) G q o  =  •••, (ft> — E B )  G q o  =  — I (&> — £fl) G oS  =  ••• > 

where ^ =  [> ],[/? ] and v =  [a ] ,[ /? ] , give the local density of states

N {t v(co) =  — ( l /л) Im Gqv0 (со) , /  =  А ,В , (19)

the total average density of states

(20)
I. у

and the configurational entropy which, in the Bethe approximation, is expressed as 
s = k N  { j ( z - i ) £ p ; i n p ; - i z £  p w i in f i ? ) .



Analogous equations and formulae including increments of higher order will be 
published in [ 8] .

11. TOE SECOND QUANTIZATION AND OGUCHI'S THEOREM  
IN SUPERCOMPLEX GEOMETRY

W ith the energy (14) we have associated, as usual, the hamiltonian (17) 
determined with respect to the operators of creation and annihilation o f electrons 
via expanding the wave function into a series o f eigenfunctions constituting 
a system o f solutions o f the system (11). The study o f the term B6 in the formula 
(14) gives a theoretical proof o f the dependence o f  the band structure on 
temperature with a possibility of numerical calculations.

Moreover, the formula (15) enables us, with an accuracy that can effectively be 
estimated, to verify the theorem, following from the Oguchi theorem concerning 
the equation (2), on the linear dependence of the energy of  the hyperfine interaction 
on the values of electron and nuclear spins [2 3 ].

In the formulae (14) and (15) there also appear corrections to the electron 
correlation functions, describing the electron states density (cf. the way of 
obtaining the formulae (19) and (20)), which yield the charge density distribution, 
the work function, and the others characterizing the system of electrons.

The same calculation applies to the particularly interesting case of 
autocorrelation o f  electrons quite analogous to the autocorrelation in Section 1, 
which now describes the behaviour of an electron at two different instants, 
expresses delocalization o f that electron and determines the finite time of its 
definite quantum state. Thus the related autocorrelation time describes the 
blurring o f the process o f delocalization of the electron and the reversal of spin 
orientation. As far as the nonrelativistic theory is concerned, the spin autocorrelation, 
corresponding to the two-particle autocorrelation o f the type described by the 
product of exp [ i  (Я/ft) t ] , аД a ,f -  аД ari and exp [  -  i (Я/ft) t ] , а Д art -  аД ar l , is 
determined by a diffusion process.

Obviously, a further progress is connected with the inclusion o f a relativistic 
approach in the hamiltonian (15). If in the formula (14), related to (15), we include 
the dependence on B6 and the successive addends, and establish the influence of 
the higher order correlations on the relaxation processes. This proves the 
spectrum line widening, implemented also by autocorrelation time. The influence 
is of a more complicated character since it depends intrinsically on the 
temperature by the occurrence o f the many-particle interactions.

The most natural way to investigate the temperature dependence of the 
many-particle interactions is to study the temperature dependence o f the order 
parameters. Let us take again in the new context of ferromagnets the binary 
model with N  lattice sites subdivided into two equivalent sublattices a, ß  such 
that there are -j N  sites o f type a and \  N  sites of type ß. With the same notation, it



is convenient, in the first order approximation, to consider a long-range order 
parameter

П '■ =  W  + p№ )  -  ( p№ + P 1b? ) = P ?  -  P T . (21)
and a short-range order parameters

»  : =  l - i ( p № + p Ł T ) / x ( l - X ) ,  (22)
with the meaning o f x  analogous to that in Section 9.

12. SOLITARY WAVES IN SUPERCOMPLEX GEOMETRY

By [33 , 34] we can see that the system (II) always generates a 
Kadomtsev-Petviashvili system having, in general, soliton solutions. Namely, 
with the operators (12) we associate the pseudo-differential operators

W i(t):=^»+M i(^.t)0 f) ' 1 +  « î(z .O 0 *)_ 2 + .. . .  z e  M , 
where M is the fibre space constructed in Section 8 and t = ( t x, c2,...) is a system of 
infinitely many parameters. Consider the generalised lagrangians L f(t) : =  
Wi 5 i Wq~ l (not being summed). Then each L q{t) determines an isospectral 
deformation o f  Ö* : any eigenfunction of the equation

L t( t ) V = X t 4> (23)

remains fixed, independently o f  the choice of t. The corresponding  
Kadomtsev-Petviashvili system reads:

^ L f = [ (L f*)+ ,L f] ,  « = 1 , 2 , . . . ,  where (Lf")+ =  ( ~  Wt ~ l + ą  (24)

and L" is defined as L"- 1L .
The eigenvalue problem concerning (23) is closely related to the eigenvalue 

problem concerning (13). The relationship has recently been established partially 
in our joint paper [3 0 ]. Precisely, the positive answer is proved to hold for the 
decomposable supercomplex structures introduced in Section 6 .

Before formulating the result, which seems to be quite important when 
studying solitary waves, especially surface solitons, we have to recall some basic 
facts on the reduction solutions of Kadomtsev-Petviashvili systems [4 0 ].

A solution o f the Kadomtsev-Petviashvili system (24) is called an /-reduction 
solution if (L')+ = L ‘ for some integer I. For instance, 2-reduction solutions give 
rise to those of

u,—6uux +  uxxx= 0  (the Korteweg-de Vries equation),

and 5-reduction solutions to those of

3uyy+ (u xxx+ l2 u u x)x = 0  (the Boussinesq equation).

It is well known that /-reduction solutions can be characterized in terms of the



so-called Kac-M oody Lie algebra, more exactly the Lie algebra A \1} t [4 1 ]. An 
element Ç eA ÿJi  can be expressed as

£  X lk)Xk , X w e s l ( l ,R ) ,  (25)
к =  — QO

where Я is a parameter. In a similar manner we can define ^-reduction solutions. 
We choose a Lie subalgebra У  of si (I, R) and Ç by (25) with Х (к)е У ,  k e Z .  The 
corresponding solutions of the Kadomtsev-Petviashvili system (24) are called 
â?-reduction solutions.

N ow , the relationship between the eigenvalue problems concerning the 
equations (13) and (23) can be formulated as follows : There exists a correspondence 
between a set o f decom posable supercomplex structures and a set of 
so(p —l)-reduction solutions of the Kadomtsev-Petviashvili system (24). The 
above theorem still holds true in the case of pseudo-euclidean Hurwitz pairs 
(V, S), where the metric of V, analogous to the metric ( ) o f S, is finite-dimensional 
and, after diagonalization, has an even number of signs +  (or, equivalently, of 
signs — ).

13. APPLICATION TO THE VIBRATIONAL PROPERTIES OF FERROELECTRICS

Consider an anharmonic crystal under the assumptions of Section 9. This 
means that the hamiltonian (15), derived from the intrinsic symmetries o f the 
crystal, is given by (16) and includes electronic and phonon vibrations as well as 
the electron-phonon coupling.

The equations of motion, derived in [20] from (16) with the use of the 
Lindner-Fedyanin method, are of the form

21 d
M x =  - a x "  +  — £ — {Фа Ф-„). where x = x ( £ ,  t), (26)

and

l n * - , * . .

+  и \Ф _ а\2Ф „-1Т Ф а , where °>o=Tj ■ (27)

The equations (26) and (27), in particular the third and fourth addends on the 
right-hand side of(27), give a starting point for discussing the solitary waves in the 
context of the theory of layers near the surface in anharmonic crystals. According 
to the sign of the coefficient U  and (21)2/M  (со — co0)2, the influence o f vibrations 
determines the appearance of an electronic soliton. In consequence, according to 
the equation (26), the solution for vibrations x  (£, t) depends on the shape o f the 
solution for cpa and <p_„.



As explained in Section 6 , in order to place the phenomenon of solitons within 
some mechanics we have to go over from classical to Finsler mechanics and to 
consider the Euler-Lagrange equations (7). In the case o f single solitons and 
one-wall m otion in elastic ferroelectrics in the presence of electromechanical 
couplings, the equations o f motion become

Q v „ - c ± vxx=  - e O x cos 20 ,

J0„—K 0 XX= evx cos 20 -f Я sin 20 ;

cf. [26, 27], where the physical meaning o f the parameter functions is given.
In the case of Bloch walls in an infinite crystal, the solitary waves are solutions 

of a simple sine-Gordon equation uxt= s in u .  In the case of Néel walls in a thin 
elastic wall, the magnetic-spin orientation remains nonlinearly coupled with the 
elastic displacement polarized in the plane o f the film. Therefore we have to deal 
with a nonlinearly coupled system o f sine-Gordon or a double sine-Gordon  
equation (3), where y is a real constant For y = 0 , (3) reduces to the sine-Gordon  
equation and the one-soliton solutions of (3) read

«i =  — 2  arc tan [a  sin h{x — tot)] , u2 =  л — 2  arc tan [a  sin/j (x — cot)] ,

where со is a constant and a = (1  +  2y)~l . As a more sophisticated example of (7), 
in [ 2 0 ]  the soliton equation

ut ux—2utx tan-ju
is considered on the surface.

An interesting case of the theory takes place for ferroelectric crystals o f the 
K D P, TGS, and related types. In the case o f K D P, given as K D P 0 4, we take into 
account [ 11 ]  in analogy with a crystalline binary alloy of type G ^ ^ * ,  
containing electrically inactive ions Pj (trigonal sites) and electrically active ions 
P 2 (tetragonal sites) [9 ] . In our case we set P t =  D  j  and P 2 =  D | ,  so that Pj and 
P 2 correspond to two sides o f the planes determined by 0 4 in the associated ions 
P O 4 . The role of atoms G is to be fulfilled here by the sites with complete order, 
but with some average displacement >7 in the sense o f [  10], formulae (2.12). In the 
case of TGS, given as (N H 2C H 2C 0 0 H ) 3H 2S 0 4, the situation is quite similar. 
We take P i =  H |  and P 2 =  H j ,  so that Pj and P 2 correspond to two sides of the 
planes determined by 0 4 in the associated ions SO *. The definition of G remains 
unchanged.

In the general case of a ferroelectric crystal, as considered in [1 0 ], it is 
assumed that there are two basic kinds of phase transitions, the one being o f the 
order-disorder type-. (P lt P 2), and the other of the displacive type G. In the first 
case the phase transition is a consequence of statistical disorder of active atoms 
among several equilibrium positions determined for each cell by the remaining 
atoms; we restrict ourselves to the simplest case o f two types of positions P x and



P 2. In the latter case (concerning G) the phase transition is caused by lattice 
instability against a certain atomic vibrational mode.

In analogy to the previous cases in question, the model quoted can be derived 
from the intrinsic symmetries of the system by the general approach proposed in 
[6 ] ,  where the equations o f motions, related to the crystallographic lattice, are 
understood in the statistical sense [17, 21]. Precisely, two order parameters, 
associated with the motion o f active atoms, can be distinguished (cf. [10]): the 
temperature-dependent average population <t„(T) for one of two equilibrium  
positions a =  +  , —, corresponding to the pseudospin approach, and the average 
displacement f/„(T) with respect to the centre o f the cell, corresponding to the  
self-consistent phonon scheme. Then, the order-disorder type of phase transition 
occurs when <r+(T)=o_(T)  and the displacive type when rj+( T ) = t j _ ( T ) = 0.

The parameter x  appearing in the notation G j_ xPx for the alloy type 
considered in [9 ]  is to be replaced here by the spontaneous polarization P f of 
order-disorder type [1 0 ] , formula (4.10), as follows [1 1 ]: In [9 ]  we had 
x = x 1+ x 2, x l = N ' / N P and x 2= N f/N ,  where Np denoted the number of 
electrically inactive ions P lf N P the number o f electrically active ions P 2, and 
N  the total number of sites in the alloy. In the case of a ferroelectric with phase 
transitions of the order-disorder type (P x, P 2) and the displacive type G we set
x i — x 2= x P „  x 1+ x 2 = x .  Hence it is natural to consider the ferroelectric analog 
o f with

* i = - j x ( l  +  P ,), x 2= 4 x ( 1 - P , ) ,  P .< 1 -  (2 8 )

N ow , a Born-type hamiltonian can be used [11] in order to calculate the 
density of states at a given site in real space. Special attention has to be paid to 
sites in near-surface regions, including the differences in distribution of the 
nearest neighbours. Taking into account all the possibilities concerning the 
pseudospin operator at trigonal and tetragonal sites, the hamiltonian deduced 
from the general formula (15) coincides with that proposed in [  10]. Higher order 
terms can be included here in accordance with [6 ] , where they are derived via 
expressing the hyperfme structure by the internal symmetries in terms of 
Dirac-like supercomplex structures. In particular, the density o f states can be 
calculated within the theory of heavily doped semiconductors, applied to 
ferroelectrics based on the corrected Born-type hamiltonian, with the use o f the 
Green function method. On the other hand, the same quantity can be derived 
from the Pouget-M augin theory [26, 27], which gives another Green function 
yielding the electroacoustic density o f states. Still, a Green function can be 
calculated independently by [1 0 ]. These procedures enable us to compare those 
three quantities and, more generally, the models, in addition to their comparison 
with experiment.



14. APPLICATION TO RAMAN SCATTERING IN NEAR-SURFACE REGIONS

The basic formula (15) for the total hamiltonian can be applied both in the 
case of Raman and Brillouin scattering. In analogy to the case of paramagnetic 
binary alloys considered in Section 10, by the explicit form o f (14) given in [6 ] , 
formulae (44H 45), it can be shown that the two-step iteration for the energy 
W, described in Section 8, is quite satisfactory when deriving the 
semi-phenomenological formula for the Raman scattering efficiency due to Inner 
et al. [4 2 ]. M ore careful calculations give even some improvement as far as the 
electron-phonon coupling is concerned; cf. the term H cp in the formula (16). Since 
detailed calculations have not been completed yet, we shall publish them separately.

The present stage of development relates well to  several theoretical results, 
both for the bulks and near-surface layers [4 3 -4 7 ]. In the context o f Raman 
scattering the efficiencies IK and 1B are given by the formulae

and

' a =  -

u =

d 2S 16nhn2 cot
dw dQ A _  V ln , C4

d 2S d2 hn2 /
dwdCi В n n l C* \ i

(29)

+  l )B im (  —  ), (30)

where, in addition to the standard notation, we have 

m2
A : =  1 +  2C - f -  [со2 у (со?-со)-  со2Г (со2 -I- у2 -  tu?)]

А

+  Q l " л /  — 2ч Ю1 ty  (û>p -  "?) +  г  ("р -  2со2)] +  со2 Г  (со2 +  у2)}Л (сОр-со,)

А : =  со2 у [(со2—со2)2 +  (соГ)2] +  со2Г (cof — со2) (со2 +  Г 2) ,

Eg
R :=

E g —(hü) J 2

В : = i  со2 у (со2- coj)2-t-to*r (to2- со2) +  уГ2со2 со.

The Faust-Henry coefficient С is determined in the equation

^  /c o i+ c o .y  со, /  | (Q2- c a l2 У  
/ то Y » i - û V  с о Д  Ссо2 /

The dielectric function e is given by a sum of the contributions from the phonon  
and plasmon:

___________________ t o g  1

сo2—a)2 — iu>r co(co-H'y)j; =  £oo|~



where шр is the plasmon frequency: (o* = 4 tcne2/eœ m*c, while eo, and a)L are the 
frequencies o f TO  and LO phonons, respectively, y is the plasmon damping 
constant, n denotes the free carrier concentration, coL2 are the incident and 
scattered phonon frequencies, V0 is the volume o f the unit cell, n1>2 are the 
refractive indices at co1>2, n0 denotes the Bose factor, с is the velocity o f  light, E  is 
the longitudinal macroscopic energy field, a denotes the polarizability, g is the 
momentum transfer o f  electrons, Ц is the reciprocal effective mass, and Et  denotes 
the band gap energy.

The formulae (29) and (30), confirmed by the experiment [4 3 ], show, in 
particular, that the scattering intensity o f the coupled modes depends on the 
magnitude o f the momentum transfer o f electrons.

CONCLUSIONS

Finally, we list some conclusions that seem to be quite promising as far as 
further research is concerned.

1. There are several analogies between surface properties of different physical 
problems described in the paper, in particular between (i) the demagnetizing fields 
related to solitary waves and their propagation over the surfaces o f ferroelectrics, 
and (ii) the distribution o f the diffusion coefficients over the surfaces and the 
concentration distributions in the near-surface regions o f paramagnetic and 
semiconductor binary alloys (Sections 10 and 13).

2. The mutual influence o f these properties (interactions, fields) is a typical 
surface effect which affects the diffusion coefficients and concentration distributions 
in question. This surface effect proves that, in analogy to the demagnetizing fields 
for ferroelectrics or, more precisely, to the fields existing in the region over the 
surface, there is a theoretical motivation for experimentally-known electric fields 
existing over the surface o f ferroelectrics.

3. When studying the vibrational properties of ferroelectrics, following [1 0 ], 
we have distinguished, two temperature dependent order parameters r\ and a, 
connected with long- and short-distance dependence, respectively. By the 
formulae (21) and (22) we get the complete analogy to the cases o f the temperature 
dependent order parameters for ferromagnets (Section 11) and paramagnets 
(Section 10).

4. In the light of Conclusions 1 and 2, the Oguchi theorem (Sections 2 and 11) 
may be regarded as a counterpart of the effects mentioned in the conclusions: it is 
still a statement on distribution of the diffusion coefficients. Moreover, the 
reformulation of the theorem in terms of supercomplex geometry points out 
additional analogies as far as the intrinsic symmetries o f the system are concerned.

5. It is obvious that a deformation of a classical string with distinct ends, 
topologically equivalent to a closed line segment, to a classical string without 
ends, topologically equivalent to a circle, is a good model o f small changes o f the



system which, from the viewpoint of the bounding surface or of the boundary 
conditions on the boundary surface, leads to an entirely different behaviour of 
solutions o f wave equations: non-periodic and periodic solutions, plane waves, 
solitons and instantons. As observed in [2 0 ], Section 4, the problem is 
intrinsically connected with the problem o f irreducibility of the Hurwitz pair 
involved; cf. Section 5 o f the present paper.

6. From the point of view of surface and near-surface regions we may say, 
regarding Conclusion 5, that the boundary conditions can be expressed in terms 
of deformation o f the metric in near-surface regions. M ore precisely, in the case of 
a (pseudo-euclidean) Hurwitz pair [V, S) we have two related metrics and the 
induced supercomplex structure (J, z) corresponding at the same time to the 
generalised Breit equations (11}—(12). Any isospectral deformation o f (J, z) is 
considered in relation to the eigenvalue problem concerning the equation (13).

7. From the viewpoint o f the existence of surface solitary waves, the 
generalised Breit equations (11)—(12) induce a Kadomtsev-Petviashvili system  
(24) with respect to the generalised lagrangians Lq(t). Any isospectral deformation 
of Lq(t) is considered in relation to the eigenvalue problem for the equation (23).

8. In Section 10, the probabilities р \ ,р в>  etc., depend on the position with 
respect to the surface o f the paramagnetic binary alloy. This dependence is then 
reflected by the related supercomplex structure (J, z), the generalised lagrangians 
Lq(t), the local Green functions (^ (w ), and the configurational entropy S. The 
problem is self-consistent: Since S has to attain its maximum, this property has to 
be implied by the proper distribution of atoms, Le. by the proper concentration of 
the components A and В in the alloy A ^ B ^ ,. The role of an isospectral 
deformation is played here by an isoentropic deformation in which S always 
attains its maximal value. By Conclusions 1 and 2 the observation has its 
counterpart for ferroelectrics. We can take into account the spontaneous 
polarization P s o f order-disorder type and consider a ferroelectric o f the type 
A ^ B j..,, x = x 1+ x 2, with Xj and x 2 given by (28).

9. Finally, let us return to the problem of including the three-body 
interactions (18) in the hamiltonian (17) for paramagnetic binary alloys A ,B X_ ,.  
A further study o f the formulae (44-(45) given in [6 ]  can be done [  11] in the case 
where, on the surface and in near-surface regions, the surface correlations give 
a contribution to (18) lower than the contribution of the internal correlations by 
one order. Then it appears that the contribution o f the addends on the right-hand
side of (18) containing the energy increments L__ f t  and L ßßßßaa gives a contribution
to (18) lower than the contribution of the analogous terms with Ax and Aß by one 
order. The inclusion in (18) of the terms with L„ ß and L ß a allows us to decide 
about the existence o f surface waves and surface solitons in the case o f the 
Langevin-type equations, as it has already been mentioned in Section 9.
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