ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 4, 1991

Jacek Hejduk

SOME REMARKS ON EGOROFF'S THEOREM

We define uniform convergence with respect to a small system $\{\mathscr{H}_n\}_{n\in\mathbb{N}}$. Some connections with uniform convergence with respect to the σ -ideal $\bigcap_{n=1}^{\infty} \mathscr{H}_n$ are examined. There are also proved the equivalent conditions to uniform convergence with respect to the small system $\{\mathscr{H}_n^o\}_{n\in\mathbb{N}}$ by assumption of upper semicontinuity of the small system $\{\mathscr{H}_n^o\}_{n\in\mathbb{N}}$.

Let X denote a nonempty abstract set and S a σ -field of subsets of X.

DEFINITION 1. We shall say that a sequence $\{\mathscr{H}_n\}_{n\in\mathbb{N}}$ of subfamilies of S is a small system on S if

(i) $\emptyset \in \mathscr{N}_n$ for each $n \in \mathbb{N}$;

(ii) for any $n \in N$, there exists a sequence $\{k_i\}_{i \in N}$ of positive integers such that if $A_i \in \mathscr{N}_k$, for $i \in N$, then $\bigcup_{i=1}^{\infty} A_i \in \mathscr{N}_n$,

(iii) for any $n \in \mathbb{N}$, $A \in \mathscr{H}_n$ and $B \in S$ such that $B \subset A$, we have that $B \in \mathscr{H}_n$;

(iv) for any $n \in N$, $A \in \mathscr{N}_n$ and $B \in \bigcap_{m=1}^{n} \mathscr{N}_m$, we have $A \cup B \in \mathscr{N}_n$;

(v) $\vartheta_{n+1}^{o} \subset \vartheta_{n}^{o}$ for each $n \in \mathbb{N}$.

It is not difficult to check (cf. [2]) that the family $N = \bigcap_{n=1}^{\infty} \mathscr{N}_n$ forms a σ -ideal of S-measurable sets, i.e. \mathscr{N} is closed under countable unions and any S-measurable subset of a set

from \mathscr{N} is a member of \mathscr{N} . Further, \mathscr{N} will also denote the σ -ideal $\bigcap_{n=1}^{\infty} \mathscr{N}_{n}$.

DEFINITION 2. A small system $\{\mathscr{A}_n^{\circ}\}_{n \in \mathbb{N}}$ is called upper semicontinuous if, for an arbitrary nonincreasing sequence $\{A_n\}_{n \in \mathbb{N}}$ of \mathscr{S} -measurable sets such that there exists $m \in \mathbb{N}$ such that $A_n \notin \mathscr{A}_n \notin \mathbb{N}$.

In the sequel, we shall assume that $\{\mathscr{M}_n^\circ\}_{n\in\mathbb{N}}$ fulfils (i) - (v). If it proves necessary, we shall additionally require that $\{\mathscr{M}_n^\circ\}_{n\in\mathbb{N}}$ be upper semicontinuous. For a quite arbitrary σ -ideal \mathcal{T} of subsets of \mathcal{S} -measurable set, we shall say that a property holds \mathcal{T} -almost everywhere (abbreviation \mathcal{T} -a.e.) if the set of points not having this property belongs to \mathcal{T} .

Let M $[S, \mathcal{H}]$ denote the family of \mathcal{H} -a.e. finite S-measurable real functions.

DEFINITION 3. We shall say that a sequence $\{f_n\} \subset M[S, \mathscr{H}]$ converges \mathscr{H} -a.e. to a function $f \in M[S, \mathscr{H}]$ if

 $\{x: \lim_{n \to \infty} f_n(x) \neq f(x)\} \in \mathbb{N}.$

It is obvious to consider this kind of convergence with respect to an arbitrary σ -ideal \mathcal{I} of subsets of X.

For an arbitrary operator of convergence of a sequence of real functions defined on X, we can look for a possibly "large" set on which this sequence is uniformly convergent. Egoroff's theorem concerns this problem in the space (X, S, κ) with a finite measure κ over X and the convergence κ -a.e. There are some examples proving that it is sometimes impossible to find such a "large" set for the uniform convergence (cf. [4], [8]).

DEFINITION 4. We shall say that a sequence $\{f_k\}_{k\in\mathbb{N}} \subset M[\mathscr{S},\mathscr{N}]$ converges uniformly in the sense of Egoroff with respect of the small system $\{\mathscr{N}_n\}_{n\in\mathbb{N}}$ to a function $f \in M[\mathscr{S},\mathscr{N}]$ (abbreviation (\mathscr{N}_n) -uniformly convergent) if, for an arbitraty $n \in \mathscr{N}$ there exists a set $A_n \in \mathscr{N}_n$ such that the sequence $\{f_k|_{X}-A_n\}_{k\in\mathbb{N}}$ converges uniformly to the function $f|_{X}-A_n$.

THEOREM 1. Convergence \mathscr{N} -a.e. is equivalent to (\mathscr{N}_n) -uniform convergence if and only if the small system $\{\mathscr{N}_n\}_{n\in\mathbb{N}}$ is upper semicontinuous.

Proof. Sufficiency. It is proved in [2] that any sequence of S-measurable and finite functions convergent everywhere $is(\mathscr{H}_n)$ uniformly convergent if the small system $\{\mathscr{H}_n\}_{n\in\mathbb{N}}$ is upper semicontinuous. This proof can easily be repeated in our case. Moreover, (\mathscr{H}_n) -uniform convergence implies \mathscr{H} -a.e. convergence. This ends the proof of sufficiency.

Necessity. Let us suppose that the small system $\{\mathscr{H}_{n}^{\circ}\}_{n\in\mathbb{N}}$ is not upper semicontinuous. There exist $i_{o} \in \mathbb{N}$ and a nonincreasing sequence $\{E_{\underline{i}}\}_{\underline{i}\in\mathbb{N}}$ of §-measurable sets, such that $E_{\underline{i}} \notin \mathscr{H}_{\underline{i}_{o}}$ for each $\underline{i} \in \mathbb{N}$, and $\bigcap_{\underline{i}=1}^{\infty} E_{\underline{i}} \in \mathscr{H}^{\circ}$. Let $f_{\underline{k}}(\underline{x}) = \chi_{\underline{E}_{\underline{k}}}(\underline{x})$ for each $\underline{k} \in \mathbb{N}$. The sequence $\{f_{\underline{k}}\}_{\underline{k}\in\mathbb{N}}$ is convergent \mathscr{H}° -a.e. to the function $\underline{f} = 0$, but it is not $(\mathscr{H}_{n}^{\circ})$ -uniformly convergent. Otherwise, there would exist a set $\underline{A}_{\underline{i}_{o}} \in \mathscr{H}_{\underline{i}_{o}}$ such that the sequence $\{f_{\underline{k}}|\underline{x}-\underline{A}_{\underline{i}_{o}}^{\circ}\}_{\underline{k}\in\mathbb{N}}$ converges uniformly to $f_{|\underline{x}-\underline{A}_{\underline{i}_{o}}}$. This implies the existence of $\underline{k}_{o} \in \mathbb{N}$ such that, for any $\underline{k} \in \mathbb{N}$, $\underline{k} \geq \underline{k}_{o}$, $\chi_{\underline{E}_{\underline{k}}}(\underline{x}) = 0$ for $\underline{x} \notin \underline{A}_{\underline{i}_{o}}$. Hence $\underline{A}_{\underline{i}_{o}} \supset \bigcup_{\underline{k}=\underline{k}_{o}}^{\otimes} \underline{E}_{\underline{k}}$ and $\underline{E}_{\underline{k}} \in \mathscr{H}_{\underline{i}_{o}}^{\circ}$ for $\underline{k} \geq \underline{k}_{o}$. This contradicts the fact that $\underline{E}_{\underline{k}} \notin \mathscr{H}_{\underline{i}_{o}}^{\circ}$ for any $\underline{k} \in \mathbb{N}$.

REMARK. Considering a small system $\{\mathscr{H}_n\}_{n\in\mathbb{N}}$ over the infinite space X, such that $\mathscr{H}_n = \{\emptyset\}$ for each $n \in \mathbb{N}$, we see that any convergent sequence of finite \mathscr{S} -measurable real functions which is not uniformly convergent is not uniformly convergent in the sense of Egoroff with respect to the small system $\{\mathscr{H}_n\}_{n\in\mathbb{N}}$. Of course, this small system $\{\mathscr{H}_n\}_{n\in\mathbb{N}}$ is not upper semicontinuous.

It is possible to characterize (\mathscr{N}_n) -uniform convergence by the convergence of some sequence of \mathscr{S} -measurable functions with respect to the small system $\{\mathscr{N}_n^c\}_{n \in \mathbb{N}}$ or by the following condition of the vanishing restriction.

Jacek Hejduk

DEFINITION 5. We shall say that a sequence $\{f_n\} \subset M[S, \sigma]$ converges to a function $f \in M[S, w]$ with respect to the small system $\{\mathscr{H}_n\}_{n \in \mathbb{N}}$ if

DEFINITION 6. We shall say that a sequence $\{f_n\} \subset M[\mathcal{S}, \mathscr{H}]$ satisfies the vanishing restriction for a function $f \in M[\mathcal{S}, \mathscr{H}]$ with respect to the small system $\{\mathscr{H}_n^o\}_{n \in \mathbb{N}}$ if

 $\forall \forall \exists \bigcup_{\alpha>0 n \in N}^{\infty} \{x: |f_k(x) - f(x)| > \alpha\} \in \mathscr{H}_n.$

THEOREM 2. Let $\{f_n\}_{n\in\mathbb{N}}$ be an arbitrary sequence of functions from M [S, \mathscr{H}] then the following conditions are equivalent: (i) the sequence $\{f_n\}_{n\in\mathbb{N}}$ is (\mathscr{H}_n) -uniformly convergent to a

function $f \in M [S, \mathcal{N}];$

(ii) the sequence $\{f_n\}_{n \in \mathbb{N}}$ satisfies the vanishing restriction for the function $f \in \mathbb{M} [S, \mathscr{N}]$ with respect to the small system $\{\mathscr{N}_n\}_{n \in \mathbb{N}}$;

(iii) the sequence $\{\phi_n\}_{n \in \mathbb{N}} \subset \mathbb{M} [s, \vartheta]$ where $\phi_n(x) = \sup \{|f_i(x) - f(x)|, i \ge n\}$ converges to the function $\phi = 0$ with respect to the small system $\{\vartheta_n^c\}_{n \in \mathbb{N}}$.

Proof. Since

 $\bigcup_{k=n} \{x: |f_k(x) - f(x)| > \alpha\} = \{x: |\phi_n(x)| > \alpha\},\$

we see that conditions (ii) and (iii) are equivalent. Now, we assume that (i) is satisfied. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions from $\mathbb{M}[\mathcal{S}, \mathscr{H}]$ which is (\mathscr{H}_n) -uniformly convergent to a function $f \in \mathbb{M}[\mathcal{S}, \mathscr{H}]$ Let α be an arbitrary positive real number and let $n_o \subset \mathbb{N}$. There exists a set $\mathbb{A}_{n_o} \in \mathscr{H}_{n_o}$ such that the sequence $\{f_k | X - \mathbb{A}_{n_o}\}_{k\in\mathbb{N}}$ converges uniformly to the function $\{f_{|X-\mathbb{A}_{n_o}}\}_{n_o}$ Thus there exists $k_o \in \mathbb{N}$ such that

$$X = A_{n_o} \subset \bigcap_{k=k_o} \{x: |f_k(x) - f(x)| \leq \alpha\}$$

This implies that

$$\bigcup_{k=k_{\alpha}}^{\infty} \{x: |f_{k}(x) - f(x)| > \alpha\} \in \mathscr{N}_{n_{\alpha}}.$$

Hence the sequence $\{f_n\}_{n\in\mathbb{N}}$ satisfies the vanishing restriction with respect to the small system $\{\mathscr{A}_n^c\}_{n\in\mathbb{N}}$ for the function f.

Sufficiency. Let us suppose that a sequence $\{f_n\}_{n\in\mathbb{N}} \subset \mathbb{M}[\mathcal{S}, \mathscr{N}]$ satisfies the vanishing restriction for a function $f \in \mathbb{M}[\mathcal{S}, \mathscr{N}]$ with respect to the small system $\{\mathscr{N}_n\}_{n\in\mathbb{N}}$. Let $n_o \in \mathbb{N}$. By condition (ii) of Definition 1, there exists a sequence $\{1_i\}_{i\in\mathbb{N}}$ of positive integers such that if $E_i \in \mathscr{N}_{l_i}$, then $\bigcup_{i=1}^{\mathcal{O}} E_i \in \mathscr{N}_{n_o}$. By the property of the vanishing restriction, there exists a sequence $\{n_i\}$ of positive integers such that

$$\bigcup_{k=n_{i}} \{x: |f_{k}(x) - f(x)| \ge \frac{1}{i}\} \in \mathscr{H}_{1_{i}}$$

k

$$A_{n_0} = \bigcup_{i=1}^{\infty} \bigcup_{k=n_i}^{\infty} \{x: |f_k(x) - f(x)| > \frac{1}{i}\} \in \mathscr{N}_{n_0}.$$

Let us observe that the sequence $\{f_k\}_{k\in\mathbb{N}}$ converges uniformly on the set X - A_{n_o} . Let α be an arbitrary positive real number and let $i_o \in \mathbb{N}$ be such that $\alpha > \frac{1}{i_o}$. Let $n(\alpha) = n_{i_o}$, then

$$x - A_{n_0} \subset \bigcap_{k=n_{i_0}} \{x: |f_k(x) - f(x)| < \alpha\}.$$

We conclude that the sequence $\{f_n\}_{n\in \mathbb{N}}$ is $(\mathscr{N}_n)\text{-uniformly convergent.}$

Let us observe that convergence with respect to the small system with M-convergence implies (\mathcal{A}_n°) -uniform convergence.

Jacek Hejduk

DEFINITION 7 (cf. [1]). A sequence $\{f_n\}_{n \in \mathbb{N}} \subset \mathbb{M} [S, \mathscr{N}]$ is M---convergent to a function $f \in \mathbb{M} [S, \mathscr{N}]$ if, for an arbitrary positive number $\alpha > 0$,

 $\{ x \in X: |f_{i}(x) - f(x)| > \alpha \} \subset \{ x \in X: |f_{j}(x) - f(x)| > \alpha \}$ for $i \ge j$, $i, j \in \mathbb{N}$.

THEOREM 3. If a sequence $\{f_n\}_{n\in\mathbb{N}} \subset \mathbb{M} [S, \mathscr{N}]$ is M-convergent to a function $f \in \mathbb{M} [S, \mathscr{N}]$, then the sequence $\{f_n\}_{n\in\mathbb{N}}$ is convergent with respect to the small system $\{\mathscr{N}_n\}_{n\in\mathbb{N}}$ to the function f if and only if the sequence $\{f_n\}_{n\in\mathbb{N}}$ is (\mathscr{N}_n) -uniformly convergent.

Proof. Necessity. Let us suppose that the sequence $\{f_n\}_{n\in\mathbb{N}}$ is not (\mathscr{A}_n) -uniformly convergent. This means, by Theorem 2, that $\{f_n\}_{n\in\mathbb{N}}$ does not satisfy the vanishing restriction for the function f. Hence there exist $n_o \in \mathbb{N}$ and a positive number α such that, for each $k \in \mathbb{N}$,

$$\bigcup_{i=k} \{x: |f_i(x) - f(x)| > \alpha\} \notin \mathscr{N}_{n_0}.$$

But

$$\bigcup_{i=k} \{x: |f_i(x) - f(x)| > \alpha\} = \{x: |f_k(x) - f(x)| > \alpha\},\$$

We have that, for each $k \in N$, the set $\{x: |f_k(x) - f(x)| > \alpha\} \in \mathscr{H}_{n_0}^\circ$ which contradicts the fact of the convergence of the sequence $\{f_n\}_{n \in N}$ to the function f with respect to the small system $\{\mathscr{H}_n\}_{n \in N}^\circ$.

Sufficiency. A sequence $\{f_n\}_{n\in\mathbb{N}} \in \mathbb{M}[\mathcal{S}, \mathscr{H}]$ which is (\mathscr{H}_n) -uniformly convergent to a function f is \mathscr{H} -a.e. convergent to the function f. Thus it is convergent with respect to the small system $\{\mathscr{H}_n\}_{n\in\mathbb{N}}$ to the function f.

In [5], the rotation of the uniform convergence in the sense of Egoroff with respect to an arbitrary σ -ideal \mathcal{I} of subsets of X was introduced.

DEFINITION 8. We shall say that a sequence $\{f_n\}_{n\in\mathbb{N}} \subset \mathbb{M}[S, d^{p}]$

Some remarks on Egoroff's theorem

converges uniformly in the sense of Egoroff with respect to the σ -ideal \mathcal{T} (abbreviation \mathcal{T} -uniformly convergent) if there exists a sequence $\{E_m\}_{m\in\mathbb{N}}$ of \mathcal{S} -measurable sets such that $X - \bigcup_{m=1}^{\infty} E_m \in \mathcal{T}$ and the sequence $\{f_n|_{E_m}\}_{n\in\mathbb{N}}$ converges uniformly to the function $f|_{E_m}$ for each meN.

THEOREM 4. (\mathscr{H}) -uniform convergent is equivalent to (\mathscr{H}_n) -uniform convergence if and only if the small system $\{\mathscr{H}_n^r\}_{n\in\mathbb{N}}$ is upper semicontinuous.

Proof. Necessity. Let us suppose that the small system $\{\mathscr{N}_n\}_{n\in\mathbb{N}}$ is not upper semicontinuous. Let $\{f_n\}_{n\in\mathbb{N}}$ be the sequence of 8-measurable functions considered in the proof of Theorem 1. As we know, this sequence is not (\mathscr{N}_n) -uniformly convergent, but it is easy to see the sequence $\{f_n|_{X-E_m}\}_{n\in\mathbb{N}}$ is uniformly convergent to 0 on the set $X - E_m$. Thus we conclude that the sequence $\{f_n\}_{n\in\mathbb{N}}$ is \mathscr{N} -uniformly convergent to the function $f \in 0$. This contradiction ends the proof of necessity.

Sufficiency. We see that any sequence $\{f_n\}_{n\in\mathbb{N}} \subset \mathbb{M}[\mathcal{S}, \mathscr{H}]$ which is (\mathscr{A}_n) -uniformly convergent to a function $f \in \mathbb{M}[\mathcal{S}, \mathscr{H}]$ is \mathscr{H} -uniformly convergent to f. Let us suppose that the small system $\{\mathscr{H}_n\}_{n\in\mathbb{N}}$ is upper semicontinuous. Let $\{f_n\}_{n\in\mathbb{N}} \subset \mathbb{M}[\mathcal{S}, \mathscr{H}]$ be an arbitrary sequence \mathscr{H} -uniformly convergent to a function $f \in \mathbb{M}[\mathcal{S}, \mathscr{H}]$ and let us suppose that the sequence $\{f_n\}_{n\in\mathbb{N}}$ is not (\mathscr{H}_n) -uniformly convergent to the function f. By Theorem 2, the sequence $\{f_n\}_{n\in\mathbb{N}}$ does not fulfil the vanishing restriction for the function f with respect to the small system $\{\mathscr{H}_n\}_{n\in\mathbb{N}}$. This means that

 $\begin{array}{cccc} \exists & \exists & \forall & \bigcup_{\alpha>0}^{\infty} \{x: |f_k(x) - f(x)| > \alpha\} \notin \mathscr{N}_{n_0} \\ & & & \\ \\ & & & & \\ & & & & \\ & & & & \\ & &$

$$A = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\omega} \{x; |f_k(x) - f(x)| > \alpha\}.$$

By the condition of the upper semicontinuity of the small system

to V such that

10. 10 D ... 10 D1. 041

. ALL LEA

 $\{\mathscr{N}_n\}_{n\in\mathbb{N}}$, the set A does not belong to \mathscr{N} . Let us suppose that the sequence $\{f_n\}_{n\in\mathbb{N}}$ is \mathscr{N} -uniformly convergent to the function f. Then there exists a sequence $\{E_n\}_{n\in\mathbb{N}}$ of S-measurable sets such that $X = \bigcup_{n=1}^{\infty} E_n \in \mathscr{N}$ and the sequence $\{f_k|_{E_n}\}_{k\in\mathbb{N}}$ is uniformly convergent to the function $f_{|E_n}$. If $A \notin \mathscr{N}$, then there exists an $n_o \in \mathscr{N}$ such that $E_{n_o} \cap A \notin \mathscr{N}$. Hence $E_{n_o} \cap A \neq \emptyset$. But the sequence $\{f_k\}_{k\in\mathbb{N}}$ does not converge to the function f on the set $E_{n_o} \cap A$. The contradiction obtained completes the proof.

Let us recall the notation of the vanishing restriction with respect to an arbitrary σ -ideal \mathcal{T} of subsets of X.

DEFINITION 9 (cf. [5]). We shall say that a sequence $\{f_n\}_{n \in \mathbb{N}}$ of δ -measurable real functions satisfies the vanishing restriction for an δ -measurable function f with respect to the σ -ideal

 $\mathcal{T} \text{ if } \bigcap_{n=1}^{\infty} E_n(\alpha) \in \mathcal{T} \text{ for all } \alpha > 0, \text{ where } \alpha \in \mathbb{R}$

 $E_{n}(\alpha) = \bigcup_{i=n}^{\infty} \{x \in X: |f_{i}(x) - f(x)| > \alpha\}.$

THEOREM A. A sequence $\{f_n\}_{n\in\mathbb{N}} \subset \mathbb{M}[\mathcal{S},\mathcal{T}]$ satisfies the vanishing restriction for an \mathcal{S} -measurable function f with respect to the σ -ideal \mathcal{T} if and only if the sequence $\{f_n\}_{n\in\mathbb{N}}$ is convergent \mathcal{T} -a.e.

Let us recall two more definitions.

DEFINITION 10 (cf. [6]). We shall say that the pair (S, \mathcal{T}) fulfils the countable chain condition (abbreviation c.c.c.) if each subfamily pairwise disjont sets of $S \setminus \mathcal{T}$ is at most countable.

DEFINITION 11 (cf. [6]). We shall say that the pair (δ, \mathcal{T}) fulfils the condition (E) if, for each double sequence $\{B_{j,n}\}_{j,n\in\mathbb{N}}$ of δ -measurable sets and each δ -measurable set B not belonging to \mathcal{T} such that

1° $B_{j,n} \subset B_{j,n+1}$ for any j, n $\in N$, 2° $\bigcup_{n=1}^{\infty} B_{j,n} = B$ for each $j \in N$,

there exists an increasing sequence $\{n_j\}_{j \in \mathbb{N}}$ of positive integers such that $\bigcap_{i=1}^{\infty} B_{j,n_i} \notin \mathcal{I}$.

THEOREM B (cf. [6]). If the pair $(\mathcal{S}, \mathcal{T})$ fulfils c.c.c., then an arbitrary sequence $\{f_n\}_{n\in\mathbb{N}} \subset \mathbb{M} [\mathcal{S}, \mathcal{T}]$ convergent \mathcal{T} -a.e. to a function $f \in \mathbb{M} [\mathcal{S}, \mathcal{T}]$ is \mathcal{T} -uniformly convergent if and only if the pair $(\mathcal{S}, \mathcal{T})$ fulfils the condition (E).

Let $\{\mathscr{N}_n\}_{n\in\mathbb{N}}$ be an upper semicontinuous small system on \mathscr{S} . Then the pair $(\mathscr{S}, \mathscr{N})$ fulfils both c.c.c. (cf. [3]) and the condition (E) (cf. [7]).

Thus, by Theorem 1, 2, 4 and Theorems A, B, we obtain the following theorem:

THEOREM 5. Let $\{\mathscr{N}_n\}_{n\in\mathbb{N}}$ be an upper semicontinuous small system on \mathscr{S} . Let $\{f_n\}_{n\in\mathbb{N}}$ be an arbitrary sequence of functions from M $[\mathscr{S},\mathscr{H}]$ and $\{\phi_n\}_{n\in\mathbb{N}}$ a sequence such that $\phi_n(x) = \sup \{x \in \mathfrak{S} : |f_i(x) - f(x)|, i \geq n\}$. Then the following conditions are equivalent:

(i) the sequence $\{f_n\}_{n\in\mathbb{N}}$ is (\mathscr{N}_n) -uniformly convergent to f; (ii) the sequence $\{f_n\}_{n\in\mathbb{N}}$ fulfils the vanishing restriction for f with respect to the small system $\{\mathscr{N}_n\}_{n\in\mathbb{N}}$;

(iii) the sequence $\{\phi_n\}_{n\in\mathbb{N}}$ converges to f with respect to the small system $\{\mathscr{A}_n^o\}_{n\in\mathbb{N}}$;

(iv) the sequence $\{f_n\}_{n \in \mathbb{N}}$ is convergent \mathcal{W} -a.e. to f;

(v) the sequence $\{f_n\}_{n\in\mathbb{N}}$ is \mathscr{P} -uniformly convergent to f; (vi) the sequence $\{f_n\}_{n\in\mathbb{N}}$ fulfils the vanishing restriction for f with respect to the σ -ideal

REFERENCES

- [1] R. G. Bartle, An extension of Egoroff's theorem, Amer. Math. Month., 8 (1980).
 - [2] T. Neubrunn, B. Riecan, Miera a integral, Bratislava 1981.

50	Jacek Hejduk
[3]	J. Niewiarowski, Convergence of sequence of real functions
	with respect to small system, Math. Slov., 4 (1988).
[4]	W. Sierpiński, Remarque sur le théoreme de M. Egoroff, Compt.
	Rend. des sciences de la Soc. des Sciences et des Lettres de Varsovie,
	20 (1928), 84-87.
[5]	E. Wagner-Bojakowska, Remarks on convergence of sequen-
	ces of measurable functions, Acta Univ. Lodz., Folia math. (in print).
[6]	E. Wagner, W. Wilczyński, Convergence almost every-
	where of sequences of measurable functions, Colloq. Math., 45 (1981),
	119-124. (11 10) of the start all that a lite the start ment
[7]	E. Wajch, Small systems - on approximation of compact sets of
	measurable functions to compact subsets of $C_{c-0}(x)$ (in print).
[8]	
	pest. mat., 102 (1971), 228-229.
	Institute of Mathematics
	University of Łódź

Jacek Hejduk

PEWNE UWAGI DOTYCZĄCE TWIERDZENIA JEGOROWA

W artykule rozważa się zbieżność jednostajną względem małego systemu $\{\mathcal{N}_n\}_{n\in\mathbb{N}}$. Udowodnione są warunki równoważne jednostajnej zbieżności względem małego systemu $\{\mathcal{N}_n\}_{n\in\mathbb{N}}$, przy założeniu półciągłości małego systemu.

argent when another