ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 4, 1991

Małgorzata Filipczak

A NOTE ON INTERSECTIONS OF CERTAIN TOPOLOGIES ON R

Intersections of topologies related to the density topology and their category analogue are characterized in this paper.

In this note R will be denote the real line, T - the natural topology on R, int A and \overline{A} - interior and closure of A with respect to the topology T. Let S be the collection of Lebesgue measurable sets, |A| - a Lebesgue measure of a set $A \in S$ and I - the σ -ideal of sets of the first category.

Let \mathcal{U} and \mathcal{V} be collections of subsets of X. We denote $\mathcal{U} \cap \mathcal{V} = \{ \mathbf{W} \subset \mathbf{X} : \mathbf{W} \in \mathcal{U} \text{ and } \mathbf{W} \in \mathcal{V} \}$. If \mathcal{U} and \mathcal{V} are topologies, then $\mathcal{U} \cap \mathcal{V}$ is the largest topology contained in \mathcal{U} and \mathcal{V} .

In [1] and [8] the density topology $\mathcal{T}_{d} = \{\Phi(A) - N: A \in S, |N| = 0\}$ was presented, where $\Phi(A)$ is the set of all $x \in R$ at which the metric density of A is equal to 1. R. O'M a l l e y in [7] introduced the a.e. - topology $\mathcal{T}_{a.e.} = \{U \in \mathcal{T}_{d}: |U| = |\operatorname{int} U|\}$. N. F. G. Martin in [4] and H. Hash immoto in [2] proposed a topology - constructing method based on a topology on X and an ideal of subsets of X. The particular case of such a topology is $\mathcal{T}_{H} = \{G - N: G \in T, |N| = 0\}$.

THEOREM 1. $\mathcal{T}_{H} \cap \mathcal{T}_{a.e.} = \{ U - M : U \in T, |U \cap \overline{M}| = 0 \}.$

Proof. Suppose that $A \in \mathcal{T}_{H}$ and $A \in \mathcal{T}_{a.e.}$. Then A = V - N where $V \in T$, |N| = 0.

int A = int (V - N) = int $(V \cap N')$ = int $V \cap$ int N' =

= Int V \cap (R \setminus \overline{N}) = V \cap (R \setminus \overline{N}) = V \setminus \overline{N} .

Besides, $A \in \mathcal{T}_{A,e}$, $|A| = |int A| = |V - \overline{N}| = |V - (V \cap \overline{N})|$.

[37]

From |A| = |V| we have $|V \cap \overline{N}| = 0$.

On the other hand, if $W=U-M,~U\in {\rm T},~|U\cap \, {\rm \vec{M}}\,|=0,~$ then, obviously, $W\in {\rm T}_{\rm H},~W\in \, {\rm T}_{\rm d}~$ and

 $|\operatorname{int} W| = |\operatorname{int} (U - M)| = |U - \overline{M}| = |U - (U \cap \overline{M})| = |U| = |U| = |W|,$

which ends the proof.

PROPOSITION 1. The collection $\{U \setminus M: U \in T, |U \cap \overline{M}| = 0\}$ is not identical with the collection $\{U - M: U \in T, |\overline{M}| = 0\}$.

Proof. Let X be a Cantor set of positive Lebesgue measure, $U = R - X = \bigcup_{n=1}^{\infty} U_n$ where U_n are components of U. Let now u_n be the central point of an interval U_n and let $(u_n^{(k)})_{k\in\mathbb{N}}$ be a sequence of points of U_n such that

 $\lim_{k\to\infty} u_n^{(k)} = u_n \text{ and } u_n^{(k)} \neq u_n, \text{ for } k \in \mathbb{N}.$

We put $A = \bigcup_{n=1}^{\omega} \bigcup_{k=1}^{\omega} \{u_n^{(k)}\}$. As $|U \cap \widetilde{A}| = |A \cup \{u_1, u_2, u_3, ...\}|$ = 0, therefore $U \setminus A$ belongs to the first of the above - mentioned collections.

Suppose that U - A = V - M with $V \in T$, $|\overline{M}| = 0$. For any $n \in N$ $u_n \in U - A$, so $u_n \in V$. As V is an open set it contains a neighbourhood V_n of u_n , and $\{u_n^{(1)}, u_n^{(2)}, u_n^{(3)}, \ldots\} \cap V_n \subset M$, so the set M contains a sequence converging to u_n .

By the arbitrainess of n, $\{u_1, u_2, \ldots\} \subset \overline{M}$ and $X \subset \overline{\{u_1, u_2, u_3, \ldots\}} \subset \overline{M}$. This gives a contradiction as |X| > 0.

(Notice that the collection {U - M: $|\overline{M}| = 0$ } is not countably additive.)

Now, we shall consider the category analogue of the topologies T_d , T_H and $T_{a.e.}$.

In [6] W. Poreda, E. Wagner-Bojakowska and W. Wilczyński considered the notion of an I-density point of a set having the Baire property. Using this notion, they defined the category analogue of the density topology - the so-called I-density topology (denoted by T_{I}). We can now introduce the topologies $\mathcal{J}^* = \{G - P: G \in T, P \in I\}$ (compare [3]) and

 $\mathcal{T}_{\tau}^{1} = \{ \mathbf{U} \in \mathcal{T}_{\tau} : \mathbf{U} - \text{int } \mathbf{U} \in \mathbf{I} \} \text{ (compare [5]).}$

THEOREM 2. $\mathcal{T}^* \cap \mathcal{T}^1_{\mathcal{T}} = \{ G - P : G \in T, (G \cap \overline{P}) \in I \}.$

Proof. Suppose that $A \in \mathcal{T}^*$ and $A \in \mathcal{T}_{I}^1$. Then A = V - P where $V \in T$, $P \in I$. Since $(A - int A) \in I$, therefore

 $V \cap \overline{P} = (V \cap (\overline{P} - P)) \cup (V \cap P) = ((V - P) - (V - \overline{P})) \cup$

 \cup (V \cap P) = (A - int A) \cup (V \cap P) \in I.

Conversely, if U=G - P, $G\in T,$ $(G\cap \ \bar{P})\in I$, then, obviously, $U\in \mathcal{T}^*$, $U\in \mathcal{T}_T$ and

 $U - int U = (G - P) - (G - \overline{P}) = G \cap (\overline{P} - P) \subset G \cap \overline{P} \in I.$

PROPOSITION 2. $\mathcal{T}^* \cap \mathcal{T}_{I}^{1} = \{G - P: G \in T, \overline{P} \in I\} = \{G - P: G \in T, P \text{ is a nowhere dense set}\}.$

Proof. Let $A \in \mathcal{T}^* \cap \mathcal{T}_{\mathbf{I}}^1$, so A = G - P, $G \in \mathbf{T}$, $(G \cap \overline{P}) \in \mathbf{I}$. We can assume that $P \subset G$, we have $\overline{P} = (\overline{P} \cap G) \cup (\overline{P} - G) = (\overline{P} \cap G) \cup (\overline{G} \cap \overline{P} - G) \subset (\overline{P} \cap G) \cup (\overline{G} - G) \in \mathbf{I}$ because the set $\overline{G} - G$ is nowhere dense, so \overline{P} and P are nowhere dense sets.

Since the collection of all continuous functions f: $\mathbb{R} \to \mathbb{R}$ is identical with the collections of all \mathcal{T}_{H} -continuous functions and \mathcal{T}^* -continuous functions ([4], theorem (4), therefore the collections of all $\mathcal{T}_{\mathrm{H}} \cap \mathcal{T}_{\mathrm{a.e.}}$ -continuous and $\mathcal{T}^* \cap \mathcal{T}_{\mathrm{I}}^1$ - continuous functions are also identical with the collection of all continuous functions.

Thus $\mathcal{T}_{H} \cap \mathcal{T}_{a,e.}$ and $\mathcal{T}^* \cap \mathcal{T}_{I}^{1}$ are not completely regular. They are, obviously, Hausdorff topologies.

PROPOSITION 3. The topologies $\mathcal{T}_{H} \cap \mathcal{T}_{a.e.}$ and $\mathcal{T}^* \cap \mathcal{T}_{I}^1$ are not regular.

Proof. Suppose that $\mathcal{T}_{H} \cap \mathcal{T}_{a,e}$ is regular. Let

 $F = \langle 1, 2 \rangle \cup \{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \}, x = 0.$

The set F is closed with respect to the topology $\mathcal{T}_{H} \cap \mathcal{T}_{a.e.}$, so there are two open sets V and W such that $x \in V$, $F \subset W$, $V \cap W = \emptyset$. The set V = U - N where $U \in T$, $|U \cap \tilde{N}| = 0$, and there exist an interval J such that $0 \in J$, $J - N \subset V$ and a po-

Małgorzata Filipczak

sitive integer n such that $\frac{1}{n} \in J$. The point $\frac{1}{n} \in W$, V and W are disjoint sets, so $(J \cap W) \subset N$ and we have a contradiction.

The same example shows that $\mathcal{T}^* \cap \mathcal{T}_{I}^{1}$ is not a regular topology.

REFERENCES

- [1] C. Goffman, C. J. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J., 28(1961), 497--505.
- [2] H. Hashimoto, On the *topology and it's applications, Fund. Math., 91 (1976), 5-10.
- [3] E. Łazarow, R. A. Johnson, W. Wilczyński, Topologies related to sets having the Baire property, Demonstr. Math. (in print).
- [4] N. F. G. Martin, Generalized condensation points, Duke Math. J., 28 (1961).
- [5] W. Poreda, E. Wagner-Bojakowska, The topology of I-approximately continuous functions, Rad. Mat., 2 (1986), 263-277.
- [6] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A category analogue of the density topology, Fund. Math., 125 (1985), 167-173.
- [7] R. O'M a l l e y, Approximately differentiable functions: the r-topology, Pacific J. Math., 72 (1977), 207-222.
- [8] J. C. Oxtoby, Measure and Category, New York-Heidelberg-Berlin 1971.

Institute of Mathematics University of Łódź

Małgorzata Filipczak

NOTATKA O PRZEKROJACH PEWNYCH TOPOLOGII NA PROSTEJ

Artykuł zawiera charakterystykę przekroju topologii (wprowadzonych przez R. O Malleya i N. F. G. Martina) związanych z topologią gęstości na prostej oraz ich odpowiedników dla I-gęstości.

40