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NECESSARY OPTIMALITY CONDITIONS
FOR SPECIAL INTEGRAL. PROCESSES

This paper deals with control processes described by nonlinear in-
tegral equations of type (2). By means of varied controls necessary op-
timality conditions are deduced. Volterra integral processes are included,
some other processes are considered. A result of J. Pelczewski is given

in an equivalent form.

1. INTRODUCTION

For control processes described by integral equations the
whole control function u(-) is effective for the value of the
trajectory x(=) at the time se [0, t]s

T
x(s) =h(s) + S f(s, t, x(v), u(®)dt, O0Osgs <T ©

o]
J. Pelczewski considered in [5] the following interesting problem

ST g(t, x(t), ud))dt = mini (€@))

o
under the conditions
T
x(s) =S (s, t, x(©), u(s))dt, 0<s<T ()
o

u@s) e U for se [o, t] a.e.
where u(® and x( <) are L2~Ffunctions with values in Rn.

IT the functional g and the function f are quadratic in X
and u and fulfil some regularity assumptions a minimum principle
with an adjoint equation can be derived.

In this paper an analogous necessary optimality condition for
non-linear processes governed by Fredholm or Volterra integral



equations will be proved. We will take piecewise continuous func-
tions (and also continuous functions) with values in certain
Banach-spaces for the control and the state-functions. Then it is

possible to make use of considerations in [6-8]. J. Pelczewski
proved the minimum principle using properties of some cones (see
S. Walczak [eD. whereas we will do it by means of an

abstract model of L. Bittner [, 2.

2. THE PROBLEM

Let be E and S Banach-spaces, U£ S a convex set and UQ open

with UEUqgc S, I = [0, t] a fixed time-interval. Let be defi-
ned a continuous functional g on I X E X UO and continuous func-
tions F: I xiXExu o «E and h: | #@E. We assume the exist-

ence of continuous partial Frechet derivations gg, ff, gu, fy
with respect to ee E, ue S

Denote by C(1, E) the space of all continuous functions x(..):
I »E with maximum-norm and by PCL(lI, E) the space of all piece-
wise continuous and left-hand continuous functions x(=) (the num-
ber of discontinuities is finite and there exist x(t + 0),
x(t -0 for tel and itis x() =x(t -0 for 0 <t $ T and
xX(0 + 0) = x(0)) with sup-norm. Analogously PCL(I, U) is the
set of all piecewise continuous functions u(e): I +U. Let be h(0
e PCL(l1, E) and for the first f(s, t, e, W) = FflG, t, e +
f (s, t, U (such process is called separated).

Let be u(<), x(.) an optimal solution for the problem: mini-
mize (O subject to the process equation

X)) = h(s) + s f(s, t, x(©), u(s))dt, se l [6)
and ©

X(*) e PCL(X, B), u(-) e PCL(, V). ®
We shall write f(s, ) fTor f(s, t, x(D), u(s)), g Tor g(t,
i(Y), u) and also (s, © = s, €, x(D), (s, D = (G,
t, Q(3)), ge® = ge(, x(O, u®)yt gu® = g"t, x(O, u®).

We assume (instead of condition 6 in [5] for linear integral
equations in L2)



max S| |IFi(s, ©]ldt < 1.
sel o
In order to apply the theory of Bittner define

F(x, w) = lT g(t, x(t), u(t))dt
(0]

G(x, WYE) = x(S) - h(s) - s X, t, x(D)dt - § (s, t,
(0] (o]
u(s))dt

w=u(®), x =x(=), 3 =PL(l,E), ft=PCLU, U).
Then problem (1), (@), (@ is equivalent to:

Minimize F(x, w) subject to G(x, w) =0, xe X, we W (4a)
But we can not apply the results of [2], as X 1is not a Banach-

-space. Note that there are m points O0j, om (m» 0) such
that u(-) and also h(-) are continuous on 1 \ {c®, am). We
choose te I and then v >0 such that axt f ]t - p, ¢t + p] for
i=1, m. Denote am+l1 = max{x - p, 0}, om+2 min{x + p, T},
t = (ol ---- O mé‘}- We renumber these fixed time points such
that SLe Z, sx< ... <sm+2, sQ =0, s+3 = T.

Choose an arbitrary (but now fixed) vector v e U and define
fu(® for te N] t-p, « +p]

u )=

e Lu(t) + e(v - fi(t)), tein]T-p,T + p]

W-v = (ue(®108S¢e < 1},

- = (=) e X] x(= continuous on I\ I O]

Then u (=) e W because of the convexity of U, X. 1is a Banach-
-space with |Ix]] = SUP IIX(OIIE since 1 is fixed. Note that
te

w = (), x =x(= 1is also optimal for F(, w) = min with res-
pect to GIx, w) =0, xFf Xj, we WjN.

3. NECESSARY OPTIMALITY CONDITIONS

In [6] we have proved:

LEMMA 1. Let be Z a Banach-space, fil, £2 compact intervals
and k: «1 * n2 x E w»Z a continuous function, v(®) e CER, E).
Then we have



|i% sup{llk(s, t, y() + € -k(s, t, y(O)|| I se B,, te B,
e .

llell < r> =0.
In the following we are going to verify that the assumptions of
Bittner's model are fulfilled:

LEMMA 2. The partial Fr~chet derivations w), Gxix, w>
with respect to x exist for all * s X£, wf£ #£ v and it holds
T
F & wz =S g (t, x(©), u(®))z(t)dt
X o e

S X, W2)() z(s) - fT fe(, t, x(v), u(s))z(ddt =
sei °

* 2(8) - F (s, t, x())z()dt; ze X .
O e L

Proof. Lemma 2 follows from Lemma 1 with k(s, t, e -~
fes, ¢, e, u()), Z=«6E) and ks, t, e, ) =gg(t, e, u(),,
= E* respectively, restricting x(-), on the intervals " =
[si# si+l], y(©) = x(t) for te ]si# si+l], y(si) = x(si + 0),
i=0, ..., m+ 2.

LEMMA 3. W—I-_y is a set of admissible variations for Qi-)»

N

that means
Iim swp{]IG X, W) -G, (A, w)] [weW_ , Ex-ill 5 r,
r-o -
xe Xj.}=0.
Proof. We must show

T
lIp_l*r(r; ?Iuﬁgllsir %gi) ]SO L-i(s» t, x(t) + AX(t)) - (s, B]dt] =0.

By interchanging norm and integral the lemma follows from Lemma 1
where k = *, Z =«G(E).

LEMMA 4. Gx(X, D) is a one-to-one mapping of X\, onto itself.
Equivalent is: the linear integral eguation

z(s) = ST f},(s, z(dt + b(s), sei
o]

has an unique solution in X. for every b(.) e X..

Proof. Define T: . ¥ X. by the formula



26 * S fg(sf Hz()dt, s6 I
o}
Then It is

T
UTzIL @ sup S HNihs, ©)] dt «1*B. and therefore JT |<
Ar sci1 O e Ar

< 1. The lemma now follows from Banach®"s fixed point theorem.
REMARK 1. For u (=)oW and sui) \J [f2(., t. u,(-» -
e ,V se o]
- f2(G, t)] dt | <1 a corresponding solution of @) in X.
exists! This is a consequence of [I].
LEMMA 5. The functional F has the following property:

limsup {EF QX W -F&KwWIH |xex, Ix-xI<rm,
r+o * X

weWr#v) =0

which means

T
lim sup IS fo (t, x(© + AX(D), u () - g-ft, x(O),
r~o 1AxKr (o] e e

ocecl
LE(t))Jdt | =Q
Proof. It holds

IST [ge(t, x(D) + AX(D), UE(®) - ge(t, x(O, u£(®)]dt |<
0

S 1% (t° + Ax<t)* + ve(,) " xit)"
1(T.y)
u(®) + VE«) 1 dt
where VE(t) = e(v - G(t)), te I(t,y) and I1(t, p)=1n]t -y,
t + vy].

The relation stated in Lemma 5 now follows from Lemma 1 with
k(e, t, © =ge(t, e, U +e( -d®), Z=F*; fij = [C, I], «2
= 1(r, y), by replacing ufE(t-y) = ue(T_y + 0), therefore ur(>
and 2(=) are continuous in I(t, y)-

Let be a zero-sequence of positive numbers, and let w" =

=w , y1i—r..We calculate
Ek
6S = lim (-TfC1) [og &, Wjl - G(x, w)] and



6F * lim 31 [f &, Wk) - F(X, 6)]

in . and R respectively and call them common directional li-

mits (CDL).
LEMMA 6. For wR e Wr>v it is
)} for se I\ I(t, p)
66(s)

fT fy(s, Ddt(v - u(s)), se I(, M
o

6F = S 9,,(D( - u(b))dt.
u

Proof. We find the estimation

»CIS, Wig - G(*, 0) - eX«G 1= sglljp()x,p) 1JO [F2G, €, Vv k(s))

-
- i2@, B - Ovfjrs, t)(v I((s) -u(s)1den < sup S J...B dt
s o

i'orse I(t, y) we apply the mean-value-theorem in the Banach-
-space E (it yields for the "interval" [d(s), vj S u0>!

I[--.1! < lfj<«. €, G(s) +irk(v - a<sn - fj(s, © ]*H
VvV - ilis) 1
where =ihs) e 10, 1 [, Iv - u®Il is uniformly bounded.
Lenma 1 with y(t) * u(®), ks, t, y) = fy(s, t, y), Z*“ .,
S) implies

limsup{1l (s, t, u@cs) + Au) - fy(s, D1 | tel, ael(T,p,
e»0
laul < e =0

and therefore 1G(x, W) - G(X, W) - erSG| w0 if k tends to ®.

The second part can be estimated in an analogous manner:
IFx, w.) - F(E, 0 —eveF] = | S [oCt, x(©), u® +
K K 1(T,y)

+ v k(t)) -9(O - gu(t) v k(t)] dt] s IET,y) l.--|dt <

<K ”™Ny) ldau(®™» x(b), u(® +i>() ctiv - d()) - gu(O))H)H-

elv - u(t) 1 dt.
According to Lemma 1 the right-hand side of the last inequality
tends to 0 as k = .



A necessary condition for w = (I(=), £(=) to be an optimal
solution of the abstract problem is given in [I]s

FX<X, wW)Gx &, 6)"1 «G + 6F > 0 for all CDL «, 6G ®)

We shall rewrite it for (O), @), (@. Put z=06xX, w)-1 fiG e
e Xj., then z is the (unique) solution of
z =Tz + 66, ze Xj

T defines an integral operator on C(l, E) with kernel A(s, © =

* fi(s, ), A(S, -)s PCL(l,jiE€)) for all s6 1, A(=, b e
ec(l,X (B()) for te I. The solution of the integral equation
() in O E) can be written in terms of the resolvent operator
R(.; .), which satisfies the relations

T
R(s, © =A@, © + F A, WRMWw, ©dw ®
o}

T
R(s, © = A(s, © + S R(, WAMW, tdw
o}

(see [6])- We extend T: X. <<C(l, E). According to [8] we are
able to show that the solution of (7) can be represented with the
same resolvent operator as

T
z(s) = 66(s) + S R(s, t)ecG()dt, tel.
o]
We obtain from G)
T T T
6F + S g (s)6G(s)ds + S g.(s) S R(s, t)6G(H)dtds > O.
o] o] o]
Applying Fubini®s theorem we find
Tr t N i
SF+s go(®® + S g.(OR(, s)dt 6G(s)ds > 0. (©)
oL®6 o e J
We rewrite it in the form
T T
«F - F jMs)6G(s)ds? 0 with $(s) = -g-(s)- S 0,,(t)R(, s)dt,
o] o]

In [6] we proved, that $(=) is the unique solution of the adjoint
equation

T
(M =S 1>(s)fbs, th)ds - g it), te 1 @
o} e e

in PCL(I, E®).



By substituting the CDL 6F, 5G into the optimality condition
we get

T
S 9 ® -3%) S f2(¢s, Aty [v - u(s)]ds;s 0. a
1(T.y) 0

This inequality was obtained for fixed v, t, p. As it is true

for every y >0 and X(-), u(=) are continuous at t we obtain
T
[ouM -3s(M S A, Bdy [v -u®] > O.
o]

Considering other vectors v e U and points . of continuity and
therefore W—I—_y the consideration is valid for all ve U and a.e.
ce I

THEOREM 1. IFf x].), M) is an optimal solution of problem
@D, B, ® under the assumptions mentioned above the minimum
principle

N

T
[KU(D) - $(T) S (T, t)dt]u(T)< [» (T) ~ $(T) S 2u(T,t)drV
° ° a2
holds for a.e. te [0, t] and all ve U, where $(=) is the (pie-
cewise continuous) solution of the adjoint equation (10).
REMARK 2. Define a function H: [o, €] x e x U x E* by

T
H(t, e, u, ® = -g(t, e, W) + PI* Ff2(T, t, u)dt (€K))
(0]

and denote

T

Hu(t, e, u, D0 = -gu(f, e, W) + $S Tu(d* u)dt.

o]

Then the optimality condition can be written as

Hu(t, x(®), 0(v), $t) (v- u(®m ~ 0 for ae. + e [0, t]-
By setting Hu(t) = HU(M» x (), u(t), $ we have the maximum
principle

H () «fi(® =max H (t) v Tor a.e. te [0, t]. @

u veU u

REMARK 3. In our considerations Yy depends on t and the Ba-

nach-space X. also depends on t and y. It is possible to take

X as a Banach-space independent of + and y by defining varied
controls



u() for te I\ [t - p, t+p]

UE(D = G +~ (t- t+jj)(v- ux)» tein[x - p,1t]

G(t) + " (t - t-p)(t)-v), t«lD [rt,t+p] (15)
and W TV ] =*{uE(-)! 0 $ e < 1}. All these varied controls have
the form u_() =(1(*) + VE(«)* where V_(<) are of the type
(Figure 1):

variations in chapter variations in remark

Fig. 1

In all the cases p 1is (at first) fixed. If we use varied
controls of the second type with fixed p >0 for all te I\
\ {ox, ..., o-}, UuE(.) is not necessarily continuous in Jt -y,
t + p] and we must take this fact into considerations when de-
riving the lemmas. Note that in this case the CDL are

0 se I(t, p)

6G(S) = S—7-+M x T2(s, AtV - U] se In[t- p, 1] (16)
o)

T
T~° SO f2(s, t)dt[v - a(t)j sein [t,t +p]

6F =[ T gu (® Nt +
mET-p,x] u

+ opf S+p] () B B O S

Theorem 1 can be proved in the same way as above.
Examples . In[5] J. Pelczewsk:i considered

s (™XX™M) + 2x2(0) + ux(® + 2u2(D)]dt = mini



under the conditions

x~tjdt + 2ul(®)

LT

1
Xx"s) = S
o

x2(S) fo y x2(H)dt + u2(s) se Jo, I]

Juuel $08, 1*1,2.
All assumptions formulated in this paper are fulfilled. The ad-

joint system is

1t .
® = I0 J iMs)ds - 3

R(E) = f:L ,l ©e(@G)s - 2,

and its solution is ~(t) * 6, >® *3, 0< t< 1.

According to Theorem 1 we find u(t) from the optimalization
problem

1 Y
[A, 2) - @1, R IO Q@ J)dtj (V%)= mini

subject to |VjJ < &, |[V2]|< a2. Rewriting the function we have
@-6~ + @- 3)v2 = mini [V sj an, 0= 1, 2.

It differs from the function in [5], but it has the same solution
in® =0, u2@® =a2 for all te Jo, I].

4. NONSEPARATED FREDHOLM INTEGRAL PROCESSES

Which difficulties can arise 1if it is 1impossible to split
up (s, t, e, ) into Fl(, t, e) + 2@, t, u)? Let be u(),
x(.) optimal for (O, 3), ¥ and ---, om points of dis-
continuity of u(.) and h(e< and let 1, W. y, Xt be defined in
the previous sense. We assume U to be convex and

sup ST hA‘«(s, V] dt < L

sel o e

Applying Lemma 1 for £1 = [s®, si+l], «2 = [s®, s™1] and re-

placing u(s®), x(5j) by their right-hand limits (@, j * O,



m + 2) the existence of Fr~chet derivations Fx(, w)» Gx*x"
can easily be shown for xe Xj., we v and it is

T
F < wz =S g, x(t), ud))z(tdt
X o e

G &, W2)s = z(s) - IT f G, t, x(©), u(s))z(ddt.
X o}
In the same manner we get

lira sup (\ST [fe(s, t, £() + AX(D), u®)) - fe, t, x(®),
-0 o}

u@®))ldt ijs, te 1, Axg j§., 8Ax I<r, ue WE v} O.

The linearized equation
2s) - S t.(s, Dz(OAL + b(s), se I @8)
(0]

has an unique solution for all be Xj in X..
We calculate the CDL:

0 se I\ I(t,Vy)
6G(s) = = 1 A
S fu(s, dt[v - u(s)]ds sg I(t, y)
o}
and
6F= S g, () (v - u))dt.
1(t,n)

In formula (14) the kernel A(s, t) = fe(s, t) has the proper-
ty A(S, =) 6 PCL(I, ¢C(®) and A(., © 6 PCL(, X (B)) for s, te
el. We shall show the existence and some properties of resol-

vent operators also for this extended class 7 of kernel-func-

tions. (14 can be solved by the iterative method: z°(s) = b(s

zn+1(@) = J A, B)zn(ce) + b(s), se I, n =0, ... By induction
o]

we can show the existence of operators
Rn(.,=): I x 1 -.C(E) with
T n
zn(s) = b(s) + S R (s, HHb()dt, se I
o}
All Rn(.,=) are continuous for si <s ™ si+ti» sj < t < sj+Hi?

they converge uniformly on each rectangle s < ®i+ti" @ N
K£sj+l; i, Jj=0, ..., m+ 1 to certain R(-,.), 1if we replace



u(SJ) and x(Sj) by their right-hand limits. Therefore Rn(.,.)
converges to R(e=,* in 7 with respect to the sup-norm HR(,J)]| =
=sup JRG, D] x (B). It is

s,t

T
Rn+l(s, © = A, © + S A(s, WRn(w, t)dw
o

T
Rn+1(, ©) = A, © + S Rn(s, WAWw, t)dw
o}

and (7), (@ follow for n » «. For a more detailed discussion
we refer to [6]. Using the technique of resolvent operators we
can prove a minimum principle:

THEOREM 2. A necessary condition for u(-), £(«) to be an op-
timal solution of process @), (), (@ is the minimum principle

T
[gu® - 3»@® S fu(t, t)dt]u(T) »
o
T
=min [g-.() - s$(t) S tdt]v,
veU u o)

for a.e. t e I, where $(=) is the solution of the adjoint equa-
tion

T
iM) = g () + S iliOF (s, tds, te I.
e (0] e

5. CONTINUOUS CONTROLS

Sometimes the optimal control 1is a continuous function and
for certain practical problems only such controls are considered.
Therefore we deal with the integral problem:

minimize () subject to (3 and

uC-) e Cl, U, x() 6 Ccdd, B a9
T A

where he C(l, E), wax S |IF (s, D] dt <1, U convex and all
sel o e

assumptions mentioned above are valid. Let u(=), x(.) be an opti-
mal pair. The abstract space we considered in (4a) shall be X =
= C(l, BE) with maximum-norm. Let bey >0, « e [o, I] and ve U
Define u£(.) to be the continuous function of (5) and W =
= J,w= c¢c=*H 0~ e”™ 1. Then



s6 1\ I(t, w
«-T+U 6 )
¢0(b) V SO 1(8, ©dt[v - 0(T)] s€ 1 n [e-y, t]

T
y fu(, dt[v - u(®] se In [t, ¢t + V]

and 6F is calculated in (17).
In equation (18) it is A(e,*) = ?e(=,») « C( x 1,X (E)) and
it follows R(=,») e c(l x i,jc(e)), too. With the adjoint equation

X
iJi® « S <|>>(S)f*(s, t)ds - 6 (b tel (20)
o] e
in C(A, E*) the optimality condition is
?
6F - S \I(S)EQ(S)ds £ O.
o]

Hence

T
J i s- +m[guc®) - $() S (s, tdt]lds +
in[t-M,T] M o]
T
+ S T-SHj[0 &-%¢) f T (s tMtld»)(v- 0(t)) P O.
in[x,T+y] p u o u
Since y > 0 1is arbitrary it follows
THEOREM 3. If &(=),$(=) are optimal for (@, O, 9
then the maximum principle
H@® <0 =max H ) =v for all tel,
u veU u

T
where H(t) = -gu<l) + T fut, tdt, tel, and $(=) is the
o

solution of the adjoint equation (20).

6. VOLTERRA INTEGRAL PROCESSES
What differences appear if the process e|quati0n @ is a
Volterra integral equation
S
x(s) * his) + S Tf(s, t, x(t), u(s) )dt, se 1 @
o]

and h(») e PCL(l1, E)? In this case the state function x{e) is
also piecewise continuous Tfor every piecewise continuous control
u(.). Put



G(X, W(s) = x(s) - h(s) - XS (s, t, x(), u(d))dt,
(0]

sel, X*PCL(,E>, x6X @)
Let be u(-), $(=) an optimal solution of (1), (@) and u(-e
e PCL(I, U). Choose te]0, T[, veU, I »v>0 and denote 1,

-9 PCLX, U, W. v as above. Then u(.), x(.) 1is optimal for
the process

F(x, W) = mini subject to G(x, W) =0, u(=) e W x(®) 6 X\..

Under the previous assumptions of Fr~chet-differentiability and
continuity for f and g we get

s
G ¢ wWz)E) =zG6G) - X fAs, t, x(v), u(s))z(b)dt,
o
sel, z6 X4. (¢5))
The linearized process equation corresponding to the (optimal) so-
lution u(.), x(=
s .
z(s) = X Te(s/ HHz()dt + b(s), sel
o]

is uniquely solvable for every b e X., as the spectral radius of
a Volterra integral operator is O. Let be U also convex. For
controls u, (») defined by (15) W_., = {uE ) |0<en™~D 1isa
set of varied controls in the sense of [I].
We can prove Lemmas 3, 5 repeating all estimations. We obtain
0 s™ I, p

66(s) - 5-- x Tu(s, t)dt[v - u(t);] t —v A S < ot

J
+# H X fu(s, t)dt[v - CI(t)] t Ms$ x +y.

A
The resolvent operator R(s, t) corresponding to A(s, t) = fe(s, ©
exists and it holds

_|

R(s, B

A, © + X R(s, WA(w, t)dw

n ~+

R(s, © = A, ©H + X A(s, WR(Ww, ©)dw, consequently R(s,t) =

o

=0 for t>s CD)



From (@ we find
T T
fiF - f $(s)6G(s)ds * 0 where $(s) = -9,(s) - T g« (DR(L,s)dt
o} o
Hence

T TT
$<t) = -a (t) - s g,.(8)A(s, t)ds - S 1 $ (SR(s, WA(W, t)dwds
e Tt e tt *

T T
= g () + -/EiLfS) - s g (WRW, S)MWJACS, ds =
e t e t e

T
= go(® + § $(s)i(s, D)ds.

We rewrite the optimality condition in the form

i- s t+j [§8 (S) - iii®) i- Ffu(s, t)dtlds[v - u(t)] +
T-U N 0
+ T T " fjj— [au(s) - $(s) OS fu(s' t>dt]lds[v m U(T)] > O.,

The integrand is continuous for a.e. te]0, I] and p can be
choosen sufficiently small, consequently

[Qu® - $0C) S Tu<t, t)dt] [v - u®)I 5*0 for O <t <T

and it is also true for + =0, x=T. Thus we haved proved.

THEOREM 4. A necessary condition for u(.), x(=) to be an
optimal solution of (@), (21 in the class of piecewise con-
tinuous controls is

[0 &) -iii® S fuf, DIJuC) =min [g (r) - $¢C) S T (X,
u o] veU (o]
tdt]lv for a.e. xe[o, t] @
where $fr.) e PCL(1, E*) 1is the solution of the adjoint equation
T
MD) = -go(® + E $(s)f (s, t)ds, tel. )
e

COROLLARY. If h(=) e C(1, E) and controls u(.) are conti-
nuous, we set X =C({, E) and WT ~vc c(l, U) and get the mi-

nimum principle of Theorem 4 for every xe |I.



THEOREM 5. Let be u(=), x(.) an optimal solution of: minimize
(3 subject to

T
x(s) » h(s) + ss flGs, t, x(©))dt + £ F2(, t, u(s))dt
o o

X(.)e PCL(l, BE), u(.) e PCL{, U). (26)
We assume that U is convex, he PCL(1, E), ¥, f2, g g y exist
(and are continuous) for all admissible arguments. Then

T X
[OU(T) - $(O) S [F2(t, HAJ (L) « min [g (D)-$() J F2(, t
o veU o

dtjv for a.e. t e 1 (27)
and ip() is the solution of

AE) m *ge(®) + I *(s)FNs, t)ds @8
Proof. This result is obtained with

T
FO, W) « S g(t, x(B), u(®)dt, G, W) =x(8) - h() -
o}

S T
- S flG, t, x(©))dt - S T2¢, t, u(s))dt, X = PCLd, BE),
o o
W = PCL(I, U)
when for fixed tel, I»y>0, velU the problem is restric-
ted to
F(x, w) * min subject to G(x, w) = 0, xe XE, we W.v,

and where 1 1is the finit set of points of discontinuity of u(e)
or h(.).

REMARK 4. A corresponding condition holds for

D h€Cd, BE), x(=) e C(, BE), u(=) e C, U and then for
all tel.

2 he PCL(l, E), x(=) e PCL(l, E), u(.) e C(l U) for a.e. xel

3) varied controls can be combined, f.i. (Figure 2).



- whereare fixed,

or can be choosen as

1E
-1 1
T-2J T
Fig. 2
7. OUTLOOK
1. It is possible to derive any optimality condition, if U is

not convex?
Let d(.), x(.) be admissible for (1), (), @. Define  for
every tel the directional cone
Kt, V) = {veu 3m>0, e(t, y> >0: G(t) +ev e U for
te ICX, ¥), 0™ e <e(, V).
For fixed t, 1>y >0, vc K{t, U) define varied controls

ru®) t 1, y)
u() + ev te I(t,Y) 9
X=Xj, W» {UE(=)I1 0% e < e(t, Y)} In the sense used above.
Then we can prove iIn the same fashion:
THEOREM 6 . Necessary for the optimality of &(=)> £(=) with
respect to (D), 3, @ is

T
[gu() - $(t) S Tu(f, t)dt]lvs O for all ve K(t, U), and for
o}

a.e. tel (€0))
where $(=) is the adjoint function.

uit)



2. Suppose it is known that the optimal control u(=) and
trajectory £(=) of @, 3 u(= e PCL{, U, h(=) e CU, B
are continuously differentiable functions with derivatives xfu(.),

ug(-) and U is assumed to be convex, let the continuous deriva-
tive ot(t, e, u) exist. For fixed t < T define
I'u(t + e) te [0, t]
w® = i te 1e, T} GD
and WT = {ue(=)] 0™ e< T -t . Xt={x(.)]x continuous at t for

all t~ t}, Ix 1= sup Ix(®)I. Then u(®»), x(-) are also optimal
OstsT
for F(x, w) = mini under the constraints G(x, wW) =0, we WT,

X 6 XT.

All assumptions of the abstract model [I] can be verified. We
calculate

T
66(s) S F (s, tu ()t se [0, 1
(0} u

0 Se Jt, tJ
and

6F = - _flgt(® + ge(Oxt(]dt + g() - g(0).

(o]
From (9 the following optimality condition can be obtained:

-S[$At) + g (ODx (O]dt + g() - g@) - } $(5)<SG(s)ds > 0.
o 0

Hence if t tends to T

.
oM - 9O - [IS*5 D + S, (DILM®IdE -

- s ii® S fu(s, Hu (s)dtds > 0 @)
(o] (o]

Replacing uE(«) by

u(® te [0, t]

u(tt - e te ]t, t]
and putting a new set WT ={3(=) | 0< e$ T -t} and a new pro-
blem F(x, w) = mini subject to G(x, W) = 0, we W, xe XT, we
obtain

aE(® =



t6 [0, t]
iG(s) =

—ST f,.,(s, )i (s)dt ts Ix, T]
o u s

6F - S [at(® + ge(®at()]dt + g(T) - g(M).-
T

Thus the optimality condition is

T TA
o(e) —g(M + S [IL(D) -g (OX,-(D]dt - S <Ms)6G(s)ds > o.
t t
Recalling (32) and letting r ¢ 0 we obtain
THEOREM 7. A necessary condition for G4 (*) « C~d, U), x(-)e

e C*(1, E) to be an optimal solution of @, (3, u(.) e PCL{, V)
is the equality

3(0) + Y [gt(® + Se(Cft<t)]dt +
(0]

+ S $(s)S fu™ tug(s)dtds = g(hn) (€9))
o o

where $(=) is the solution of (20).
Example. Consider

S [tx(t) - ~u(b)]dt = mini  subject to
o}

x(@) = -5 su(s) dt + 7 SE x(dr,  |u $ 1.
(0] (0]

To the controls ul(s) =1 and u2(s) = -1 corresponds the state
function X(@G) = -s - se [o, I], and it is easily shown that

@3 is valid. Also for u3(.) =0 (33) is true. Condition (33)
is not a powerful tool to find optimal controls!

IT us) = s than x(s) = -s3 - The adjoint equation is
1
) _ _t+ j- ~)ds  (independent on u(*)) and has the so-
o]
lution *(®) = -t - Then condition (33) is
gd) =o* (1)‘ [-t3 -\ - t - 3t2]dt o |](3)/(—232)Idtds

5
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however g(l) = - X.
Consequently u(s) * s, sei is not optimal. By the way,
according to theorem 1 the minimum principle is

+ (e +1)(-2)e . u(t)lu(Ce) =
= min [-1 + ( + 4)(-2t)()l .V, o™t < 1.
ml<v<l *

This condition is valid for u () = +1. We see that for t << 1 the
optimal control has to be the value +1 and u(t) = 1 too, if
[-J - 2t(t + < 0.

3. Sometimes the set of all CDL is a convex cone. Then it is
possible to take side conditions into considerations. We give an
example of such a process. Let be ET a given convex set in E
and int ET # O.

The problem under consideration is:

T
minimize S g(t, x(©), u(t))dt under the conditions
o]

x(s) h(s) + SS (s, t, x(v), u(s))dt, sei,
o}

x() e PCL(, BE), u(.) e PCL(, U),
x(T) e ET (€D
We assume: fg, fu, g, gu exist and are continuous.

Let u(=),£(.) be an optimal solution. There exist numbers

0=sQ <sl< ... <sm<sn+=T such that x(-), 6(-), h(.) are
continuous on every interval Xi =Js®, si+l]; 1 =0, ..., m. We
suppose the existence of convex cones < S and positive num-

bers & with the property u(® + t|* e u for all v e Ki#
Of£ e <& and all te ii# 1 =0, ..., m. Denoting Z = {s",

sm) we set X2, w x PCL(I, V), Ff(, w), GX, w) in the
previous sense and M = {xX(=) e Xj.|x(1) e BN}

Then Q(-), &(=) is also an optimal solution of the problem:
minimize F(, w) subject to G(x, wW) * 0, xe X, we w.. MIis



a convex subset of Xj.. Necessary optimality conditions for this
abstract problem are given in [I]. Fredholm integral processes of
type (0), (O, x(.) e CU, BE), u(=)e PCLA, U), x(T) e ET are
considered in [7].

Por every a(.) e PCL(X, S) with e cNk™ Sk~ k = 0,

m, we define a set of varied controls by
W * {URCIIUEC) * A + jay] O< £< j=om <P=

Without verifying the Lemmas 3-5 we calculate for every such
a( =),
ek ~ o/ "~k * Ejjp(=)M'L the CDL and obtain

5G6(s) * SS ;u(s, tdt a(s), se 1
o}

T
5F * S gu(®a(b)dt
o]

The set of all these CDL is a convex cone. According to [I] a
necessary optimality condition holds:

LEMMA 7. There exist a nonnegative number 5 and a linear
functional

e*e B, 6 +3e*3 >0, such that
L

e* 66(T) + £iF - S {ji(e)6G(s)ds > 0 for all CDL 6F, 6G G35
o

and the transversality condition

e* £(1) > e*e for all e e ET holds 6)
$(.) is a solution of the adjoint equation
T
i® = iOf (5, HYds - gg O -e* F (0, O, te 1 (€1))
t
Proof: (35) follows from the general condition (see [I])

X*([GX X, w)-16g (M) + B <, & GX (X, d)_1iG + ¢(6F 5 0,
where x*e[pCL(l, BE)]*, 8x*01 + g >0, x*i(.) > x*x(.) for all
x(.) e M, by substituting z = Gx(X, w)“16G. By means of the re-

s
solvent operator we have z(s) ~ 6G6(s) + J R(s, H)6G()dt, se I.
o}



The functional x* can be represented by a Stieltjes integral.
From x*£(.) > x*x(=) for x(.) e M it Tfollows the existence of
e* e E*, such that x*x(-) = e*x(T). Hence

T T
e*6G(T) + e*S R(T, ©)6G(H)dt + £ S de(H)6G(H)dt +
o} o}
T t
+£ f ge(® S R(t, wW)6G(W)dwdt + F»0 (€9
o] o]
and therefore
T
e*6G(T) + £6F + s [e*R(T, ©) + £ 8 () +
o]
T
+ P S g-(WRMWw, t)]ec(t)dt> 0.
*t 6
Applying (8) we obtain that

T
$) = e RO, © - £ge(® -0 S ge(WRWw, t)dw is the uni-

que solution of (37) in PCL(l, E®).
Considering for ve K, te] s®, sktl],O0<p« 1, kaO0,... ,m

special functions

0 ti X, m)
a(d L-t-H v te [t - p, t]
-t+ * *Av te [t, t + p]

from (38) we obtain with the help of the corresponding CDL 6G, 6F

} fiw® -3 S ijs, OA] S A+xINE eV -
T-p 0

-~ [*gu®) -3 } 1(8. tdt]s ~ ds.v”"O.
T 0
It follows
[egu( - $(M) } fu(, ©)dt] vs 0 for all ve Kk, sk < t g
o

N N = N* eeeff
This inequality is valid for « = sQ, . sm+1# to°" as ali terms
are continuous in sk, sk+1]. Put now for O < p << 1 and ve Km



0 ts [o, T -|i]
a®) = >t~2uwkhiv te [I-]i, I].

(3) can be written as

[ex S f..(0, Hdt + _ S (gg () - $(s) f fu(s, HHAD
0 T-v 0

8 ~T t.kds]v > o.

Thus we have proved:

THEOREM 8. If u(.), &= are optimal with respect to (1),
(21), (34 under the assumptions mentioned aoove there exist a
number £ O and a functional e*e E*, g + 0e*8> 0, such that

g
g & - $(s)y fu(, dtjv > 0 for all v 6 Kk, sk <s<
u o)
&sk+l, *=0, ..., m,
T .
e*s ¥ (T, t)dtv >0 for all v 6 K,
o]

e*i(T) = max e* e
eeET

and ${=) is the solution of (37).
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WARUNKI KONIECZNE OPTYMALIZACJI
DLA PROCESOW OPISANYCH SPECJALNYMI UKLADAMI CAEKOWYMI

Prezentowany artykut przedstawia procesy sterowania opisane przez nie-
liniowe réwnania catkowe typu (2). Zostaty udowodnione pewne konieczne warunki
optymalnosci. Rozwaza sig rozne réwnania catkowe, w tym typu Volterry. Re-

zultat J. Petczewskiego przedstawiono w réwnowaznej formie.



