ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 4, 1991

Oľga Kulcsárová

A NOTE ON THE EXTENSION OF FUNCTIONALS

In [4] there is defined an extension of a mapping $J_0: B \rightarrow \langle 0, \infty \rangle$ to $J^{*}: H \rightarrow \langle 0, \infty \rangle$, where B is a sublattice of a lattice H. In this paper we introduce the notion of an n-cover of an element of H with respect to a system $\{\mathscr{H}_{t}^{*}\}_{t\in T}$ of subsets of B. Then a relation between the elements of H having n-covers with respect to $\{\mathscr{H}_{t}^{*}\}_{t\in T}$ and the elements with small J^{*} -values is given.

Let B be a sublattice of a given lattice H, a mapping $J^*: H \to \langle 0, \infty \rangle$ be an extension of $J_0: B \to \langle 0, \infty \rangle$. For every non-negative integer n, let us denote

 $\mathcal{P}_n = \{ \mathbf{x} \in \mathbf{H} : \ \mathbf{J}^*(\mathbf{x}) < \frac{1}{n} \}, \qquad \mathcal{Q}_n = \{ \mathbf{x} \in \mathbf{H} : \ \mathbf{J}^*(\mathbf{x}) \leq \frac{1}{n} \}.$

Further define a system $\{\mathscr{N}_t\}_{t\in T}$ of subests of B by $\mathscr{N}_t = \{x \in E : J_0(x) < t\}$, where $T \subset (0, \infty)$. We are going to introduce the notion of an n-cover of an element of H with respect to $\{\mathscr{N}_t\}_{t\in T}$. Now let \mathscr{N}_n^* be the set of all elements of H having an n-cover with respect to $\{\mathscr{N}_t\}_{t\in T}$.

In this paper we give some simple conditions for T and for $J_{\rm o}$, B, which guarantee the validity of

Pn C Nn C Qn

for every nonnegative integer n. The relation between sequences $\{\mathscr{N}_n^*\}$, $\{\mathscr{P}_n\}$ and $\{\mathcal{Q}_n\}$ constructed by analogous way for rings and σ -rings was investigated by J. L l o y d in [1] and P. C appek in [2]. The inclusion $\mathscr{N}_n^* \subset \mathscr{P}_n$ in [2] (see Lemma 3) is incorrect.

Let H be a distributive, relatively o-complete lattice with the least element 0. Suppose that there is given a binary operation \ on H, satisfying the following conditions:

1) If x, y, $z \in H$, $x \leq y$, then $z \setminus x \geq z \setminus y$, $y \setminus z \geq x \setminus z$ 2) $x = (x \vee y) \setminus y$ whenever x, $y \in H$, $x \wedge y = 0$.

ACTA URIVERSITATIS LODSIERSIS

Let B be a sublattice of H, closed under the operation \. As regards B, we assume in the following that for every $x \in H$ there is a $b \in B$ such that $x \leq b$. Finally, we assume that there is given a mapping $J_{0}: B \rightarrow \langle 0, \infty \rangle$ satisfying the following conditions: ".05 - 8 set gainque a la molenetze at bentiab al eradi [4] al

(i) $J_{O}(0) = 0;$ its a to estimate a st denote (0, -, 0) = 0;

(ii) For $x \leq y$, $x, y \in B$ is $J_{O}(x) \leq J_{O}(y)$;

Mal mathing a od (iii) $J_{o}(x \vee y) \leq J_{o}(x) + J_{o}(y)$ for all x, $y \in B$;

(iv) if $x_n \neq x$, $x_n \in B$, $n = 1, 2, ..., x \in H$, then $x \in B$ and $J_{o}(\mathbf{x}) = \lim J_{o}(\mathbf{x}_{n});$ n→∞

(v) $J_{O}(x) = J_{O}(x \land y) + J_{O}(x \land y)$ for all x, $y \in B$.

Let N denote the set of all positive integers and let us repeat that

 $\mathscr{N}_{t} = \{ \mathbf{x} \in \mathbf{B} : \mathbf{J}_{o}(\mathbf{x}) < t \}, \quad t \in (0, \infty).$

Let $\{\mathcal{M}_{t}\}_{t\in\mathbb{T}}$ be a system of subsets of the lattice B, where T is a nonempty subset of the set of all positive real numbers such that 0 is a limit point of T.

DEFINITION 1. Let $n \in N$. By an n-cover of an element $x \in H$ with respect to the system $\{\mathscr{H}_t\}_{t\in T}$ we mean a system $\{x_i\}_{i\in I}$ of elements $x_i \in \mathscr{H}_{k_i}$ with $\{k_i\}_{i \in I}$ being a sequence in T, satisfying the following conditions: valories and settering dalay of the

1) $\bigvee_{i \in I} x_i$ exists in H,

- 2) $x \leq \bigvee_{i \in I} x_i$, adialst off .s legated evideosono views to 3) $\sum_{i \in I} k_i \leq \frac{1}{n}$.

o-rings was investigated by J. 5 1 0 y 0 1m Let \mathcal{M}_n^* denote the set of all elements of H having n-covers

A note on the extension of functionals

We extend $J_{_{\bigcirc}}\colon B\to <0,\ \infty>$ to $J^{*}\colon H\to <0,\ \infty>.$ For every $x\in H$ we put

 $J^*(x) = \inf \{J_O(f): f \in B, x \le f\}$ (see [4], Definition 1.1.). The mapping $J^*: H \to \langle 0, \infty \rangle$ satisfies the following conditions: 1) J^* is an extension of J_O^* ,

property of the lattice 2 we dehote by (C).

2) J* is non decreasing,

3) $J^*(x \vee y) \leq J^*(x) + J^*(y)$ for every x, $y \in H$.

setteres children and setteres and setteres a solute

We repeat that is a si collinal and that (0) collinor and

 $\mathcal{P}_n = \{x \in H: J^*(x) < \frac{1}{n}\}, \quad \mathcal{Q}_n = \{x \in H: J^*(x) \leq \frac{1}{n}, n \in \mathbb{N}.$ LEMMA 1. $\mathcal{M}_n^* \subset \mathcal{Q}_n$ for every $n \in \mathbb{N}$.

Proof. Let $x \in \mathscr{M}_n^*$, i.e. there exist a system $\{k_i\}_{i \in I}$ of numbers of T, and $x_i \in \mathscr{M}_{k_i}$, $i \in I \subset N$ such that $x \leq \bigvee_{i \in I} x_i \in H$ and $\sum_{i \in I} k_i \leq \frac{1}{n}$.

If the set I is finite, then $\bigvee_{i \in I} x_i = \bigvee_{i=1}^{\alpha} x_i \in B$ and since

$$J^{*}(\mathbf{x}) \leq J^{*}(\bigvee_{i=1}^{\alpha} \mathbf{x}_{i}) = J_{o}(\bigvee_{i=1}^{\alpha} \mathbf{x}_{i}) \leq \sum_{i=1}^{\alpha} J_{o}(\mathbf{x}_{i}) < \sum_{i=1}^{\alpha} k_{i} \leq \frac{1}{n},$$

we have $x \in Q_{p}$.

If the set I is infinite, then by (iv) $\bigvee_{i \in I} x_i = \bigvee_{i=1}^{\vee} x_i \in B$ and

$$J^{\star}(\bigvee_{i=1}^{\infty} x_{i}) = J_{o}(\bigvee_{i=1}^{\infty} x_{i}) = \lim_{n \to \infty} J_{o}(\bigvee_{i=1}^{n} x_{i}) \leq \lim_{n \to \infty} \sum_{i=1}^{n} J_{o}(x_{i}) =$$
$$= \sum_{i=1}^{\infty} J_{o}(x_{i}) \leq \sum_{i=1}^{\infty} k_{i} \leq \frac{1}{n},$$

SO

 $J^{*}(x) \leq J^{*}(\bigvee_{i=1}^{\infty} x_{i}) \leq \frac{1}{n}$, which completes the proof.

LEMMA 2. If $T = \{\frac{1}{n}: n \in N\}$, then $\mathscr{P}_n \subset \mathscr{N}_n^*$ for all $n \in N$. Proof is very simple, so we can omit it.

63

Olga Kulcsárová

From Lemmas 1 and 2 we obtain the following theorem.

THEOREM 1. If T = $\{\frac{1}{n}: n \in N\}$, then $\mathcal{P}_n \subset \mathcal{M}_n^* \subset Q_n$ for every $n \in N$.

Denote by (D) the following condition: for every f, $g \in B$, f < g, $J_{O}(g) < \infty$, the set $\{J_{O}(r): r \in B, f < r < g\}$ is dense in $\langle J_{O}(f), J_{O}(g) \rangle$.

The lattice Z is called complementary, if for every x, $y \in Z$, x $\leq y$ there exists $z \in Z$ such that x $\vee z = y$ and x $\wedge z = 0$. This property of the lattice Z we denote by (C).

LEMMA 3. Suppose that the mapping $J_0: B \to \langle 0, \infty \rangle$ satisfies the condition (D) and the lattice $\{x \in B: x \leq y\}$ has the property (C) for every $y \in B$. Then $\mathcal{P}_n \subset \mathcal{M}_n^{\times}$ for all $n \in N$.

Proof. Let $x \in \mathcal{P}_n$, i.e. $x \in H$, $J^*(x) < \frac{1}{n}$. The definition of J^* gives the existence of $f \in B$ such that $x \leq f$ and $J_O(f) < \frac{1}{n}$. Let $\{f\}$ do not be an n-cover of x. Put $\varepsilon = \frac{1}{n} - J_O(f)$ and choose $t_O \in T$, $0 < t_O < \varepsilon$ and $p \in N$, p > 2 such that

 $(p - 1)t_{o} \leq J_{o}(f) < pt_{o} \leq J_{o}(f) + \varepsilon.$

Now we define the sequence $\{f_j\}_{j=1}^{p-1}$, $f_j \in B$, j = 1, 2, ..., p - 1 as follows. By the condition (D) there exists $f_1 \in B$, $f_1 < f$ with

 $\frac{J_{o}(f)}{p} \leq J_{o}(f_{1}) < t_{o}.$

64

Suppose that $f_j \in B$, j = 1, 2, ..., i for $1 \le i \le p - 2$ are defined having the following properties:

 $f_{j} < f, \quad j = 1, 2, ..., i$ $\frac{J_{0}(f)}{p} \leq J_{0}(f_{j}) < t_{0}, \quad j = 1, 2, ..., i,$

 $f_k \wedge f_1 = 0$ for $k \neq 1$, k, l = 1, 2, ..., i. In virtue of (D) there exists $\tilde{f} \in B$ such that $\bigvee_{j=1}^{i} f_j < \tilde{f} < f$ and $J_0(\tilde{f})$ belongs to the interval

$$(J_{0}(\sum_{j=1}^{i} f_{j}) + \frac{J_{0}(f)}{p} + \frac{t_{0} - \frac{J_{0}(f)}{p}}{2} - \frac{t_{0} - \frac{J_{0}(f)}{p}}{p},$$

$$J_{o}(\bigvee_{j=1}^{i} f_{j}) + \frac{J_{o}(f)}{p} + \frac{t_{o} - \frac{t_{o}(f)}{p}}{2}).$$

Since the lattice $\{x \in B: x \leq \tilde{f}\}$ has the property (C), there exists $f_{i+1} \in B$ such that $\bigvee_{j=1}^{i+1} f_j = \tilde{f}$ and $f_{i+1} \wedge (\bigvee_{j=1}^{i} f_j) = 0$. Evidently $f_{j+1} < f$ and $f_{i+1} \wedge f_j = 0$ for j = 1, 2, ..., i. Further, by (v) and (2)

$$J_{o}(\bigvee_{j=1}^{i} f_{j}) = \sum_{j=1}^{i} J_{o}(f_{j}), \quad J_{o}(\widetilde{f}) = J_{o}(f_{i+1}) + J_{o}(\bigvee_{j=1}^{i} f_{j}),$$

$$\frac{j}{\sum_{j=1}^{j} J_{0}(f_{j})} + \frac{J_{0}(f)}{p} < J_{0}(f_{i+1}) + \sum_{j=1}^{i} J_{0}(f_{j}) < \sum_{j=1}^{i} J_{0}(f_{j}) + \frac{t_{0}}{2} + \frac{J_{0}(f)}{2p},$$

hence

 $\frac{J_{o}(f)}{p} < J_{o}(f_{i+1}) < t_{o}.$

Finaly, by (C) there exists $f_p \in B$ such that $\bigvee_{j=1}^{p} f_j = f$ and $f_p \wedge f_j = 0$ for j = 1, 2, ..., p - 1. We have

$$J_{o}(f_{p}) = J_{o}(f) - J_{o}(\bigvee_{j=1}^{p-1} f_{j}) = J_{o}(f) - \sum_{j=1}^{p-1} J_{o}(f_{j}) \leq 0$$

$$\leq J_{0}(f) - (p-1) \frac{J_{0}(f)}{p} = \frac{J_{0}(f)}{p} < t_{0}$$

Hence $f_j \in \mathscr{H}_{t_0}^{\circ}$ for every $j \in \{1, 2, ..., p\}$ and taking into account that $pt_0 \leq \frac{1}{n}$, we have that $\{f_j\}_{j=1}^p$ is an n-cover of the element x. The proof is complete.

From Lemmas 1 and 3 we obtain the next theorem.

Oľga Kulcsárová

THEOREM 2. Under the hypotheses of Lemma 3

 $\mathcal{P}_n \subset \mathcal{N}_n^* \subset \mathcal{Q}_n$ for every $n \in \mathbb{N}$.

LEMMA 4. If $\overline{T} \supset \langle 0, 1 \rangle$, then $\mathscr{P}_n \subset \mathscr{P}_n^*$ for all $n \in \mathbb{N}$.

Proof is evident. Lemmas 1 and 4 imply the following theorem. THEOREM 3. If $\overline{T} \supset \langle 0, 1 \rangle$, then $\mathscr{P}_n \subset \mathscr{N}_n^* \subset \mathscr{L}_n$ for every positive integer n.

REFERENCES

- L 1 o y d J., On classes of null sets, J. Austr. Math. Soc., 14 (1972), 317-328.
- [2] Capek P., On small systems, Acta fac. rer. nat. Univ Comen. (1979), 93-101.
- [3] Neubrunn T., Riečan B., Miera a integrál, VEDA, 1981.
- [4] Riečan B., On the Carathéodory method of the extension of measures and integrals, Math. Slov., 4 (1977), 365-374.

Department of Mathematics Kosice, UPJŠ

Oľga Kulcsárová

O ROZSZERZENIACH FUNKCJONAŁÓW

W prezentowanym artykule rozważa się problem rozszerzenia odwzorowania J_0 : $B \rightarrow \langle 0, \infty \rangle$ do J*: $H \rightarrow \langle 0, \infty \rangle$, gdzie B jest podkartą karty H. Wprowadza się pojęcie n-pokrycia pewnych elementów z H względem ustalonego systemu $\{\mathscr{N}_t\}_{t\in T}$, podzbiorów zbioru B. Podany jest również związek pomiędzy zbiorem elementów z H mających n-pokrycie względem systemu $\{\mathscr{N}_t\}_{t\in T}$, a tymi elementami z H, dla których wartość odwzorowania J* jest mała.