ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 4, 1991

Marek Balcerzak

ON THE GENERALIZED ZINK CLASSIFICATION

We study the generalized Zink classification for systems $(X, \mathcal{T}, \mathscr{E}, \mathcal{T})$ where (X, \mathcal{T}) is a topological space and \mathcal{T} is a σ -ideal in a σ -algebra $\mathcal{B} \subset \mathfrak{P}(X)$, such that $\mathcal{T} \setminus \{ \phi \} \subset \mathcal{S} \setminus \mathcal{T}$. We obtain a characterization analogous to Zink's one. Some new examples are given.

Z i n k in [8] introduced and explored a classification of topological measure spaces. A quadruple (X, T, S, μ) is called a topological measure space if and only if (X, T) is a topological space and (X, S, μ) is a measure space, such that $T \subset S$ and $\mu(U) > 0$ for all $U \in T \setminus \{\emptyset\}$.

We observed that the notion of measure is not essential in the proofs of Zink's theorems and it suffices only to use the σ -ideal of sets on which the measure is zero. Thus, we consider here a classification, analogous to Zink's, for quadruples (X, T, S, T) where (X, T) is a topological space and T is a σ -ideal in a σ -algebra $S \subseteq \mathcal{P}(X)$, such that $T \setminus \{\emptyset\} \subset S \setminus T$.

In the sequel, let a fixed system (X, J, S, J) be given.

We say that two sets A, $B \in S$ (respectively, two real-valued functions f, g defined on X, measurable with respect to S) are equivalent if and only if their symmetric difference $A \triangle B$ (respectively, the set { $x \in X : f(x) \neq g(x)$ }) belongs to J.

Throughout the paper, we consider continuous and semicontinuous functions mapping the space (X, T) into the real line R with the natural topology.

Recall the notation of Zink. The classes \mathcal{L}_{α} , \mathcal{U}_{α} , $\alpha < \omega_1$, are defined as follows: \mathcal{L}_1 (\mathcal{U}_1) is the class of all lower - (respec-

tively, upper -) semicontinuous functions; if $1 < \alpha < \omega_1$, and \mathscr{L}_{β} (resp. \mathscr{U}_{β}) have been defined for $\beta < \alpha$, then \mathscr{L}_{α} (respectively, \mathscr{U}_{α}) is the class of all limits of pointwise convergent sequences of elements of $\beta < \alpha \ \mathscr{L}_{\beta}$ (respectively, $\beta < \alpha \ \mathscr{U}_{\beta}$). Moreover, let \mathscr{L}_{α} and \mathscr{U}_{α} be equal to the class of all continuous functions.

A system $(X, \mathcal{T}, \mathcal{S}, \mathcal{T})$ will be called an α -space (where $0 \leq \alpha < \omega_1$) if and only if α is the first ordinal γ such that each bounded real-valued S-measurable function on X is equivalent to an element of \mathcal{S}_{γ} . In particular, we obtain Zink's classification by considering $\mathcal{T} = \{A \in \mathcal{S} : \mu(A) = 0\}$ in our scheme where μ denotes a measure on \mathcal{S} which does not vanish on non-empty open sets.

Let F_{α} , G_{α} , $\alpha < \omega_{1}$, denote the classes of Borel (with respect to \mathcal{T}) subsets of X, defined as in [2], p. 251-252. Moreover, let F_{-1} and G_{-1} be equal to the class of all closed-and--open subsets of X.

The following theorem will be the main tool in establishing places of various systems in the classification described above.

THEOREM 1. Let α be a finite ordinal number. In order that each bounded δ -measurable function be equivalent to an element of \mathscr{L}_{α} , it is both necessary and sufficient that each δ -measurable set be equivalent to a set of type $G_{\alpha-1}$.

REMARK. As in [8], one can observe that each bounded S-measurable function (respectively, each S-measurable set) is equivalent to an element of $\mathcal{L}_{\mathcal{T}}$ (respectively, to a set of type $G_{\mathcal{T}}$) if and only if the analogous condition with $\mathcal{L}_{\mathcal{T}}$ replaced by $\mathcal{U}_{\mathcal{T}}$ (respectively, $G_{\mathcal{T}}$ replaced by $F_{\mathcal{T}}$) holds.

The proof of Theorem 1 is similar to that from [8]. Most of modifications are needed in the proof of sufficiency for $\alpha = 0$, thus we provide that part with details and omit the rest. Note that in the case $\alpha = 0$, the condition that each 8-measurable set is equivalent to a closed-and-open set implies that the closure of each open set is again open, i.e. the topological space (X, T) is extremally disconnected (see the preliminary remark preceding Theorem 6 in [8]).

Proof of sufficiency for $\alpha = 0$. If $f = \chi_E$ (the characteristic function of E) with $E \in S$, let $g = \chi_U$, where U is a closed-

4

On the generalized Zink classification

-and-open set that is equivalent to E. Then, g is continuous and equivalent to f. Thus, it easily follows that each simple function is equivalent to a continuous function.

Let f be a non-negative bounded δ -measurable function and let $\{f_n\}$ denote a non-decreasing sequence of simple functions converging to f. For each natural number n, let g_n be a continuous function equivalent to f_n . Since

{x: $g_n(x) > \sup \{f(y): y \in X\}\} \subset \{x: g_n(x) > f(x)\} \subset \{x: g_n(x) > f_n(x)\},\$

and since the first of these sets is open while the last belongs to \Im , the first one must be empty, and so, the functions g_n are uniformly bounded above. According to a theorem of S to n e [7], if (X, \mathcal{T}) is an extremally disconnected topological space and if $(\mathscr{L}_0; \leqslant)$ is the lattice of continuous real-valued functions associated with (X, \mathcal{T}) , then a non-void subset of \mathscr{L}_0 that has an upper bound in $(\mathscr{L}_0; \leqslant)$ has also a least upper bound there. Thus, $\{g_n\}$ has a least upper bound g in $(\mathscr{L}_0, \leqslant)$. From the method of choice of g_n it follows that $\{x: g(x) < \langle f(x) \rangle \in \Im$. We shall show that also $\{x: g(x) > f(x)\} \in \Im$. Thus, f and g will be equivalent. Let $\varepsilon > 0$ and let

 $E = \{x: g(x) \ge f(x) + \varepsilon\},\$

 $F_k = \{x: g(x) \ge g_k(x) + \epsilon\}, k = 1, 2, ...,$ $F = \bigcap_{k=1}^{\infty} F_k.$

We then have

 $\mathbb{E} \setminus \mathbb{F} = \bigcup_{k=1}^{\widetilde{U}} (\mathbb{E} \setminus \mathbb{F}_k) \subset \bigcup_{k=1}^{\widetilde{U}} \{x: f(x) < g_k(x)\} \subset \bigcup_{k=1}^{\widetilde{U}} \{x: f_k(x) < g_k(x)\} \in \mathcal{J}.$

Let U be a closed-and-open set which is equivalent to F. Since F is closed, the set U $\$ F is open. U $\$ F belongs to J, so it must be empty. Consequently, U \subset F. Thus, the continuous function

 $h = g - \varepsilon \cdot \chi_{II}$

is an upper bound of $\{g_n\}$ in $\{\mathcal{L}_0; \leq\}$, whence, for every x, we have $h(x) \ge g(x)$. Thus h(x) = g(x) for all $x \in X$, and so, U is

5

REMARK. Probably, it is still not known whether, for each finite ordinal number α , there is a topological measure space (X, \Im , \Im , μ) such that if $\Im = \{A: \mu(A) = 0\}$, then (X, \Im , \Im , \Im) is an α -space (that problem was mentioned in [8]).

REFERENCES

- [1] Balcerzak M., Classification of σ-ideals, Math. Slov., 37 (1987), 63-70.
- [2] Kuratowski K., Topologie I, Warszawa 1958.
- [3] Łazarow E., Johnson R. A., Wilczyński W., Topologies related to sets having the Baire property, Demonstr. Math. 22 (1989), 179-191.
- [4] Miller A. W., On generating the category algebra and the Baire order problem, Bull. Acad. Polon. Sci., 27 (1979), 751-755.
- [5] Poreda W., Wagner-Bojakowska E., Wilczyński W., A category analogue of the density topology, Fund. Math., 125 (1985), 167-173.
- [6] Scheinberg S., Topologies which generate a complete measure algebra, Advan. Math., 7 (1971), 231-239.
- [7] Stone M. H., Boundedness properties in function lattices, Canad. J. Math., 1 (1949), 176-186.
- [8] Zink R. E., A classification of measure spaces, Colloq. Math., 15 (1966), 275-285.

Institute of Mathematics University of Łódź

Marek Balcerzak

O UOGÓLNIONEJ KLASYFIKACJI ZINKA

W artykule jest badana uogólniona klasyfikacja Zinka dla systemów (X, T, S, J), gdzie (X, T) jest przestrzenią topologiczną, zaś J jest σ -ideałem w σ -algebrze $\delta \subset \mathcal{P}(X)$ takim, że $\mathcal{T} \setminus \{\emptyset\} \subset \delta \setminus \mathcal{I}$. Uzyskano charakteryzację analogiczną do tej, którą podał Zink oraz omówiono kilka przykładów.

8