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We study the generalized Zink classification for systems (X, T, S,V) 
where (X, T  ) is a topological space and 7 is a 0 -ide/il in a o-algebra 
& C i3(X), such that j \ {0} c 5 \ t> . We obtain a characterization 
analogous to Zink s one. Some new examples are given.

Z i n k  in [8 ] introduced and explored a classification of 
topological measure spaces. A quadruple (X, 9", S , p) is called 
a topological measure space if and only if (X, T) is a topologi
cal space and (X, 8, y) is a measure space, such that xci and 
y(U) > 0  for all u e T \ {0}.

We observed that the notion of measure is not essential in the 
proofs of Zink's theorems and it suffices only to use the o-ideal 
of sets on which the measure is zero. Thus, we consider here a 
classification, analogous to Zink's, for quadruples (X, T, S , "3) 
where (X, 7) is a topological space and *3 is a o-ideal in a
o-algebra § c. <p (x), such that T \ {0} cj\j.

In the sequel, let a fixed system (X, T, <8 , *D ) be given.
We say that two sets A, B e s (respectively, two real-valued 

functions f, g defined on X, measurable with respect to S) are 
equivalent if and only if their symmetric difference A A B (res
pectively, the set {x e X : f (x) # g (x)}) belongs to *3.

Throughout the paper, we consider continuous and semicontinuous 
functions mapping the space (X, T ) into the real line R with 
the natural topology.

Recall the notation of Zink. The classes X y, U a, a < id̂, are 
defined as fellows: «6̂  (i^) is the class of all lower - (respec-



tively, upper -) senucontinuous functions; if 1 < a < , and 
(resp. have been defined for P < a, then Ĵ a (respectively,
tia) is the class of all limits of pointwiso convergent sequen
ces of elements of g ^ a (respectively,  ̂U  ̂l^). Moreover, 
let oG0 and UQ be equal to the class of all continuous functions.

A system (X, 7, & , 1 ) will be called an a-space (where 0 < a 
< 01̂ ) if and only if a is the first ordinal y  such that each 
bounded real-valued <5-measurable function on X is equivalent to 
an element of oGy In particular, we obtain Zink's classifica
tion by considering ,3 = { A e < 5 : v ( A ) = 0 }  in our scheme where
V denotes a measure on 6 which does not vanish on non-empty open 
sets.

Let Fq/ Ga, a ( denote the classes of Borel (with res
pect to 7 ) subsets of X, defined as in [2], p. 251-252. More
over, let F_1 and G_1 be equal to the class of all closed-and- 
-open subsets of X.

The following theorem will be the main tool in establishing 
places of various systems in the classification described above.

THEOREM 1. Let a be a finite ordinal number. In order that
each bounded §-measurable function be equivalent to an element of
c£a, it is both necessary and sufficient that each 8 -measurable
set be equivalent to a set of type G ,.a-1

REMARK. As in [8 ], one can observe that each bounded §-mea- 
surable function (respectively,each & -measurable set) is equi
valent to an element of oĜ . (respectively, to a set of type Ĝ,) if 
and only if the analogous condition with replaced by U y  
(respectively, G^ replaced by F̂.) holds.

The proof of Theorem 1 is similar to that from [8 ]. Most of 
modifications are needed in the proof of sufficiency for a = 0, 
thus we provide that part with details and omit the rest. Note 
that in the case a = 0, the condition that each S-measurable set 
is equivalent to a closed-and-open set implies that the closure 
of each open set is again open, i.e. the topological space (X,T) 
is extremally disconnected (see the preliminary remark preceding 
Theorem 6 in [8]).

Proof of sufficiency for a = 0. If f = %E (the characteris
tic function of E) with E e s, let g = Xy, where U is a closed-



-and-open set that is equivalent to E. Then, g is continuous 
and equivalent to f. Thus, it easily follows that each simple 
function is equivalent to a continuous function.

Let f be a non-negative bounded S-measurable function and 
let {fn} denote a non-decreasing sequence of simple functions 
converging to f. For each natural number n, let gn be a con
tinuous function equivalent to f . Since

{x: gn(x) > sup {f(y): y e X}} c {x: gn(x) > f(x)} c {x: gn<x)
> fn(x)},

and since the first of these sets is open while the last belongs 
to ■a, the first one must be empty, and so, the functions gn are 
uniformly bounded above. According to a theorem of S t o n e  
[7], if (X, T ) is an extremally disconnected topological spa
ce and if (<>C0; < ) is the lattice of continuous real-valued 
functions associated with (X, 7 ), then a non-void subset of XQ 
that has an upper bound in W Q; < ) has also a least upper 
bound there. Thus, {gn> has a least upper bound g in (<£_.,<). 
From the method of choice of gn it follows that {x: g(x) < 
< f(x)} e *3. We shall show that also {x: g(x) > f(x)} e sr. Thus, 
f and g will be equivalent. Let t > 0 and let 

E = {x: g(x) > f(x) + e},
= {x: g(x) > 9k<x) + e}, k = 1 , 2, ...,

F = A  F r k=l k
We then have

E \ F = kQi (E \ Fk) c {x: f(x) < gk<x)}c ̂ { X :  fk(x) <

< 9rk<x)> e -D.

Let U be a closed-and-open set which is equivalent to F. Since 
F is closed, the set U \ F is open. U \ F belongs to “3, so it 
must be empty. Consequently, U c F. Thus, the continuous func
tion

h = g - e • Xy
is an upper bound of {gR} in < }, whence, for every x, we
have h(x) » g(x). Thus h(x) = g(x) for all x s x, and so, U is



REMARK. Probably, it is still not known whether, for each fi
nite ordinal number a, there is a topological measure space (X, 
7, S, m) such that if 0 = (A: y(A) = 0}, then (X, 7, S, *3 ) 
is an a-space (that problem was mentioned in [8 ]).
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0 UOGÓLNIONEJ KLASYFIKACJI ZINKA

W artykule jest badana uogólniona klasyfikacja Zinka dla systemów (X, T, S, 
0), gdzie (X, 7  ) Jest przestrzenią topologiczną, zaś *3 jest o-ideałem w o- 
-algebrze ic iP(X) takim, ie T\ (i JciNi. Uzyskano charakteryzację analo
giczną do tej, którą podał Zink oraz omówiono kilka przykładów.


