ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 4, 1991

of X of good by X If B = X. For every net (x, one the in X into

On a Lott, down second block bits to the

Ryszard J. Pawlak, Andrzej Rychlewicz

ON A K.M. GARG'S PROBLEM IN RESPECT TO DARBOUX FUNCTIONS

There is considered the problem 3.11 from [3] by K. M. Garg in the class of Darboux functions.

In his paper [2] K. M. Garg has proved that every Darboux function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with more abstract domains In [3] the following question has been put: under which assumptions with respect to X and f a connected function f: $X \rightarrow \mathbb{R}$ is monotone, or weakly monotone, relatively to the set $S_{c}(f)$ in general. Some partial answers can be found in [4], [5], [6] and [7]. As an immediate consequence of the mentioned papers we ob-

tain:

THEOREM. Every connected function $f: I^2 \rightarrow \mathbb{R}$ is continuous and weakly monotone on S_(f).

In the face of the Theorem 2 of [2] it is natural to set the question: will the above theorem remain valid for the wider class of Darboux functions i.e. the functions mapping arcs onto connected sets (see [8])? Since the answer is negative (Theorem 1) it is natural to look for additional assumption under which, could be continuous and weakly monotone. the function f $S_{a}(f)$ As a result we obtain Theorems 2 and 3.

Within the whole paper we use well-known traditional symbols and notation, the same like in [1], [2] or [8]. In particular R, Q, N and I denote the set of: real numbers, rational numbers, natural numbers and the closed interval [0, 1], respectively. If a, $b \in \mathbb{R}$ the symbol (a, b) denotes an open interval with end points a and b (a > b is also possible).

Let A, B be subsets of a topological space X such that $A \subseteq B$. Then the closure of A in the subspace B will be denoted by $cl_B(A)$ and also by \overline{A} if B = X. For every net $\{x_{\sigma}\}_{\sigma \in \Sigma}$ in X the symbols $A - \lim_{\sigma \in \Sigma} x_{\sigma}$ and $A - \operatorname{acp} x_{\sigma}$ will mean the sets of limit points and accumulation points belonging to A, respectively; if A = X, we write shortly: $\lim_{\sigma \in \Sigma} x_{\sigma}$ and $\operatorname{acp} x_{\sigma}$. Let f be a mapping of a topological space X into a topological space Y, A be a subset of X, $\{x_{\sigma}\}_{\sigma \in \Sigma}$ be a net in X. We say that the above net is f-agree with A, if $\overline{A} - \operatorname{acp} x_{\sigma} \neq \emptyset$ or $\overline{f(A)} - \operatorname{acp} f(x_{\sigma}) \neq \emptyset$. The combination of mappings f_1 and f_2 is denoted by $f_1 \nabla f_2$ (see [1]). We say that X is σ -coherent (see [3]), if the intersection of every decreasing sequence of closed connected sets in X is connected.

Let f: X + Y be a mapping where X, Y are Hausdorff spaces. We say that $y_o \in Y$ is a limit element or cluster element of the function f at a point $x_o \in X$, if there exists a net $\{x_\sigma\}_{\sigma \in \Sigma} \subset X \setminus \{x_o\}$ such that $x_o = \lim_{\sigma \in \Sigma} x_\sigma$ and $y_o = \lim_{\sigma \in \Sigma} f(x_\sigma)$. We denote by L(f, x_o) the set of all cluster elements of f at x_o .

We say that $y_0 \in Y$ is a (*) - limit element or (*) - cluster element of a function f at x_0 , if $y_0 \in L(f, x_0)$ and, moreover, if $\{x_{\sigma}\}_{\sigma \in \Sigma}$ is a net such that $x_0 = \lim_{\sigma \in \Sigma} x_{\sigma}$ and $y_0 = \lim_{\sigma \in \Sigma} f(x_{\sigma})$, then there exists $\sigma_0 \in \Sigma$ such that $f(x_{\sigma}) = y_0$ for $\sigma \ge \sigma_0$. We denote by $L^*(f, x_0)$ the set of all (*) - limit elements of f at x_0 .

We say that f is a closed function at the point $x_0 \in X$, if $L(f, x_0) \setminus \{f(x_0)\} \subset L^*(f, x_0)$ (see [9]).

According to the notation in [3] for any function f: $X \, \rightarrow \, \mathbb{R}$ we write:

 $Y_{C}(f) = \{ \alpha \in f(X) : f^{-1}(\alpha) \text{ is a connected set} \},$ $S_{C}(f) = f^{-1}(Y_{C}(f)).$

a, b \$ 1 the symbol (a, b) denotes an order interval even and

100

On a K.M. Garg's problem in respect to Darboux functions

We say that a function $f: X \rightarrow \mathbb{R}$ is weakly monotone if $S_{C}(f) = X$. It is weakly monotone on $A \subset X$ if $f_{|_A}$ is a weakly monotone function.

The paper is based on the continuum hypothesis.

THEOREM 1. There exists a Darboux function f: $I^2 \rightarrow \mathbb{R}$ such that $f|_{\overline{S_{c}(f)}}$ is not a continuous function and it is not weakly

monotone. Proof. Let $A_0 = \{(x, y) \in I^2 : x = 0 \text{ or } y = \frac{1}{4} \sin \frac{1}{x} + \frac{1}{2}\}.$ Then $A_0 = \overline{A}_0$. Denoting by $A_{\alpha} = \{\beta \in I^2 : \rho(\beta, A_0) = \alpha\}$ (for a positive number α) we easily obtain $I^2 = \bigcup_{\alpha} A_{\alpha}$. Let us define the the question $\alpha \ge 0$, and the question of the second sec function $f_o: A_o \rightarrow \mathbb{R}$ by setting

 $\int y \quad \text{when } x = 0 \quad \text{and} \quad y \in \left[0, \frac{1}{2}\right]$ $f_{O}((x, y)) = \begin{cases} 1-y & \text{when } x = 0 & \text{and } y \in \left[\frac{1}{2}, 1\right] \end{cases}$ 1 when $x \neq 0$ and $y = \frac{1}{4} \sin \frac{1}{x} + \frac{1}{2}$

In the family of sets $\{A_{\alpha}: \alpha > 0\}$ we can define an equivalence relation in the following way:

 $A_{\alpha} * A_{\beta} \iff \alpha - \beta \in Q.$

Let $\mathcal P$ be the family of all classes of abstraction for that relation * and let φ be a one-to-one map of \mathscr{P} onto $(-\infty, 1)$. Write $f_1(x) = \varphi([A_{\alpha_y}])$, where A_{α_y} denote the set of the family $\{A_{\alpha}: \alpha > 0\}$, to which x belongs; $[A_{\alpha}]$ - the class of abstraction determined by $A_{\alpha_{1}}$, and f_{1} : $I^{2} \setminus A_{0} \rightarrow \mathbb{R}$. An important fact is that $f = f_0 \nabla f_1$: $I^2 \rightarrow \mathbb{R}$ is a Darboux function. Indeed, let $L \subset I^2$ be an arbitrary arc. There are three possible cases: 1) $L \subset A_0$, then it is obvious that f(L) is connected;

2) $L \subset A_{\alpha}$ for $\alpha > 0$, then f(L) is a one-element set;

3) there exist $\alpha_1, \alpha_2 \in [0, 1]$ such that $\alpha_1 \neq \alpha_2$ and $\mathbb{E} \cap \mathbb{A}_{\alpha_1} \neq \alpha_3$ $\neq \emptyset \neq L \cap A_{\alpha_2}$, then the definition of the function f implies that:

a Darboux function. To simplify the notation we shall write for

a D.D., whenever fe D, and fe D,

101

 $f(\mathfrak{L}) = \begin{cases} (-\infty, 1) & \text{when } \mathfrak{L} \cap [A_0 \setminus \{(x, y) \colon x = 0\}] = \emptyset \\ (-\infty, 1] & \text{when } \mathfrak{L} \cap [A_0 \setminus \{(x, y) \colon x = 0\}] \neq \emptyset. \end{cases}$ It is easily seen, that $S_c(f) = \{(x, y) \in I^2 \colon x > 0 \text{ and } y = \frac{1}{4} \sin \frac{1}{x} + \frac{1}{2}\}$, whence $A_0 \setminus \{(x, y) \in I^2 \colon x = 0 \text{ and } y \in (0, \frac{1}{4}) \cup \cup (\frac{3}{4}, 1)\} \subset \overline{S_c(f)}$. Thus, really $f|_{\overline{S_c(f)}}$ is not a continuous function (at the point $(0, \frac{1}{2})$) and it is not a weakly monotone function (for example $f|_{\overline{S_c(f)}} (\frac{1}{4}) = \{(0, \frac{1}{4}), (0, \frac{3}{4})\}$. We shall introduce now some new definitions which are needed to answer the question put in the introduction.

DEFINITION 1. A function $f: X \to Y$ is said to satisfy a condition (D_1) in respect to a set $A \subset X$ (we denote it by: $f \in D_1^A$) if, for any net $\{x_{\sigma}\}_{\sigma \in \Sigma}$ and for any $x_{\sigma} \in A - \lim_{\sigma \in \Sigma} x_{\sigma}$, $f_{|\{x_{\sigma} : \sigma \in \Sigma\} \cup \{x_{\sigma}\}}$ is a closed function at x_{σ} .

DEFINITION 2. A function $f: X \to Y$ is said to satisfy a condition (D_2) in respect to a set $A \subset X$ (denote: $f \in D_2^A$), if for any net $\{x_{\sigma}\}_{\sigma \in \Sigma} \subset A$ such that $A - \operatorname{acp} x_{\sigma} = \emptyset$ and for any arbitrary $B = \overline{B} \subset \overline{\{x_{\sigma}: \sigma \in \Sigma\}}$ the set $f(A \cap B)$ is closed in f(A) (as a subspace of the space Y).

DEFINITION 3. A function f: $X \rightarrow Y$ is said to satisfy a condition (D_3) in respect to a set $A \subset X$ (denote: $f \in D_3^A$) if for any f-agree with A net $\{x_{\sigma}\}_{\sigma \in \Sigma}$ such that $A - acp x_{\sigma} = \emptyset$ and for any closed in $\{x_{\sigma} : \sigma \in \Sigma\}$ set B (as a subspace of the space X), the set f(B) is closed in $f(A \cup \{x_{\sigma} : \sigma \in \Sigma\})$ (as a subspace of the space Y).

of the space Y). For a function f: X \rightarrow Y, we also write $f\in D_i$ if $f\in D_i^X$ (i = = 1, 2, 3).

It is supposed throughout this paper that X is a arcwise connected and locally arcwise connected T_5 -space [1] and f: X $\rightarrow \mathbb{R}$ is a Darboux function. To simplify the notation we shall write $f \in D_j D_j$, whenever $f \in D_j$ and $f \in D_j$.

102

On a K.M. Garg's problem in respect to Darboux functions

THEOREM 2. Let X be σ -coherent space. If $f \in D_1 D_2$, then f is continuous and weakly monotone on $\overline{S_{\sigma}(f)}$.

THEOREM 3. Let $f \in D_3$. A function f is continuous and weakly monotone if and only if $f \in D_1$.

At first we shall prove the following lemma:

LEMMA. A function $f \in D_1$ if and only if f is a continuous function on $\overline{S_2(f)}$.

Proof. Necessity. We have to prove that f is a continuous function on $\overline{S_c(f)}$. Suppose that it is not so. Then there is a point $x_o \in \overline{S_c(f)}$ such that f is discontinuous at x_o . It means that there exists $\varepsilon > 0$ such that

 $f(x_0) \in f(V) \notin (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ for any neighbourhood V of the point x_0 (1)

Now let us denote by $B(x_0)$ a base of the space X at the point x_0 . For each $U \in B(x_0)$ there exist an open set V_U such that $x_0 \in V_U \subset U$ and

for any $y \in V_U$ there exists an arc $L = L(x_0, y)$ such that $L \subset U$ (2)

In face of (1) and (2) we come to conclusion that for any $U \in E(x_0)$ there exists an arc $L \subset U$ such that $f(x_0) \in f(L) \notin \varphi$ ($f(x_0) - \varepsilon$, $f(x_0) + \varepsilon$). Since f is a Darboux function, for every $U \in B(x_0)$ we have

 $(f(x_0) - \varepsilon, f(x_0)] \subset f(U) \text{ or } [f(x_0), f(x_0) + \varepsilon] \subset f(U)$ (3) Let $\Sigma = \{(U, n): U \in B(x_0) \text{ and } n \in \mathbb{N}\}$. Now we define a relation \leq , which direct the set Σ as follow

 $(U, n) \leq (U_1, n_1) \iff U \supset U_1 \text{ and } n \leq n_1.$

The symbol \leq between two natural numbers means a common relation (less or equal). Selecting for each $\sigma = (U, n) \in \Sigma$ an element x_{σ} belonging to $U \cap (f^{-1}((f(x_{\sigma}) - \varepsilon, f(x_{\sigma}) - \frac{n}{n+1}\varepsilon)) \cup f^{-1}((f(x_{\sigma}) + \frac{n}{n+1}\varepsilon, f(x_{\sigma}) + \varepsilon)))$ we define a net $\{x_{\sigma}\}_{\sigma \in \Sigma}$ such that $x_{\sigma} = \lim_{\sigma \in \Sigma} x_{\sigma}$ (it is possible due to (3)). Write:

 $N_1 = \{n \in \mathbb{N} : x_\sigma \in f^{-1}((f(x_\sigma) - \varepsilon, f(x_\sigma) - \frac{n}{n+1}\varepsilon))\},\$

 $N_{2} = \{ n \in \mathbb{N} : x_{\alpha} \in f^{-1}((f(x_{\alpha}) + \frac{n}{n+1}\varepsilon, f(x_{\alpha}) + \varepsilon)) \}.$ Then at least one of these sets is infinite (it may always be assumed that card $N_1 \ge x_0$).

Let $\Sigma_1 = \{(U, n): U \in B(x_0) \text{ and } n \in N_1\}$. Then Σ_1 is cofinal in Σ , therefore $\{x_{\sigma}\}_{\sigma \in \Sigma}$, is a subnet of $\{x_{\sigma}\}_{\sigma \in \Sigma}$, hence $x_{\sigma} =$ $= \lim_{\sigma \in \Sigma_{1}} x_{\sigma}, \text{ moreover } f(x_{\sigma}) - \varepsilon = \lim_{\sigma \in \Sigma_{1}} f(x_{\sigma}) \text{ and } f(x_{\sigma}) - \varepsilon \notin$ σεΣ1

 $\notin L^{*}(f_{| \{x_{\sigma}: \sigma \in \Sigma_{1}\} \cup \{x_{\sigma}\}}, x_{\sigma}), \text{ but it means that } f \notin D_{1}.$ Sufficiency. Let $\{x_{\sigma}\}_{\sigma \in \Sigma}$ be an arbitrary net such that $x_{\sigma} \in \Sigma$ $\in \overline{S_{c}(f)} - \lim_{\sigma \in \Sigma} x_{\sigma}$. Then $f_{\{x_{\sigma} : \sigma \in \Sigma\} \cup \{x_{o}\}}$ is continuous at the point x_, hence

 $\mathbf{L}(\mathbf{f}_{|\{\mathbf{x}_{o}:\sigma\in\Sigma\}\cup\{\mathbf{x}_{o}\}}, \mathbf{x}_{o}) \setminus \{\mathbf{f}(\mathbf{x}_{o})\} = \emptyset \subset \mathbf{L}^{*}(\mathbf{f}_{|\{\mathbf{x}_{o}:\sigma\in\Sigma\}\cup\{\mathbf{x}_{o}\}}, \mathbf{x}_{o}).$ Proof. of Theorems 2 and 3. In face of the above lemma it is sufficient to show that $f_{|S_{-}(f)}$ is weakly monotone (if only X is σ -coherent and $f \in D_1 D_2$ or $f \in D_1 D_3$). First we shall prove that:

(*) if α is a two-sided point of accumulation of the set $Y_{\alpha}(f)$ then $f^{-1}(\alpha) = 0$ $Y_{c}(f)$, then $f^{-1}(\alpha) \cap \overline{S_{c}(f)}$ is a connected set.

Indeed, let $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty} \subset Y_c(f)$ be arbitrary sequences satisfying the conditions $\alpha_n \neq \alpha \neq \beta_n$. Then by the lemma $f^{-1}(\alpha_n)$, $f^{-1}(\beta_n)$ are closed sets in $S_c(f)$ for n = 1, 2, ...,whence they are also closed in X.

Now we shall prove that: Wollot as I doe not conside doing as

(**) $f^{-1}((\alpha_n, +\infty))$, $f^{-1}((-\infty, \alpha_n))$ are open sets in X for n = 1, 2, ... States righting forting own neuvred 2 fodors with

Let $x_0 \in f^{-1}((\alpha_n, +\infty))$. Since $f^{-1}(\alpha_n)$ is a closed set, there exists a neighbourhood V_{X_0} of the point X_0 such that: given any $y \in V_{x_0}$ there exists an arc L = L(x, y) such that $L \cap f^{-1}(\alpha_n) \neq 0$ $\neq \emptyset$. Since f is a Darboux function we have $V_{x_0} \subset f^{-1}((\alpha_{n'} + \infty))$, which leads to the conclusion that $f^{-1}((\alpha_{n}, +\infty))$ is an open set.

On a K.M. Garg's problem in respect to Darboux functions

Arguing similarly as above we can state that $f^{-1}((-\infty, \alpha_n))$ is also an open set. In face of (**) we may conclude that

 $f^{-1}((-\infty, \alpha_n]), f^{-1}([\alpha_n, +\infty)) \text{ are closed sets.}$ Moreover $f^{-1}((-\infty, \alpha_n]) \cup f^{-1}([\alpha_n, +\infty)) = X$ is closed, arcwise connected set (n = 1, 2, ...) and $f^{-1}((-\infty, \alpha_n]) \cap f^{-1}([\alpha_{n'} + \infty)) = f^{-1}(\alpha_n)$ is a closed connected set (n = 1, 2, ...). Similar argumentation may be applied for sets $f^{-1}((-\infty, \beta_n))$ and $f^{-1}([\beta, +\infty))$. Using a method of the proof given by K. M. G arg in the paper [3] (Lemma 32, p. 23) it is possible to show that $f^{-1}([\alpha_n, \beta_n])$ is a connected set (for n = 1, 2, ...).

Suppose that the assumptions of Theorem 2 are fulfilled (X is σ -coherent) then $f^{-1}(\alpha) = \bigcap_{n=1}^{\infty} f^{-1}([\alpha_n, \beta_n])$ is a connected set in X, thus $\alpha \in Y_{\alpha}(f)$ which evidently yields to (*).

Therefore let us suppose that the assumptions of Theorem 3 are satisfied and assume that there exists $\alpha \in f(\overline{S_c}(f))$ such that $f\frac{-1}{|\overline{S_c}(f)}(\alpha)$ is a nonempty, disconnected set. Then $f^{-1}(\alpha)$ is also a disconnected set, so $f^{-1}(\alpha) = P_1 \cup P_2$, where P_1 , P_2 are nonempty separated sets in X. Since X is a T₅-space (see [1] Theorem 2.17, p. 97), there exist disjoint open sets U and V such that $P_1 \subset U$ and $P_2 \subset V$. For $n = 1, 2, \ldots$ let us choose $z_n \in$ $\in f^{-1}([\alpha_n, \beta_n]) \setminus (U \cup V)$. The element z_n exists (for n = 1, 2, ...) because $f^{-1}([\alpha_n, \beta_n])$ is a connected set such that $U \cap$ $\cap f^{-1}([\alpha_n, \beta_n]) \neq \emptyset \neq V \cap f^{-1}([\alpha_n, \beta_n])$.

Then $f(z_n) \neq \alpha$, thus $\{z_n\}_{n=1}^{\infty}$ is f-agree with $\overline{S_c(f)}$ and obviously $z_n \notin f^{-1}(\alpha)$ (n = 1, 2, ...). Now there are two possible cases:

cases: 1. There exists an element x_* belonging to $\overline{S_c(f)} - \underset{n=1,2...}{\operatorname{acp}} z_n$. Then $x_* \notin f^{-1}(\alpha)$. Let $\{s_t\}_{t \in T}$ be a sequence finer than $\{z_n\}_{n=1}^{\infty}$ and $\{s_t\}_{t \in T}$ converge to x_* . It follows that $\lim_{t \in T} f(s_t) = \alpha$ and $\underset{t \in T}{\operatorname{and}} f(s_t) \neq \alpha$. Therefore: $\alpha \in L(f|\{s_t: t\in T\} \cup \{x_*\}, x_*) \setminus (\{f(x_*)\} \cup \{f(x_*)\})$

 $U L^{*}(f|\{s_t: t\in T\} \cup \{x_*\}, x_*)).$

But it is in contradiction with the fact that $f \in D_1$.

2. $S_{c}(f) - acp z_{n} = \emptyset$. Let us set $B = \{z_{n}: n = 1, 2, ...\}$. Then $\alpha \in cl_{f}(S_{c}(f) \cup \{z_{n}: n = 1, 2, ...\})$ $(f(B)) \setminus f(B)$, which follows from the fact that $f \in D_{3}$.

The obtained contradictions have proved finally, that α is a two-sided accumulation point of a set $Y_C(f)$, then $f \frac{1}{|S_C(f)|}(\alpha)$ is a connected set.

Let us suppose now that α is not a two-sided accumulation point of the set $Y_{C}(f)$, but $f \frac{1}{|S_{C}(f)|}(\alpha)$ is nonempty disconnected set.

set. Then because of the continuity of $f_{|\overline{S_{c}(f)}}$, we have $f_{|\overline{S_{c}(f)}}(\alpha)$ $= \cdot \hat{P}_{1} \cup \hat{P}_{2}$ where \hat{P}_{1} , \hat{P}_{2} are closed, disjoint sets. Let U_{1} , U_{2} be open, disjoint sets such that $\hat{P}_{1} \subset U_{1}$ and $\hat{P}_{2} \subset U_{2}$ and let $p \in \hat{P}_{1'}$ $q \in \hat{P}_{2}$. We can notice that α is one-sided accumulation point of $Y_{c}(f)$. It results from facts: $p \in \overline{S_{c}(f)} \setminus S_{c}(f)$, α is a not two-sided accumulation point of $Y_{c}(f)$, the function $f_{|\overline{S_{c}(f)}|}$ is continuous.

Suppose at the moment that there exist a sequence $\{\alpha_n\}_{n=1}^{\infty} \subset Y_c(f)$ such that $\alpha_n \nearrow \alpha$ and there is $\varepsilon > 0$ such that $[\alpha, \alpha + \varepsilon) \cap Y_c(f) = \emptyset$.

Let $\beta(p)$, $\beta(q)$ denote basis of a space X at the points p and q consisting of sets contained in U_1 and U_2 , respectively. Then

(***) $Y_{c}(f) \cap f(U_{o}) \cap f(V_{o}) \cap (\alpha - \frac{1}{n}, \alpha] \neq \emptyset$ for every $n \in \mathbb{N}$ and arbitrary $U_{o} \in \beta(p)$, $V_{o} \in \beta(q)$.

Write $\Delta = \{(U, V, n): U \in \beta(p) \text{ and } V \in \beta(q) \text{ and } n \in \mathbb{N}\}$. Let \exists be a relation directing the set Δ in the following way:

Thus for arbitrary $\delta \in \Delta$ there exists $\omega_{\delta} \in f^{-1}(\gamma_{\delta})$ such that $\omega_{\delta} \notin U_{1} \cup U_{2}$. Now let us notice now that $\overline{S_{c}(f)} - \operatorname{acp} \omega_{\delta} = \emptyset$. Indeed, if it is not true, there is $\omega_{0} \in \overline{S_{c}(f)} - \operatorname{acp} \omega_{\delta}$. Then, because of the continuity $f_{|\overline{S_{c}(f)}}$ we have $\omega_{0} \in f^{-1}(\alpha)$. But it leads to a false conclusion that $(U_{1} \cup U_{1}) \cap \{\omega_{\delta}: \delta \in \Delta\} \neq \emptyset$. Moreover, we may deduce that $\{\omega_{\delta}\}_{\delta \in \Delta}$ is f-agree with $\overline{S_{c}(f)}$.

Write $B_1 = \overline{\{\omega_{\delta} : \delta \in \Delta\}}$ and $B_2 = \{\omega_{\delta} : \delta \in \Delta\}$. Let us notice that $\alpha \in cl_{f}(\overline{S_c(f)})(f(B_2)) \setminus f(B_2)$ and $\alpha \in cl_{f}(\overline{S_c(f)})(f(B_1)) \setminus f(B_1)$. This evidently shows that $f \notin D_2$ and $f \notin D_3$ is contrary to the assumptions of Theorems 2 and 3.

The contradiction obtained have ended a proof of the Theorems 2 and 3.

REFERENCES

- [1] Engelking R., General topology, Warszawa 1977.
- [2] Garg K. M., Monotonicity, continuity and levels of Darboux functions, Coll. Math., 28 (1973), 91-103.
- [3] Garg K. M., Properties of connected functions in terms of their levels, Fund. Math., 97 (1977), 17-36.
 - [4] Grande Z., Les ensembles de nivereau et la monotonic d'une fonction, Fund. Math., (1979), 9-12.
 - [5] Pawlak H., Pawlak R., On some properties of closed functions in terms of their levels, Commen. Math., 26 (1986) 81-87.
 - [6] Pawlak R. J., On monotonicity of connected functions defined on the locally connected continua, Acta Univ. Lodz., 34 (1980), 85-99.
 - [7] Pawlak R. J., On the continuity and monotonicity of restrictions of connected functions, Fund. Math., 114 (1981), 91-107.

[8] Pawlak R. J., Przekształcenia Darboux, Acta Univ. Lodz. (1985).
[9] Pawlak R. J., On local characterization of closed functions and functions with closed graphs, Dem. Math., 19/1 (1986), 181-188.

Institute of Mathematics University of Łódź

Ryszard J. Pawlak, Andrzej Rychlewicz

O PROBLEMIE GARGA W ODNIESIENIU DO FUNKCJI DARBOUX

W prezentowanym artykule rozważany jest problem 3.11 z pracy [3], postawiony przez K. M. Garga, przy czym założenie, że rozpatrywane funkcje są spójne zastąpione zostało przypuszczeniem, że posiadają one własność Darboux.

[3] Goorg K. H., Prepartian of connected transforms in "brind" of "their q elements from Neels, 95:14978, 107-3818-34 attants, 2016, 701-8, 703 (4)(19)4 sound to S., "Distance stated Secretoreurs and to Manifestation to Sec." (3)(19)7 data from Neels, (1970), 9-17.

(S) P. A. V. A. M. J. A. V. M. A. V. M. Margarina of singation of singad direct tions in terms of their livings. [Ample, 14 (1986) 11-57.

(6) A statistic devices and the second se

of Milmonted Surveysings, June, Math., 116 (1982), 91-1