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We present here a brief survey of some recent results on Walsh 
equiconvergence and its extension to equisummability by R. Brück.
We also show how the results of Brück on equisummability can be 
further extended for a general class of linear operators on functions 
in A r . A simple case of (0,2) interpolation is given as an example.

1. I n t r o d u c t i o n

The theorem of Walsh which is the source for the type of problems 
to be considered here was proved about 60 years ago and is very 
simple to prove and easy to state. In its simplest form the theorem 
of Walsh deals with functions of class A r  (R  > 1) which are analytic 
in a disc D r  — {z : \z\ < R}  but not in D r . The theorem asserts 
that

lim A n{z', f )  =  0 in the disc D r 211—* OO

where A n(z ; /)  is the difference between the Lagrange interpolant to 
/  in the n th roots of unity and the Taylor polynomial of degree n — 1 
for /  about the origin. It is known that both the Lagrange interpolant



L n- i ( f ' , z )  and the Taylor section S „ _ i(/ ;z )  of /  converge to /  in 
the disc D r , so it is surprising to see that the difference tends to zero 
in a larger region.

A straight forward extension of this theorem is given by

T h e o r e m  1 . Let f ( z ) =  € A r . I f for any integer I > 1 ,
we set the difference

(1) A , z)  :=  L n-xU \ z ) ~  Q n -i,i( /î *)

where
1-1 n - 1

Q n  — l , l ( f ) Z ) ^  ^ ^   ̂a k + jn  Z , 
j = 0  fc=0

then

(2 ) lim A =  0 for \z\ < B l+I.n—+oo 1 1

The convergence in (2) is uniform and geometric in any compact 
subset of the disc D Ri +i . Moreover the result is best possible in the 
sense that for any point z0 with \z0\ =  R 1+l, there is a function 
f (z )  G A r  for which (2) fails when z =  z0.

Many extensions of this result have been given and analogous re-
sult have been obtained for Hermite and lacunary interpolation. Ex-
tensions of this theorem for meromorphic functions with v  poles have 
been given [3]. Here M r ( v ) denotes the class of functions F(z)  which 
have the representation f (z) /B„(z) ,  where f ( z ) € A« and B v(z)  is 
a monic polynomial of degree v  with exactly u zeros in D r . Let 
P(z) /Q ( z) be a (n, u) rational function which interpolates F(z)  in 
the n +  v  +  1 roots of unity. Let R (z ) /S ( z ) be the (n, i/) Hermite- 
Padé interpolant to F (z ) at the origin.

We suppose that B„(z) has no zero at the origin and on the unit 
circle. The extension of Walsh theorem for function in M r (u ) states 
that if

( 3 )  -  f j f j ,  t h e n

(4) lim A Bi„ ( / ; z) =0 for z £ D R* \ { z j ) i,
n —>oo



where are ihe poles of F(z).  Again, the convergence is
uniform and geometric in the region Dfti with the poles deleted.

A cursory examination of these results leads one to ask if the re-
gion of convergence can be extended by using a suitable methods of 
summability. This problem was raised by R. Briick and is resolved 
by him in his dissertation [1]. He applied methods of summability to 
the theorem of Walsh and some of its extensions and has determined 
the regions where the operators are summable by a suitable process 
of summability. He calls it the region of equisummability as com-
pared to the region of equiconvergence. Briick shows that the region 
of equiconvergence is always contained in the region of equisumma-
bility.

In 1993, we considered a general class of linear operators on func-
tions in Aft  and under fairly general conditions determined the Walsh 
radius of equiconvergence and Walsh region of equisummability. Here 
we discuss briefly the class of (0 , 2 ) interpolation on the n th roots of 
unity and show how to find the region of equiconvergence in the case 
of (0, rri], . . . ,  m q) interpolation on the n th roots unity. The regions of 
equiconvergence in this general case is already known, but the region 
of equisummability is not known. The case of lacunary interpolation 
was not treated by Briick.

We shall consider summability methods of the following form. Let 
X  C K, x* £ R be an accumulation point of X  and let {an(a:)} be a 
sequence of functions on X .  If (sn) is a sequence of complex numbers, 
we put formally

2.  S u m m a b i l i t y  m e t h o d s

oo

n =0

We say that the sequence (,sn) is summable A  to the value s £ C 
and we write A  — l im « -^  sn =  s, if the above sum converges for all 
x £ X  and a (x) —> s as x —► x*. We make the following assumptions



on the summability method A.  For each x £ X , let the power se-
ries <p(x,z) =  an(x)zn be an entire function. Furthermore, let 
GA C C b e a  region such that the unit disc D C Ga , 1 $ G a , Ga  
being star-shaped and

lim <p(x,z) =  0 Vz £ Ga ,
x —>x*

the convergence being uniform on compact (closed and bounded) sub-
sets of Ga , i-e. in particular A  — limn-^ooz n = 0 , V-z £ Ga - Finally, 
we require that limx-**. ip(x, 1) =  1 .

Let S  =  S f  be the Mittag Leffler star domain of function /  £ 
An- Let G =  Cm be the summability domain associated with the 
summability method (a„(x)). We shall also use the notation that if 
<pu(z) =  z v for v £ N, then v?“ 1 means the preimage.

3 .  R e p r e s e n t a t i o n  o f  t h e  k e r n e l  K n(z, t)

In the case of (0 , 2 ) interpolation on the n th roots of unity the 
difference of the interpolant and the Taylor section of degree 2n — 1 
can be written in the form of an integral. Thus we get

I n ( z ; f ) - S 2n( z J )  = ~  J  f ( t ) K n(z,t )dt,  \z\ >  |i| =  r 0 >  1
|<| = r0

where

K„(z, t)  = -  £ („4)(M )

and



It is easy to see that

( la )  ( f - z ) ( I < , ‘>(2 , i ) +  £«>(* ,* ))

— — V " ^ ~  ̂ " V '' ^  f z \ 2n ^  k +  1
t kn \ t )  t kn v t )  t kn *:=0 k=0 k= 0

In order to put L ^ \ z , t )  in a suitable form, we denote by 7  any 
rectifiable Jordan curve beginning at 0 and ending at 1. Then, since 
the functions we are dealing with are entire, we have

J = o  J '  j = o

( ) - J  ( fu J -  1) i u -

We now assume that 1 < r 0 =  |i| < \z\, | J | 1/2 <  rj <  1 and that
6 is a number satisfying 0 < 6 < m in(l, i  -  1). Then there is a 
rectifiable Jordan curve 7 2it(0) beginning at 0 and ending at 1 with 
the following properties:

(i) For each u G 7 *,<(#), we have |u| < 1.
(ü) L(jz,t(0))  < 1 +  27r(l — 7 7 ) < 2-7T +  1 where L(7 ) denotes the 

length of 7 .
(iii) For each u 6  7 *,«(#), | f u 2 — l |  >  0'2.
(iv) For each u G 7*,«(0), | argu | <  7T0 .

(For details we refer to [4].) Choose 7  to be 7 *,t(0) in (2 ) and we 
can write

= ro



where S n \ z , t )  are infinite series in powers of z / t ,  while Sn \ t . )  is a 
power series in 1/ i ,  as given below:

Thus

(3) 4 J>(2 ,/)  =  +  B H \ f )
}=1

where

4 . % ; / )  =  ~  J  ¿ =  1,2,3
|<|=r0

and B n \ f ) is similarly defined by the kernel S n \ t ) .

4 .  W a l s h  r a d i u s  o f  e q u i c o n v e r g e n c e

From (1) and (la), we see that

(t -  * ) ( 4 ‘W )  + L < ? \z J )  -  L ^ ( z J ) )

p r y '  —  -  ( ~ Y n v j k + 1
^  t kn +  V t )  ^  t kn \ t )  ^  t kn k= 2 k= 1 fc=l
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From these we can see that the Walsh radius determined by these is

JR12 (r) =  r 3/2.

The Walsh radius from / )  depends upon its components in (3)
and it can be seen that

R-3(r) :=  min ( inf (r fc+1r 2) ly/2 , inf (r fc+1 • r ) , inf ( r fc+2 • r ) ^  .
\k > o v ’  k>o v ’  fc>0 v ’ )

Since the function Rz(r)  is strictly increasing and continuous for r > 0 
and R.z(r) > r when r > 1, we choose r\ such that R, <  r\ < 
Rz(r). Since (r) is strictly increasing to R$(R)  as r f 72, there 
exists an r0, 1 < r 0 < R,  such that n  < R(r0). In particular, 
we have 1 < 7’o < R  < n  < ^ ( ro ) .  We choose now |i| =  i'o 
and \z\ =  n .  Then |-|| =  =  ?/2 < 1. We shall assume that

0 < 0 < min ^1, • Then from the definition of i?3(r), we

get for k = 0 , 1 , . . .  and 0 <  |tt| <  1,

>
1

R:i(r0)
2 „fc+l „2 r 0 '

>

i.e. __L?1...... >
(«3(r0))4 - ^ r - ( f )  ,

Therefore we have

( 4 , ’W ) )  <  i - 2wo (m aa :|/(< )|

t k+

2

(2?r +  1) ^ 2n

<  C\n

£
k= 0

n

fc +  2 1

Rz(rQ) j  \ R z ( r 0)

ro+1 \R-s(r0) 

r \
C2

n —1

r i
i i 3 ( r 0 )



A similar reasoning gives

K M s ‘ ' ( ( s s > ) ' )

and

\ B n )(*t f)\  <  ci - + 0  as n —>00 .

This proves that
i? 3( r )  =  r 3/ 2.

5. R e g i o n  o f  e q u i s u m m a b i l i t y

If maps z into z", then (f~l is the preimage. With this conven-
tion, we define the following five sets Ai (i =  1 , . . . ,  5) where

n  r K v c ^ o o ,
jfc >0 C<£S

:=  n  n  • cfc+iGA),
fc>0 cgS

:= n  n  ^>2 i (c2 ■ ck+iGA),
k>0 cgS

A 4 := p |  p |  ^ ' ( c - c ^ ' G a ),
k>0 cgS

5

a * :=  n  n  ^ h c - c ^ g a ), e  :=  n  ¿¡-
k>0 cgS >=1

It can be shown in the case of (0,2) interpolation on the n roots of 
unity the region of equisummability is given by S.



For the details of the proof we refer the reader to [4] where a 
diagram is given which shows the region of equisummability when 
f (z )  lists only one singularity at 2 .

It will be interesting to see how the above method can be modified 
to deal with cases of (0,3) or (0, m)  interpolation. We also wonder 
if in the case of the results in [3] for functions E M r (u ), a region of 
equisummability can be obtained.
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A. Jakimouski i A. Sharma

R EFLEK SJE N A D  R Ó W N O -ZBIEŻN O ŚC IĄ  

I R Ó W N O -SU M O W A LNO ŚC IĄ  W  SEN SIE W ALSH ’A

W tej pracy podajemy krótki przegląd najnowszych wyników doty-
czący eh iowno-zbieżności w sensie Walsh^a i ich rozszerzenia do rów- 
no-sumowalności Briick’a. Pokazujemy również jak wyniki Briick’a 
dotyczące rowno-sumowalnosci można również rozszerzyć do ogólnej



klasy operatorów  liniowych na funkcjach z A r . P rosty  przypadek 
(0 ,2) interpolacji jest podany jako przykład.
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