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ON THE COEFFICIENTS 
OF THE UNIVALENT FUNCTIONS 
OF THE CLASSES N x AND N 2

In this paper we solve certain problems for the coefficients of
N. , classes of Nevanlinna analytic functions.*■ t

1. Let N.̂ denote the class of Nevanlinna analytic functions
00 Q

(1) f(z) = f  1*44 = £ -jf, Z i {z I -1 S z 2 1},
-1 z n-1 zn

where y(t) is a probability measure on [-1 , 1] and
1 n 1(2 ) c “ S' t dp(t), n = 1 , 2, ... (c, = 1 ).

n -1

Let N2 denote the class of associated analytic functions

(3) *(z) = f(|) = S  = 2: c znz _! 1 n=1 n
in the z-plane with the cuts -“> £ z £ -1 and 1 £ z £ +°°. Certain
properties of the coefficients (2 ) were examined in [1], where it 
was noted that the functions (1 ) and (3) are univalent for 
|z| > 1  and |z| < 1, respectively. Now we shall continue the
study of the coefficients (2). Further, we shall indicate the 
class N2 only.

THEOREM 1. For each arbitrary fixed positive integer k 2 1, 
we have the sharp inequalities:

U )  °2k - 2m " 2*"1 -1 t5k“1 * c2m+1 * C2k + 2 '



m = k ,  k + 1 ,  k + 2 ......t, = (2k^_l)l/<2">-2k«l.

(ii) c - ——_-_.2k-l < c < c + ~ 2k .2k-l
[11) 2k 2m - 1 2 * 2m * c2k + 2m - 1 t 2 '

m = k + l, k + 2, k + 3...... t, = ( l * - ^ ) 1' !” '2k',

(iii) c2k+1 - t3 £ c2m+1 £ c2k+1,

m = k + 1, k + 2, k + 3, t3 = (£)k/(m"k);

(iv) c2k^  — 2 £ C|2̂  £ c2k+l' m = k + 1 , k + 2 , k + 3, ...

The equalities hold in (i)-(iv) only for the following extremal 
functions:

(a) on the left-hand side of (i), for the function

4>(z) = = Z  t" " 1 zn e N,,
1 zlz n-1 1 £

and on the right-hand side of (i), for the function

(4) <Mz) = = Z (-l)n_1 zn e N2;
n-1

(b) on the left-hand side of (ii), for the function

<Mz) = -r-l—  = T. t^ " 1 zn e N,,
2Z n-1 2 2

and on the right-hand side of (ii), for the function

<Mz) = Tj-f—  = £  (-1 )n_1 t" " 1 zn e N,;
2 n-1 2 2

(c) on the left-hand side of (iii), for the functions

*(z) = T~rl..+ i1 \ A)Z1 + t^z 1 - t^z
00

= £ ((-l)n_1 At*?-1 + (1 - A)t^_1 )zn e N_,
n-1 q * £

0 £ A £ 1, t4 = t31/2k, 

and on the right-hand side of (iii), for the functions



A. z A,Z
*(z) = r r r  + (1 - Ai - V z + r h

00

= Z + X ( (-1 )n-1 A. + A,) Z11 6 N-, n-2 l i i

Ax 2 2 0 , 0 £ Aj_ + A2 £ 1 ;

(d) on the left-hand side of (iv), for the function (4 ), and 
on the right-hand side of (iv), for the functions

00

(5) <Mz) = (l-A)z + —  = z + 2 Az11 e N,, 0 £ A £ 1.
1  '  z  n - 2  2

P r o o f .  The cases (i)-(iv) are proved analogously. For 
example, we shall prove the case (iii). By aid of (2) we obtain 
the identity

(6) c2m+l ' c2k+l = {x Qitidmt)

for a fixed integer k i 1 and m = k + 1 , k + 2 , k + 3 , ..., where

(7) G(t) = t2m - t2k, -1 £ t £ 1.
From (7) it follows that

(8 ) - t * G( t) £ 0 , -1 £ t £ 1 ,m j

where the equalities on the left-hand side and on the right-hand 
side hold only for t = ±t4 and t = 0, ±1, respectively. (The 
numbers t3 and t4 are indicated in (iii) and (c), respec
tively.) Thus from (8 ) and (6 ) we obtain the sharp inequalities

(9) - m ^ k t3 £ c2m+1 - c2k+1 £ 0 ,

m = k + 1 , k + 2 ,  k + 3 ,  ...,
where the equality holds on the left-hand side if and only if 
P(t) is a step function with two jumps A1 2 > 0 with sum 1 at 
the points t = +t4; the equality holds on the right-hand side if 
and only if y(t) is a step function with three jumps A1 , , £ 01 , Z f J
with sum 1 at the points t = -1 , t = 0 and t = 1 , respectively. 
Therefore, from (9) and the representation formula (3 ) we obtain 
the assertions in (iii) and (c), respectively.



Vl'

2. Further, for arbitrary x,, ... we shall use the or
dinary Bell polynomials Dnk generated by the formal expansions 
(see Comtet [2], p. 136, the Remark)

(1 0 ) (£ xmzm )k i £  Dnkzn, k = 1 , 2 , ....
m“l n-k

The polynomials Dnk = •••, x n .k+1 ) » for 1 S k S n, n i 1,
have the explicit form (see [3], p. 83)

k M x V 1... ( x . + 1 )V n ‘k+1
(11) Dnk(xl' xn-k+l) H £  ~ 7  ~ J '

V  '•* n-k+1
where the sum is taken over all nonnegative integers
vn-k+l satisfyi n 9
(1 2 ) \>1 + v2 + ... + vn _k + 1 = k,

V 1 + 2 v 2 + ••• + *n " k + ^ vn-k+l = n' 
and they are easily computed if one uses the recurrence relation 
(see [3]» P* 83)

n-k+1
(13) D . = £ x D „ . .,p=l v n-p,k-l'

1 S k £ n, n i l ,  D = 0 , D = 1 .no oo
The first and the last polynomials are

(14) Dnl = xn' Dnn = xl' 1*
For 1 2 n i 5 from (13) and (14) we obtain the following short 
table (see in [2], p. 309, a longer table for 1 S n S 10)



Now let

(16) z = 4<(w) = X b wn, b. = 1 ,i n n-1

denote the inverse of any function w = <Mz), determined by (3). 
The largest common region of convergence of all series (16) is 
the disc |w| < 1/2 (see [4], p. 345, Corollary 1).

THEOREM 2. In terms of the coefficients cn in (3), the coef
ficients bn in (16) satisfy the recurrence relation

d7) bn = - E  bk Dnk(clf cn_k+1),
k*l

n ~ 2 > 3, •••f b^ - - 1 ,

where Dnk(ci' •••* cn-k+l* are determined bY (1 0 )—(1 2 ).
P r o o f .  From (16), (3) and (10) we obtain the identity

oo CO

(18) z = X  bk(£ cmzm )k 
k=l m=l

00 00

= .5? bk ^ n k ^ l '  cn-k+l^k*l n=k

= ^ zTl 5 , bkDnktcl' *'•' cn-k+l ̂ ' n*l k**l
From (18) it follows that

3kDnk(cl' cn-k+l‘
n

(19) 5Z b^D^^(c^r * * *i cn_^+ )̂ — 0 , n à 2 . 
k=l

Thus from (19) and the second relation in (14) we obtain (17), 
having in mind that b^ = c^ = 1 .

In particular, for n = 2, 3, 4, 5, ..., from (17) and (15) we 
obtain the first few coefficients
(2 0 ) IICN

A

“c 2 /

IIm-Q

-°3 + 2c2,

b4 = -C4 + 5c2c3 - 5c\
b 5 = ~C5 + 6c~c, 2 4 + 3c2



THEOREM 3. The coefficients b2 and satisfy the sharp ine
qualities
(21) -1 S bn S 1, n = 2, 3,

where the equalities hold only for the following extremal func
tions :

(a) if n = 2 , on the left-hand side of (2 1 ), for the function

(2 2 ) Y(w) = j-X w = T. (-l)n_1wn,
n“ l

inverse of the function (5) with A = 1, and on the right-hand 
side of (2 1 ), for the function

(23) T(w) = T-^—  = £  wn,1 - w , n*l
inverse of the function (4);

(b) if n = 3, on the left-hand side of (21), for the function

(24) 'l'(w) = 2w ("I + /l+4w2) = T. |2j22n-1w2n-1, 

inverse of the function
00

(25) *(z) = ---2__ = 2  z2n-l £
1 - Z n=l

and on the right-hand side of (2 1 ), for the functions (2 2 ) and
(23), inverse of the functions (5) with A = 1 and (4), respectively.

P r o o f .  If n = 2, the sharp inequalities (21) and the 
extremal functions (22) and (23) follow from the first equation 
in (20) and Theorem 1 in ( [lj, p. 152).

If n = 3, from (2) and the second equation in (20) we obtain 
the sharp inequality

1 ■) 1 ■>(26) 1 + b, = S  (1 - t )dy(t) + 2 (f  tdy(t)P £ 0 ,
-1 -1

where the equality holds if and only if p(t) is a step function 
with two jumps 1/2 and 1/2 at the points t = + 1 , respectively. 
Therefore, from (26) and the representation formula (3) we obtain 
the first sharp inequality in (2 1 ) (for n = 3 ) and the extremal 
function (25), the inverse of which is the function (24).



Further, with the help of the Cauchy inequality and (2) we 
obtain that

(27) c2 £ }  l2dy(t). S  t2dy(t) = c,.
£ -1 -1 J

Now from (27), the second equation in (20) and Theorem 1 in ( [1], 
p. 152), we obtain the sharp inequalities
(28) b3 £ c3 £ 1

with the unique extremal functions (22) and (23), inverse of the 
functions (5) with A = 1 and (4), respectively. Therefore, from
(28) we get the second sharp inequality in (21) (for n = 3) and 
the corresponding extremal functions (22) and (23).

This completes the proof of Theorem 3.
REMARK. Let us note that the coefficients bn in (16) cannot 

be uniformly bounded over N2, since if they were it would be pos
sible to replace the convergence disc |w| < 1/2 by a larger one, 
namely |w| < 1. Hence, the inequality |bn| £ 1 for all n = 
= 4, 5, ... is impossible. The problem of finding -the sharp 
lower and upper bounds of bn for n = 4, 5, ... is open.
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Paweł G. Todorow 

O WSPÓŁCZYNNIKACH FUNKCJI JEDNOLISTNYCH W KLASIE Nj i N2

W pracy rozwiązuje się istotne problemy dotyczące współczynników funkcji 
analitycznych w klasach Nj i N.,.


