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ON AN ESTIMATE
OF SOME FUNCTIONAL, IN THE CLASS
OF ODD BOUNDED UNIVALENT FUNCTIONS

Let us denote by S(M), M > 1, the family of functions of the form
F(z) * z + A%z2 + _. -
univalent and holomorphic in the disc Em {z: |z] < 1} and satis-

fying in it the condition IF@) | <M, M > 1. Denote by S"2~ (W)

the class of odd univalent functions of the form

satisfying in E the condition [H®@| < /S', M > 1.
Of course, for each function Je S(M), the function H(2)
- / F(z2) belongs to S~2n (/if), and vice versa.

In the paper, it is proved that the following theorem takes place.

THEOREM. If H is any function of the class S~ (/ID, then the

following estimates

@ -2+ [A - -)]2

when 1 <M £ 6,

[c3]2 + |cBl2 < ) ) 2y
[(v0 + De ° - ,\’I]Z + -A[(3Vc2) + 2\/.0 + De

when M > 6

hold, where Vg e (0, log M) is the root of the equation

2[Cv + De"V -  + [BV - De"Vv -J]



e [(B3™M+2v + De"2y —-£Vv + DeV + —~+1)-o0.
M M2

For each M > 1, there exist functions of the class (S for

which the equality sign in the above estimate takes place.

1. Let us denote by S the family of functions of the form
F(z) =z + Aazz -;A,zs + ...+ Aﬁzn + ...,
univalent and holomorphic in the disc E={z: )z] < 1}
Let S(%)‘ stand for the class of odd univalent functions having

in E the expansion

(€)) H(z) = z + C3z3 + Cs2z5 + ... + C2n+1iz2n+1 + __.

/0)

It is known that H e s* if and only 1if there exists a function
F e S such that

() HZ) = /1 (z2%), z e E.

Let S(M), M > 1, be a subclass of S of functions satisfying
in the disc E the condition |F(2)] < M. Denote by SA""t/M) the
class of univalent functions of form (1), bounded by £, that Iis,
H@)I < E, z e E. OF course, for any function F e S(M), the
function H defined by relationship (2) belongs to the class

5'12)(ﬁE), and vice versa.
Making use of this relationship, we get

(©) C3 = 2k2" C5 = 2(A3 7 4A2*"
From the well-known estimate of the modulus of the coefficient

Az in the class S(M) ([3]) one knows that

@ IC31S 1 -1, M > 1,

with the eguality in (4 holding only for the Pick function w =
= P(z, M), PO, M) = 0, given by the eguation

(®) V= —————— 5— z 6 E, lel = 1.
M+ ewp a + e)
2
One also knows the estimate of the functional A3 - aA21, for
any real a, in the class S(M) ([1j, [1]); in the case a = j, thee

maximum of this functional is not attained for the Pick function.



The aim of our paper is to determine the maximum of the func-
tional

) 7(H) = |C3 ]2 + [C5]2
in the classes S~A*(vf) for M > 1.

In the full class S‘(Z), functional () was estimated by M. S.
Robertson 4 -

In paper [5] we obtained a partial result, namely, an estimate
of the maximum of the functional 7(H) 1in the classes S*"i/M) for
M 2 3. The method applied there brought about difficulties in the
investigation of this functional for the vremaining M, that is.
Me (@, 3)-

In the present paper we obtain a final result, i.e. an esti-
mate of functional (6) from above for all M > 1; of course, for
M 2 3, the result is the same as that in [5]-

In the proof, use is made again of some general lemmas proved
in [1], special corollaries following from them and the properties
of the functional considered itself. The basic modification of the
procedure from [5], arisen, among other things, after many dis-
cussions with Z. J. Jakubowski, consists mainly in a
skilful use of the above-mentioned lemmas and other estimates of
some well-known functionals. On account of the method applied,
our reasoning 1is carried out for all M > 1; therefore, unfortu-
nately, It turns out to be indispensable to repeat some fragments
of paper [5]-

2. Note that (3) and the properties of the classes s
imply that the determination of the maximum of functional () is
equivalent to the determination of the maximum of the functional

D G(F) = A2z + [Re |(As - \h\)]2, Fe SQM)., M > 1.

Evidently, for the purpose, it is sufficient to determine the
upper bound of the functional G(F) in the subclass S*(M) of S(M)
of functions of the form (cf. [2])

F(z) = lim etf(z, ©), m = log M,
tm

where f(z, t) is a holomorphic function of the variable z in the
disc E, If(z, t)] <1 for ze E, FO, ) = 0 and A0, © > 0O,

and f(z, ©) is, for o £ t 2 m, a solution of the Lowner equation



If - f1 + kf
3t 1 - kF*

satisfying the initial condition f(z, 0) = z. The function Kk =
= k(v), |[k(t)|] = 1, 1is any function continuous 1In the interval

<o , m> except a Finite number of points of discontinuity of the
first kind.

Since the coefficients A2 and of functions of the class
S*(M) are expressed by the formulae ([2], [1D:

Az = -2/ “tk(e)di,
o
n o« « m a

A3z = -2/e" k ()dx + 4(_Te-Tk(i)dT), m = log M,
0 o

therefore it follows from (7) that we ought to determine the maxi-
mum of the expression

G) G(F) = (Se “coso(t)di)® + (Fe Tsin 0(T)dt#
(0] (0]

+

é{3(§/e'ﬁ'cos e(T)dt)Oz - 3(\]A~e~T sin O(T)dtlg
o] o]

4 /e"2x cos2 0(T)dT + 1 - e~2m}2
o

where 6 () = arg k(X), 6 e <o, 2v>, over all possible func-
tions k(t) satisfying the assumptions of the Lowner theorem.

In the further part of the paper, we shall make use of the
lemmas from [1], mentioned of in the introduction.

LEMMA A. If: 1° X is any real function of a real variable t,
defined and continuous in the interval <o, m> except a Finite

number of points of discontinuity of the first kind, 2° [ X(®)] S
Se~T for te <0, m> and 3°

(A.1) jr X2 (t)dx £ me'"2m,
o
then

(A2 1Ijr X(t)dTy2 S m(me'"2m - ve“2v)
0

where v, o £v £m, is the root of the equation



(A3 S A2 (1)AT = me'™2m - ve"2v.

For eatc:)h v e <0, m>, there exists a constant function X(t) = c
such that in (A. 2) the equality holds. Then the relation me2 =
=me 2m - ve 2u should take place.

LEMMA B. If a function X satisfies assumptions 1° and 2°
of Lemma A and the condition

(B-1) S X2 ()dx 2 me-2m,
o
then
m
(B.2) IS X()dx] S (v + De"v - e-m
o]
where v, o £ v £m, is the root of the equation
B-3) JT Xe(®dr = (v + |)e“2v - ~a~2m.
o
Estimate (B.2) is sharp for every v and the equality sign occurs
only if X() =gt () where
e-v for o0S+t £v,
X (@) =
e-1 for v St Sm.

Put Az = -2(x + iy), that is.

m m
x = S X..(T)dT, y = S  X-(T)dx,
© o o
Xjix) = e-T cos e(X), X2(t) = e~T sin 0(tv).

From the properties of the function k(t), the definition of
the function O0O(t) and from () it follows that the functions
X~t), X2(t) satisfy assumptions 1°-2° of Lemma A and, moreover,
either (A1) or (B.D.

Let v = v(0) be the root of the equation



(1) Q) = me"2m - ve-2v*© o £v £ v+,

with that v =m when o <m £ j or me'"2m - v*e"2v* = o when
m > j, or the root of the equation

2 gm X{(x)dx = RB(V)

where

a3 BV = (v + MNe“2v - |e"2m, O£v £m

Evidently, the function MA(v) satisfies condition (A.1) of
Lemma A, whereas i29(v) - condition (B.1) of Lemma B.
Analogously, let jj = y(o) be the root of the equation
m N
@o"™ s X2 (0)di = A, o £y £V,
o] n
or of the equation

m

(2 ) S Xe@)dx = nB(y), OL£pEM,

where A, B are defined by the formulae (11), (13), respectively

Of course, for all admissible 0(x),
i o« B in
s S e Tsin oQ)di = j(l - e“2m) - S e’2T cos2 0(bclt.
° o

Note that if m e (0, m> where n is the root of the equation
a5 1(1 - e-2m) = 2me-2m,

then the equation

@19 ga(V) = (1 e"2m) - me*“2m

possesses exactly one root VA e (0o, V¥).

Ifme<m, +°), m is defined by (15), then the equation
as") B ) =1 - e"2m) - me'2m
possesses exactly one root vD e (o, m).

Examining the functions <«A(v), B(), 1(1 - e_2m) - PA(V),



el - e 2m) - £ (v) and making use of (14), we shall obtain the

relations below:
if 0O<m€£ in

then
e 2m* " where o £ v £ m.
v £y £V,
_ -2m
(¢5)) Y S ®Ap Ay el where o £ v £ v,
0o £y £ tA,

1 "™ e 2m) " nA*v~ where YA £ v £ v~
0 £y £m;
ifm2m, then
nmirp@e - e - nB(v)] Where o £ v £ CH,
o £y £ v*,

an y =- - e 2m> "~ where wvo £ v £m,
vB £y £nm,

Biga " e"2n> “ DAV where o £V £ Vv*,

o *y £ VB,

m, VA, WB Dbeing defined by eguations (15), (11%), (13"), respec-
tively.
If we use Lemmas A, B as well as (9), we shall get an esti-

mate for x2 = Jl(Re A2)2. Moreover, taking account of the above
properties of the functions MA(y), "B(Y) and eguality (14), we
shall also get the respective estimate for y2 = ;"—(Im A2)9.

Consequently, if condition (A.l1) holds, then, 1in virtue of
(A3, (A2 and (9), we have

0 £ XE £ XA(V)
where
as) XA() = m(me 2m - ve'2v).
The function XA(v) 1is decreasing in the interval <0, v*>, and
let us recall that v* = m when o <m £ jJ or me~2m - v*e-2v* = o

when m > ;. Besides, 0 £ Xftv) £ m2e-2m.



If condition (B.1) holds, then, in virtue of (B.3), (B-2) and
(9, we have

0 £ x2 £ Xo (V)
where
9 XBV) = [(v + 1)e-v - e-m]2.
The function XB(v) 1is decreasing in the interval <0, m>. Besides
mze-2m £ XB(V) £ (1 - e_m)2.
From (16) or (17), for fixed m and v, we can determine the
value p corresponding to them; using again Lemma A or Lemma B,

respectively, we shall obtain - iIn consequence - that, for Fixed
m and v,

O£y2 £XA() or 0 £y2 £ Xp);

Xft, Xg are defined by formulae (18), (19).

The above estimates of the quantities x? = J‘(Re A2)2 and

y2 = }(Im Aj)2, being consequences of Lemmas A and B, will be made

use of iIn the next section of the paper.

3. The assumptions of Lemmas A and B as well as (9 imply
that the function ANX) satisfies either condition (A.1) or (B.D).

Since Aj™M) = e-T cos 0(t), therefore, using the appropriate
lemna, we consider some subset of functions o (t), thus some sub-

set of functions k(&) (O() = arg k(T)), and in consequence,
some subclass of the family S(M).
From (9) it follows that expression (g8) takes the form

(€0)) G(F) = x2 +y2 +M[3x2 - 3y2 - 4 J e“2x cosz2 0(xX)dx
o

+1 - e"2m]2, m = log N.
From (9) and estimate (4) we have

1) X2 +y2 < @ -e-*)2, m > O.

By using Lemma A or Lemna B and taking account of inequality
(21), the problem of determining the maximum of G(F) will be re-
duced to the iInvestigation of the maxiaa of some functions of the
variable v where v is defined by (o) or (2).



Denote by G(x2, y2; ¥ the right-hand side of (20), i.e.

(20") G(x2,y2; V) = x2 +y2 + j[3x2 - 3y2

m ., ’
- 4SS * cos 0o(T)dt + 1 -e” ] .

Note first that, for a fixed v = v(0), G(Xx2, y2; v) is a convex
function of the variables x2 , y2 and, as such, does not attain
its maximum inside the set of variability of x2, y2. Taking ac-
count of the properties obtained 1In section 2 as well as (1), we
shall consider six cases in which we determine all possible va-

lues of x2 and y2 for which the function G can attain its maximum.

at. Let O <m £m where m is the root of eguation (15). Con-
sider the case when v = v(o) 1is the root of eguation (10), i.e.

)] n n
S e Tcos oQ)dx = A(v), whereas y = y(o) - the root of equa-
o]

tion (10 ), i.e. §n e 2* sin’ o ()dx = p,-(Y), wRere i is given by
<«

formula (11). Then (16) implies that 0 £v £v, and O £y £ v,,

A A

where Y is the root of eguation (11%). From Lemma A we have
0 £x2 SXAWN and 0 Sy2 £ XA(),
where XA is given by (18). It can be verified that Xfgv) + XA >

- @ -em) when O£V SVA and 0 £y S Y. In consequence,

the maximum of G(x2, y2; V) can be attained only in the cases
when:

1° X2 = o0 and y2 = o,
Xfv) and vy2
XA(v) and y2 = (1 - e™m)2 - XA(V),

2° X2 0,

3° X2
4° x2 = (A -em)2 - XAQY) and y2 = XAQY),
5° x2 = 0 and y2 = XA¥),

with that o Sv £VvA and o £y £ VvA>

fc. Let, as above, O <m £ m. Consider the case when v =
- v(o) 1is the root of equation (10), whereas y = y(o) - the root



of equation (12"). Then it follows from (16) that Y £ v £ v* and
O£y £m. From Lemmas A and B we have, respectively,

0 £ x2 £ XAV and 0 £y2 £ Xo (y),
where Xft, Xg are defined by formulae (18), (19). It can be shown
that XA(v) + Xg(y) 2 A -em)2 when M £Y%Y£v and O £y £ m
Consequently, the maximum of G(x2, y2; V) can be attained only if

1° X2 =0 and y2 = o,

2° x2 = XA(v) and y2 =0,
3° x2 = XA(v) and y2 = (1 - em)2 - XA(V),
4° x2 = (A -e-m)2 - XB) and y2 = Xgy),
5° x2 = 0 and y2 = Xo (),

with that vA £v £v* and o £y £ m

c . Let 0O<m£m and let v = v(0) be the root of equation
(12), whereas y = y(0) - the root of equation (10"). Then from
(16) we have O £v £m and VA £y £ v*, and from Lemmas B and A
it follows, respectively, that

0 £ x2 £ XB(VW) and 0 £y2 £ XAQ)-

Also in this case, Xg(v) + XA®) ™~ (@ - e-m)2 when 0 £ v
A ?

vA = Y £ V" Hence the maximum of G(x2 , Y 5 V) can be
only if:

o

1 X2 =0 and y2 =0,
22 x2 =Xg() and y° = o,

3° X2

XBQv) and y2 = (A - e-m)2 - Xg(v),
4° X2 = (1 -em)2 - XAQ®Y) and y2 = XAQ),
5° X2 =0 and y2 = XA(Y),

with that 0 £v £€m and v, £y £ v~

cl. Letm 2m where m is the root of equation (15). Consider
now the case when v = v(o) 1is the root of equation (10), whereas
y = y(©) - the root of equation (127). In this case, from (17) we
have 0 £v £v* and 0 £y £ ig where Vg is the root of equation
(13"). From Lemmas A and B we have, respectively,



0 £ x2 £ XA\ and 0 £y2 £ XBY)-

It can be checked that XA</> + ill- e-m)2 when 0 £ v £ v*

and 0OSpiv Thus the maximum of G(x2, y2; v) can be attained

only if:

1° X2 =0 and y2 = o,

2° X2 = XA(v) and y2 = 0,

3° x2 = XA(v) and y2 = (1 - e'm)2 - XA(V),

4° X2 = (A - e-m)2 - XB(y) and y2 = Xg(y),

5° X2 0 and y2 = XB(),

with that o £v £v* and o £y £ ¥B.

It can be seen that, in relation to case (b), only the inter-
vals of variability of v and y have changed.

&. Let, as before, m 2 m. Consider the case when v = v(0)
is the root of equation (12), whereas y = y(o) - the root of
eguation (10%). Then from (17) we have O £ v £ B and 0 £y £ v*,

and Lemmas B and A imply that
0 £ x2 £ XB(V) and 0 £ y2 £ Xf(y).

Also iIn this case, xB() + <@ -en)2when 0 £v £ VvB and
0 £y £ v*. Hence the maximum of G(x2 , y2; V) can be attained
only if:

1° X2 =0 and y2 = o,

XB(v) and vy2

2° X2 0,

3° X2 = XB(v) and y2 @ -em)2 - XB(WV),

4° X2 @ -e-m)2 - XA(y) and y2 = XA,
5° x2 =0 and y2 = XAQY),
with that o £v £ VvB and o £y £ v*.

It is evident that, in relation to case (c), only the inter-
vals of variability of v and y have changed.

£. Letm £m. Finally, consider the case when v = v(0) Iis
the root of eguation (12), whereas y = y(G) - the root of equa-



tion (127). Then from (17) we have vo £ v Sm and vo S p £m, and
from Lemma B it follows that

0 Sx2 £Xo(v) and 0 S y2 S Xo (p)-
It can be demonstrated that Xo (V) + Xo(@) 2 (X - e-m)2 when vo 2

SvEm and O Zp Sm So, the maximum of G(x ,y ; V) can be

attained only if:

o

1 X2 =0 and y2 = o0,

2° x2 = Xg(v) and y2 =0,
3° X2 = XB(v) and y2 = (1 - e"'m)2 - Xo (V),
4° X2 = (1 -e-m)2 - Xo@E) and y2 = Xo (p),

5° x2 = 0 and y2 = Xo (p),
with that vo 2 v £m and wvo 2 p Sm.

Summing up cases a-f, we shall next obtain the suitable func-
tions of the variable v, mentioned of earlier, whose maxima can
realize the sought-for maximum of the functional G(F).

From cases a.l°, b.1° and d.I° as well as from (11) and
Go") we have, for m > o,

G(x2, y2; v) S™(V)
where
(22 cA™) = |[4(me"2m - ve'2v) - (1 - e"2m)]J2, 0 S v S v*.
From cases c.1°, e.l° and f.1° as well as from (13) and
(o™ we obtain, for m > o,
G(x2, y2; V) 2 M(V)
where
(23) iB"V) = j[22v + 1)e 2v - (1 + e"2m)]2, 0 2 Vv 2 m.
Cases a.2°, b.2° and d.2° as well as (11), (18) and (20%)
yield, for m > o,
G(x2, y2; V) 2#2M
where
(¢Z)) ®wW) = mme"2n “ \€e2v) + "[(Bm - 9 (me"2An - ve'2v)

+ 1 - e-2m]2, 0 2V 2 V-



Cases c.2°, e.2° and f.2° as well as (13), (19 and (20)
give, for m > o,

G(x2,y2; V) £ 2(()
where

@5 N = [(v + De-v - e-m12 + "M(Bx2 + 2 + De2v
-6(v + De_ve™m + 4e"™2m + 1]2, 0 £v £m

From cases a.3°, b.3° and d.3° as well as from (11), (18)
and (20") we get, for m > o,

G(x2, y2; V) £ AV)
where
(26) W™ = @ -end)2 + [@m - 2)(me_2m - ve~2v)
- @ -e"m)d - 2e"m)]2, o £V £ V-,

From cases c¢.3°, e.3° and Tf.3° as well as from (13), (19
and (20 ) we have, for m > o,

G(xX2,y2; V) £XBNM
where
@n Sa(V) = A -e™m)2 + [Bvz + N>+ 2)e"2v
-6(v + 1)e’ve-m + 4e"2m - 1 - e'm){ - 2e"m)]2,
0O £v £m

By taking account of relation (14), it 1is not difficult to
check that:

from cases a.4°, c.4° and e.4° we shall obtain, for m > o,

G(X2, y2; y) £ (), 0 £y £ v,
where X 1is defined by formula (26);

cases b.s4°, d.4° and f.4° will yield, for m > o,
G(x2, y25;y) £73(Y), O£y &£m,
being defined by (27);
from cases a.s5°, c¢.5° and e.5° we shall get, for m > o,
G(x2, y25 y) £ck(y), O£y £ v,
¢k being defined by (24);



cases b.5°, d.5° and f.5° will give, for m > o,
G(x2, ¥y2; p ££2(p), o £p2m,
with B2 defined by (25).

In consequence, the above considerations imply that, for a
fixed m > o,
G(x2, y2; v) 2 max (E&k((v),X»Bk), k=1, 2, 3}
if ve <o, v,

whereas

G(x2, y2; v) £max (@), k=1, 2, 3y if ve (v, m>.

4. In this section we shall occupy ourselves with the exami-
nation of the functions ok, Bk, k =1, 2, 3; namely, we shall
determine the maxima of the functions fk(v), o0 £ v £ v* and
o £v Sm, for any fixed m > o .

In an easy way, from (22) and (23) one obtains, for m > 0,

A1) Sorfv*) 5S«d*1*(m), V6 <0, V>,
€0))

BV sB.(0) =A@ M), v e <o, m>,
where
(€] b, -2m- 2 m>o.

Examining the function c42 (v) given by (24), for 0 S v £ v*,
we get (cf. [GBD
B2(V) SO =d@ @M when o <mimj,
(€Y)) RN £ W) =) when m* <m Sm2,
&N £%20) sADM when m >m2,
where e4”~(m) 1is given by (29), whereas
G tAG) (@) = m2e"2m + jJL(3mz2 - 4m - D)< 2N 12,

and m”~, m2 are the roots of the equation c4% ,(m) - o~"tm) = o,
e (0,28; 0,3), mz2e (0,5; 0,549).

The investigation of the function 42 (v) given by formula (25)
is very arduous. Proceeding similarly as in paper [5], one can



prove that B2 a decreasing function of the variable v e <o, m>
if o <m¢£ log s6; whereas if m > log 6, then -& (v) has a local
maximum at a point vQ where vQ, vQ e (o, m), is the only root

of the eguation $2<v) = 0. Conseguently,

RN £3J@)3 iQ™m) when o <m £ log 6,

(€2
£2(M) £ %$2() when m > log s,

where

33 EQ@QM = @ -e-m2 + [A -e"m)A - 2e"m)]2,

(€7)) N2 (vo) = C(vo + 1)e V° " e"mJ2

+

+[(Bvz + 2vo + 1)e 2V°
- 6(vqg + 1)e V°e™m + 4e"2m + 1]2,
while vQ, vQ e (0o, m), is the root of the eguation

(35) 2[(va + 1)e V° - e“m] + [(3vg - De ° - 3e"m]

_ ~2Vv -v
* [(3™ + 2vg + De °c -s6(Q + De °e'"m

+ 4e-2m +1] =0.

In turn, examining the function <% (v) given by (26), for
o £v S v*, we obtain

ABN £ BNW) = «@))M when o <m S|,
() @) S<0) =tkWm) when ; <m Sm3,

W) S o8 (v

IEDIW) when m > m3,

where jfi~tm) is defined by (33),

AGY(M = @ - e m)2 + [(Bm - 2)me_2m
- @ -e"m)yAd - z2e"n]j2,
while m3 is the root of the eguation eAG*(m) - 3I*(m) = o,

m3 e (0,7; o ,8).



To Ffinish with, let us examine the Tfunction &3 () given by
formula (27), for O £v £m, m>0. In paper [5], only its
partial examination was carried out, namely, with a fixed m >1log 3

We have

$"3 (V) = -4ve-vgQ(\i)h(v)
where

@Bv + De'v - 3e'"m,

a)
h(v) = Bv2 + & + 2)e-2v - 6(v + 1)e-ve™m
+ 4e 2m - 1 - e-m)(X - 2e”m), O Sv Sm
Note that if O <m<]|, then g(v)S 0, 0O Sv Sm. Ifmi log 3, then
g(v)20, OE£v Em If y <m< log 3, then the function g(v)
has exactly one zero e (0, y). Since h'(3>») = -2ve“vg(v), it

suffices to examine the values of h(0) and h(m). It can be shown
that h(@) 2 o when o <m £ log 2 and h@) >0 when m > log 2.
Whereas h(m) £ 0 when 0 <m£msa and m Zmg and h(m) > O when
m <m <mg, with m, m" being the roots of the equation h(m) =
=0, ms <j, mse (log 2, log 3). Making use of the form of the
derivative of the function 1iSj(v), we shall obtain that:

- 1fo<mé£m4, then g3() 1Is a decreasing function of the
variable v;

- ifms <m i_]2, then I8 (V) has a local minimum at the point

2 where h(v2) =0, v2e (o, m;

- if)% <m £ log 2, then has a local minimum at the
point W, h(v2) = o, and $j(v) has a local maximum at the
point where gtv”® = o0, v2 <

- if log 2 <m jm, then £j(v) has a local maximum at the
point vx, giVjy = o;

- 1fnig<m<log 3, then 1iSj(v) has a local maximum at the
point v, g(vl) = o, and ~(v) has a local minimum at the

point \Y where h(\>2) = o0, VI < V2%



m ifmi log 3, then $3(v) has a local minimum at the point

v2 where h(v2) =o.

Hence and from the examination of the values of the function
~3(v) at the points v =0 and v = m we shall finally get

E3z(v) £730) = when o <m £ -,
(€D) ~v) EEIQVWN) when j <m < log 3,

E3a(w) 1730 =~*1"(m) when m Z log 3,
where £”~im) is given by formula (33), while

AN3WD = @ - e-my2 + [(Bv2 + 4vx + 2)e 271
- 6N + 1)e "i1e'm + 4e"2m

- 1 -e_m)@ - 2e-m)J2,

being the only root of the equation g(v) = o, i.e.

@Bvx + 1)e VI - 3e'"m =0, Vile (0, |)-

We have thus determined the maxima of the functions A

k =1, 2, 3, for all values of m > O.

5. We shall next carry out a comparison of the estimates

of the functions ( A “8” obtained, for suitable values of m.
Before we proceed to this, let us observe that the functions cB3%)
and $3 (v) given by formulae (26) and (27), respectively, have been
—m)z

obtained in the case when x> + y2 = -e , m >0 (compare

a-f iIn section 3). It is known from the estimate of the coef-
ficient A2 = -2(x + iy) in the class S(M), log M = m, that this

eguality is possible only for the Pick function w = P(z, M) =
s PE(z, em) given by equation (6). The coefficients A2, A3 of
this function are defined by the formulae
A2 = 2e(e_m - 1),
Az = e2(em - DGe m - 3), lel =1, m = log M.
Putting F = Pe<z/ em)f from (7) we shall get



G(PE(z, em)) = (1 - e-m)2
+ @ - el - 2e"m)cos 2<1.P,
e = en*, 0 2 ® £ 2tt.

It is easily verified that

33 G(P (z,em)) 2 max G(P (z, em)) = (A - e-m)2
Icl-

+ @@ - em)d - 2e-m)J2,
the last equality holding for $ =1y, 1=0, 1, 2, 3.

On the other hand, as we have mentioned above, for any v e
e <0, Vv* and m > o, there should exist an e, |e = 1, such

that AA_(v) = G(P__I (z, em)). Thus (38) implies that we may take
J
into consideration only those v and m for which

39 cA,v) £ max GP,, (z, em)) = @A - em)2
3 N 1=1 £1

+ 2 -e"m)d - 2e_m)J2.
- 2 -
In consequence, in the case y <m 2 m3, estimate (36) contra-

dicts (39) because it can be checked thate4*3*(m) 2 (1 - e"m)2 +
+ [A - e-m@ - 2e<m)12 For | <m im3> Since N@EH)ym =

= @@ -enmn) + @ -em)(l - 2e-m)]J2, therefore, of course, the
remaining two estimates in (36) satisfy condition (39).
Analogously, for any v e <0, m> and m > 0, there should exist

an e2, Je2] = 1, such that €*3*(v) = G(Pe (z, em)). Consequently,

(38 implies that we may take into account only those v and m for
which

40 J3,(v) 2 max G(Po (z, em)) = (1 - e"m)2
It.1-1 e2

+ [ - esm)@ - 2e_nD]J2.
|f_]2 <m < log 3, then from the examination of the function
() it follows that, in (37), also ~(V]j)) > @ -e-m)2 + [A -
-em)(l - 2¢ m)]2, which, in virtue of (40), is impossible. The



remaining two estimates in (37) evidently satisfy condition
(40).

The above remarks do not concern, of course, the remaining
functions, i1.e. c““tv), &2 (vV)» J&iv), #2(v)» given by formulae

22, @8, (23), (25), respectively (cf. a-f). So, taking account
of estimates (28), (30) and (32) obtained for them and of the
above conclusions concerning estimates (36) and (37), we shall get

that, for any function Fe S(M), M = em,

G(F) £ maxM* 1*(m),cA*2*(m), 1*(m }

when me (@, m>u (m2, log 6>,

G(F) S max{c4®) (m),* D (M}
when m e (", m2>,
G(F) 2 max{cA() (M), (M), £ (> (M), ~2(vq)}
when me (log 6, +).
Let us first notice that, for each m > 0, the inequalities

CA@HI(M S ARIM < £@)HM
hold. Whereas from the examination of the function &2 (v) defined

by (25), carried out in section 4, it follows that
B*1’(M <s2M™Q) when m > log s .

So, we have finally obtained that, for each function F e S(M),

M =em > 1, the following estimate of functional (7) takes place:

fico () when o <m€£ log 6,
41 G(F) S =
&2(vq) when m > log 6,

where SS~fm), j (V\Q) are defined by formulae (33), (34), res-
pectively, with vQ being the only root of equation (35).

It still remains to prove that estimate (41) we have obtained
is sharp for each m>0. If me(0, log 6>, the -equality in
(41) takes place for the Pick function defined by equation &)
for e = #1, e = i, m = log M.

In order to show that, also for m > log 6, estimate (41) in
the class sW) is sharp, it is enough to prove, in view of c.2°,



e.2°, ¥.2° Tfrom section 3 and on account of Lemma B, that there
2
exists a function o*(xX), o £« £m, for whichy = o0, i.e.

m
§ e-T sin o*(X)dx = o
o}

and  IXA@)1 = X ().

Let vQ, v e (O, m), be a solution of equation (35), where-
as 0*(xX) a function defined by the formulae

e for o0 £ X £ Vo -
cos o*(1) =
1 for vQ £ x £ m.
Then
Jl—e2<-r_vO> for o £ x £ VvQ,
sin o*(X) =

for vQ £ X £m,

whence one can easily obtain the formulae for the function k*(X) =

i0,(x)

=e and, in consequence, determine the respective solution
F* e S(M) of the Lowner equation. Of course, **t) -
=e Tcos o*(X) = X(X)-

By choosing different signs in portions of the interval

<0, vQ>, one can make condition (42) be satisfied. Indeed, let us
consider, for instance, the function

2(X-v y ve r 2(t-0 "
dx - S dx,

>X) =S e
o X

X e <o, vQ>.

It is continuous in the interval <0, vQ>, <i(0 < 0O, Y >
thus there exists a point xQe (o, vQ) such that <%Q) = o.
Putting then

for o £ x £ xQ,

sin o*(X) = for x, £ X £ v,

for vQ £ X £m,
we finally obtain condition (42).



We have thus shown that, for each M > 1, there exist functions
of the classes S(M) realizing the eguality of estimate 41,
with that m = log M. Thereby, (“41), (7) and @ imply the fol-
lowing

THEOREM. If H is any function of form (1) from the class
S(C)ID, then the following estimates hold:

(1 -S)yz + @ -M@a -1~2
when 1 <M £ 6,

é3 IC,r + ICc [<vo + De V° - 112 +I[(3v2 +2vo + e 2Vv°

- + De °+4 +17T
¥ 1
when M > 6,

where vq e (0, log M) is the root of the eguation

2[(v + De"v - jp + [Bv - De-v - J1LBv2 + 2v + Dx

[(v + De~v + -F + 1] = o.
M

For each M > 1, there exist functions of the class S*2//ti) for
which the eguality sign in (43) takes place.

REMARK . It can be shown that if M = “, then the root v0 of

equation (35), tends to zero. Consequently, from (43) it follows
that, for each function H e S*2° ([4D),

IC312 + |Cs12 S 2.
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0 OSZACOWANIU PEWNEGO FUNKCJONALU
W KLASIE OGRANICZONYCH NIEPARZYSTYCH FUNKCJI JEDNOLISTNYCH

Oznaczmy przez S(M), M > 1, rodzing funkcji jednolistnych, holomorficznych
w kole E = (z: |z | <1} postaci

F(z) =z + A222 + ...+ AnZ]1+ R

spedniajacych w kole E warunek |F@)| <M, M > 1. Przez S"2\ >/Tf) oznaczmy
klase funkcji jednolistnych, nieparzystych, postaci

spetniajacych w kole E warunek |H@)| < 7if, M > 1.

Oczywiscie, dla kazdej funkcji F € S(M) funkcja H(z) = /f(z2) nalezy do
S*2~N(/H) i na odwrét.

W pracy dowodzi sie, ze ma miejsce nastepujace

Twierdzenie. Jezeli H jest dowolng funkcjg klasy , to zachodzag

nastepujace oszacowania

@ -2+ [AQ - fi)Xl - fi>]2* Rdy 1 <M< 6,
ICBR2 + Ic512 < =
[(VO + De ° - £]2 + x[(3v2 + 2vo + De -
Y
°+M + 11 , gdy M>6,



gdzie V™ E (0, log M) jest pierwiastkiem réwnania

2[Cv + De*V - i 1+ [Bv - DeV - [(Bv2 + 2v + De"2v -

-S(V+ DEVH+ Rt

2
Dla kazdego M > 1 istnieja funkcje klasy S( )(VS), dla ktérych ma miejsce

znak réwnosci w powyzszym oszacowaniu.



