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ON AN ESTIMATE 
OF SOME FUNCTIONAL, IN THE CLASS 

OF ODD BOUNDED UNIVALENT FUNCTIONS

Let us denote by S(M), M > 1, the family of functions of the form

univalent and holomorphic in the disc E ■ {z: |z| < 1} and satis­
fying in it the condition | F(z) | < M, M > 1. Denote by S^2  ̂ (VF?) 
the class of odd univalent functions of the form

F(z) * z + A^z2 + .. • »

satisfying in E the condition |H(z)| < /S ', M > 1.
Of course, for each function J e  S(M), the function H(z)

- / F(z2) belongs to S^2  ̂ (/if), and vice versa.versa.
In the paper, it is proved that the following theorem takes place.
THEOREM. If H is any function of the class S ^  (/ID, then the 

following estimates

(1 - i)2 + [(1 - ¿>(1 - ¿)]2

when 1 < M £ 6,
|c3|2 + |c5l 2 <•

[(v + l)e ° - i]2 + j[(3v2 + 2v. + l)e o M 4 o o
-2 Mo

when M > 6

hold, where Vq e (0, log M) is the root of the equation

2[(v + l)e" V - + [(3 V - l)e"V - J]



• [(3^ + 2v + l)e'2v - £(v + l)e'V + -~ + 1) - 0.
M M2

For each M > 1, there exist functions of the class (S~ff) for
which the equality sign in the above estimate takes place.

1. Let us denote by S the family of functions of the form
F(z) = z + A.z2 + A,z3 + ... + A_zn + ..., ¿ i  n

univalent and holomorphic in the disc E = { z :  )z| < 1 }.
Let 2 ̂ stand 

in E the expansion

(2 )Let S stand for the class of odd univalent functions having

(1) H(z) = z + C3z3 + C5z5 + ... + C2n+1z2n+1 + ...
/ o )It is known that H e s' if and only if there exists a function 

F e S such that
(2) H(z) = /f ( z2'), z e E.

Let S(M), M > 1, be a subclass of S of functions satisfying 
in the disc E the condition |F(z)| < M. Denote by S^'t/M1) the 
class of univalent functions of form (1 ), bounded by Æ ,  that is,
IH(z)I < Æ ,  z e E. Of course, for any function F e S(M), the 
function H defined by relationship (2) belongs to the class 

1 2)S' '(Æ), and vice versa.
Making use of this relationship, we get

(3) C3 = 2k2' C5 = 2(A3 ” 4A2* '
From the well-known estimate of the modulus of the coefficient 

A2 in the class S(M) ([3]) one knows that

(4) |C31 S 1 - i, M > 1,

with the eguality in (4) holding only for the Pick function w = 
= P(z, M), P(0, M) = 0, given by the eguation

(5)  v = ---------5--- z 6 E, I e I = 1.
(M + ewp (1 + ez)

2One also knows the estimate of the functional | A3 - aA2 1, for 
any real a, in the class S(M) ( [lj, [1]); in the case a = j, the• 
maximum of this functional is not attained for the Pick function.



The aim of our paper is to determine the maximum of the func­
tional
(6 ) 7(H) = | C3 | 2 + | C5 |2

in the classes S^*(v/m') for M > 1 .
(2 )In the full class S' , functional (6 ) was estimated by M. S. 

R o b e r t s o n  [4] .
In paper [5] we obtained a partial result, namely, an estimate 

of the maximum of the functional 7(H) in the classes S ^ i / M 1) for 
M 2 3. The method applied there brought about difficulties in the 
investigation of this functional for the remaining M, that is. 
M e  (1, 3).

In the present paper we obtain a final result, i.e. an esti­
mate of functional (6 ) from above for all M > 1; of course, for 
M 2 3, the result is the same as that in [5].

In the proof, use is made again of some general lemmas proved 
in [1], special corollaries following from them and the properties 
of the functional considered itself. The basic modification of the 
procedure from [5], arisen, among other things, after many dis­
cussions with Z. J. J a k u b o w s k i ,  consists mainly in a 
skilful use of the above-mentioned lemmas and other estimates of 
some well-known functionals. On account of the method applied, 
our reasoning is carried out for all M > 1; therefore, unfortu­
nately, it turns out to be indispensable to repeat some fragments 
of paper [5].

2. Note that (3) and the properties of the classes S(M) 
imply that the determination of the maximum of functional (6 ) is 
equivalent to the determination of the maximum of the functional

(7) G(F) = A2|2 + [Re |(A3 - \h\)]2, F e S(M), M > 1.

Evidently, for the purpose, it is sufficient to determine the 
upper bound of the functional G(F) in the subclass S*(M) of S(M) 
of functions of the form (cf. [2])

F(z) = lim etf(z, t), m = log M, 
t-<m

where f (z, t) is a holomorphic function of the variable z in the 
disc E, |f(z, t) | < 1 for ze E, f (0, t) = 0 and f ̂ (0, t) > 0, 
and f(z, t) is, for 0 £ t 2 m, a solution of the Lowner equation



If - f 1 + kf
3t 1 - kf'

satisfying the initial condition f(z, 0) = z. The function k = 
= k(t), |k(t)| = 1 , is any function continuous in the interval 
<0 , m> except a finite number of points of discontinuity of the 
first kind.

Since the coefficients A2 and of functions of the class 
S*(M) are expressed by the formulae ([2], [1]):

m -tA2 = -2 / e  k( t )di, 
o
ni « « rn a

A3 = -2/e" k ( t )dx + 4( _Te-Tk(i)dT), m = log M,
0 o

therefore it follows from (7) that we ought to determine the maxi­
mum of the expression

m  - t 2 m  -T 2(8 ) G(F) = (Se cos© (t)di) + (/e Tsin 0(T)dtr
o o

1 ^  T  0  ^  T 0+ ¿{3(ye'Tcos e(T)dt)z - 3 (J~e~ sin 0 ( T ) d t r  
o o

- 4 /e ' 2x cos2 0(T)dT + 1 - e~ 2 m }2 
o

where 6 (x) = arg k(x), 6 (x) e <0 , 2v>, over all possible func­
tions k(t) satisfying the assumptions of the Lowner theorem.

In the further part of the paper, we shall make use of the 
lemmas from [1], mentioned of in the introduction.

LEMMA A. If: 1° X is any real function of a real variable t, 
defined and continuous in the interval <0 , m> except a finite 
number of points of discontinuity of the first kind, 2° |X(t)| S 
S e~T for t e <0, m> and 3°

(A.1 ) jr X2 (t)dx £ me"2m, 
o

then

(A.2) Ijr X(t)dT)2 S m(me"2m - ve‘2v) o
where v, 0 £ v £ m, is the root of the equation



(A.3) S  A2 (i)dT = me"2m - ve'2v. 
o

For each v e <0, m>, there exists a constant function X(t) = c
such that in (A. 2) the equality holds. Then the relation me2 =
= me 2m - ve 2u should take place.

LEMMA B. If a function X satisfies assumptions 1° and 2° 
of Lemma A and the condition

(B.l) S  X2 (t)dx 2 me-2m, 
o

then
m

(B.2) |S X(t)dx| S (v + l)e'v - e~m 
o

where v, 0 £ v £ m, is the root of the equation

(B.3) JT X2 (t)dr = (v + |)e“2v - ~a~2m. 
o

Estimate (B.2) is sharp for every v and the equality sign occurs 
only if X(t ) = ±jt (t ) where

X ( T ) =
e-v for o S t £ v, 

e-1 for v S t S m.

Put A2 = -2(x + iy), that is.

(9)

m m
x = s  X..(T)dT, y = s  X-(T)dx,

o o

Xjix) = e-T cos e(x), X2(t ) = e~T sin 0(t).
From the properties of the function k(t), the definition of 

the function 0(t) and from (9) it follows that the functions 
X ^ t ), X2 (t ) satisfy assumptions l°-2° of Lemma A and, moreover, 
either (A.l) or (B.l).

Let v = v(0) be the root of the equation



(1 1 ) fiA(v) = me'2m - ve-2v' 0 £ v £ v*,

with that v* = m when 0 < m £ j or me"2m - v*e"2v* = 0 when 

m > j, or the root of the equation 

m ,

(12) S  Xf(x)dx = R_(v) o 1 B
where

(13) iJB(v) = (v + ^)e‘2v - |e"2m, 0 £ v £ m.

Evidently, the function ftA(v) satisfies condition (A.l) of
Lemma A, whereas i2g(v) - condition (B.l) of Lemma B.

Analogously, let jj = y(0 ) be the root of the equation 
m ^

(1 0 ') s  X2 (x)di = fiA(u), 0 £ y £ V*,o n

or of the equation
m _

(12 ) S  X2 (x)dx = nB(y), 0 £ p £ m,

where fiA, ftB are defined by the formulae (1 1 ), (13), respectively 
Of course, for all admissible 0(x),

ni « _ in
(14) S  e T sin 0 (x)di = j(l - e“2m) - S  e’2T cos2 0(t)c1t.

° o
Note that if m e (0, m> where in is the root of the equation

(15) | ( 1 - e-2m) = 2me-2m, 

then the equation

(1 1 ') £2a(v) = ¿ ( 1 - e"2m) - me“2m 

possesses exactly one root vA e (0 , v*).
If m e <m, +°°), m is defined by (15), then the equation 

(13') nB(v) = ¿(1 - e"2m) - me"2m 

possesses exactly one root vD e (0 , m).

Examining the functions «A(v), fiB(v), | ( 1 - e_2m) - i2A(v),



•̂(1 - e 2m) - £2b (v ) and making use of (14), we shall obtain the 
relations below:

if 0 < m £ in,
then

" e 2m* " where 0 £ v £ m.

(16) y = ■
v £ y £ v*,

^A1 ^ * 1 " e where 0 £ v £ v^,
0 £ y £ tA ,

1 " e 2m) " nA*v^ where \>A £ v £ v*.

-2m

if m 2 m, then
0 £ y £ m;

(17) y =-

n^ 1 [ | (1 - e-2|!n) - nB(v)] Where 0 £ v £ Cfi,
0 £ y £ v*,

- e 2m> ” where v0 £ v £ m,
vB £ y £ m,

i2B1 t| (1 ' e"2m> “ nA(v)  ̂ where 0 £ v £ v*,
0 * y £ vB,

m, vA, \>B being defined by eguations (15), (11'), (13'), respec­
tively.

If we use Lemmas A, B as well as (9), we shall get an esti-
2 1 2mate for x = j(Re A2) . Moreover, taking account of the above 

properties of the functions fiA(y), ^B(y) and eguality (14), we
2 1 9shall also get the respective estimate for y = -̂(Im A2) .

Consequently, if condition (A.l) holds, then, in virtue of 
(A.3), (A.2) and (9), we have

0 £ x£ £ XA(v)
where
(18) xA(v) = m(me 2m - ve"2v).

The function XA(v) is decreasing in the interval <0, v*>, and 
let us recall that v* = m when 0 < m £ j or me~2m - v*e-2v* = 0 
when m > ¿. Besides, 0 £ Xft(v) £ m2e-2m.



If condition (B.l) holds, then, in virtue of (B.3), (B.2) and
(9), we have

0 £ x2 £ X0 (v)
where
(19) XB(v) = [(v + 1)e-v - e-m]2.

The function XB(v) is decreasing in the interval <0, m>. Besides 
m2e-2m £ XB(v) £ (1 - e_m)2.

From (16) or (17), for fixed m and v, we can determine the 
value p corresponding to them; using again Lemma A or Lemma B, 
respectively, we shall obtain - in consequence - that, for fixed 
m and v,

0 £ y2 £ XA(p) or 0 £ y2 £ X^p);

Xft, Xg are defined by formulae (18), (19).
2 1 2The above estimates of the quantities x = ^(Re A2) and 

2 1 2y = j(Im Aj) , being consequences of Lemmas A and B, will be made 
use of in the next section of the paper.

3. The assumptions of Lemmas A and B as well as (9) imply 
that the function A^(x) satisfies either condition (A.l) or (B.l). 
Since Aj^t) = e-T cos 0(t), therefore, using the appropriate 
lemna, we consider some subset of functions 0 (t), thus some sub­
set of functions k(x) (0(x) = arg k(T)), and in consequence, 
some subclass of the family S(M).

From (9) it follows that expression (8 ) takes the form

(20) G(F) = x2 + y2 + ^[3x2 - 3y2 - 4 J  e“2x cos2 0(x)dx
o

+ 1 - e"2m]2, m = log N.
From (9) and estimate (4) we have

(2 1 ) x2 + y2 < (1 - e-“ )2, m > 0.
By using Lemma A or Lemna B and taking account of inequality

(21), the problem of determining the maximum of G(F) will be re­
duced to the investigation of the maxiaa of some functions of the 
variable v where v is defined by (1 0 ) or (1 2 ).



Denote by G(x2, y2; \>) the right-hand side of (20), i.e.

(20') G(x2, y2; v) = x2 + y2 + j[3x2 - 3y2
m . , ,

- 4 S  * cos 0(T)dt + 1 - e” ] . 
o

Note first that, for a fixed v = v(0), G(x2, y2; v) is a convex
2 2function of the variables x , y and, as such, does not attain 

its maximum inside the set of variability of x2, y2. Taking ac­
count of the properties obtained in section 2 as well as (2 1 ), we
shall consider six cases in which we determine all possible va-

2 2lues of x and y for which the function G can attain its maximum.
at. Let 0 < m £ m where m is the root of eguation (15). Con­

sider the case when v = v(0 ) is the root of eguation (1 0 ), i.e.
II) n n
S  e T cos 0 (x)dx = fiA(v), whereas y = y(0 ) - the root of equa- 
o

m -  2 t 2tion (10 ), i.e. S  e sin 0 (x)dx = i2,.(y), where ii* is given by o « A
formula (11). Then (16) implies that 0 £ v £ v. and 0 £ y £ v.,A A
where \>A is the root of eguation (11'). From Lemma A we have 

0 £ x2 S XA(v) and 0 S y2 £ XA(y), 

where XA is given by (18). It can be verified that Xft(v) + XA(y >

- (1 - e m )2 when 0 £ v S vA and 0 £ y S \>A. In consequence,
2 2the maximum of G(x , y ; v) can be attained only in the cases 

when:
1° x2 = 0 and y2 = 0 ,
2° x2 = Xft(v) and y2 = 0,

3° x2 = xA(v) and y2 = (1 - e"m )2 - XA(v),

4° x2 = (1 - e“m )2 - XA(y) and y2 = XA(y),

5° x2 = 0 and y2 = XA(y),

with that 0 S v £ vA and 0 £ y £ vA>

fc>. Let, as above, 0 < m £ m. Consider the case when v =
- v(0 ) is the root of equation (1 0 ), whereas y = y(0 ) - the root



of equation (12'). Then it follows from (16) that \>A £ v £ v* and 
0 £ y £ m. From Lemmas A and B we have, respectively,

0 £ x2 £ XA(v) and 0 £ y2 £ X0 (y),

where Xft, Xg are defined by formulae (18), (19). It can be shown
that XA(v) + Xg(y) 2 (1 - e m )2 when \>A £ \> £ v* and 0 £ y £ m.
Consequently, the maximum of G(x2, y2; v) can be attained only if

1° x2 = 0 and y2 = 0 ,
2° x2 = XA(v) and y2 = 0,

3° x2 = XA(v) and y2 = (1 - e'm )2 - XA(v),

4° x2 = (1 - e- m )2 - XB(y) and y2 = Xg(y),
5° x2 = 0 and y2 = X0 (y),
with that v»A £ v £ v* and 0 £ y £ m.

c . Let 0 < m £ m and let v = v (0) be the root of equation
(12), whereas y = y(0) - the root of equation (10'). Then from 
(16) we have 0 £ v £ m and vA £ y £ v*, and from Lemmas B and A 
it follows, respectively, that

0 £ x2 £ XB(v) and 0 £ y2 £ XA(y).

Also in this case, Xg(v) + XA(y)  ̂ (1 - e- m )2 when 0 £ v
A
VA * y £ v*. 2 ?Hence the maximum of G(x , y ; v) can be
only
1°

if:
x2 = 0 and y2 = 0,

2° x2 = Xg 2(v) and y = 0 ,
3° x2 = XB(v) and y2 = (l - e- m )2 - Xg(v),
4° x2 = (1 - e"m )2 - XA(y) and y2 = XA(y),
5° X 2 = 0 and y2 = XA(y),

with that 0 £ v £ m and v, £ y £ v*.

cl. Let m 2 m where m is the root of equation (15). Consider 
now the case when v = v(0 ) is the root of equation (1 0 ), whereas 
y = y(0) - the root of equation (12'). In this case, from (17) we 
have 0 £ v £ v* and 0 £ y £ ig where Vg is the root of equation 
(13'). From Lemmas A and B we have, respectively,



0 £ x2 £ XA(v) and 0 £ y2 £ XB(y).

It can be checked that XA<V> + i l l -  e~m )2 when 0 £ v £ v*
and 0 S p i v  Thus the maximum of G(x2, y2; v) can be attained 
only if:
1° x2 = 0 and y2 = 0 ,
2° x2 = XA(v) and y2 = 0,

3° x2 = XA(v) and y2 = (1 - e"m )2 - XA(v),

4° x2 = (1 - e- m )2 - XB(y) and y2 = Xg(y),

5° x2 = 0 and y2 = XB(y),

with that 0 £ v £ v* and 0 £ y £ v>B.
It can be seen that, in relation to case (b), only the inter­

vals of variability of v and y have changed.
&. Let, as before, m 2 m. Consider the case when v = v(0)

is the root of equation (1 2 ), whereas y = y(0 ) - the root of
eguation (10'). Then from (17) we have 0 £ v £ \>B and 0 £ y £ v*, 
and Lemmas B and A imply that

0 £ x2 £ XB(v) and 0 £ y2 £ Xft(y).

Also in this case, xB(v) + <: (1 - e m )2 when 0 £ v £ vB and
2 20 £ y £ v*. Hence the maximum of G(x , y ; v) can be attained 

only if:
1° x2 = 0 and y2 = 0 ,
2° x2 = XB(v) and y2 = 0,

3° x2 = XB(v) and y2 = (1 - e'm )2 - XB(v),

4° x2 = (1 - e~m )2 - XA(y) and y2 = XA(y),

5° x2 = 0 and y2 = XA(y),
with that 0 £ v £ vB and 0 £ y £ v*.

It is evident that, in relation to case (c), only the inter­
vals of variability of v and y have changed.

£. Let m £ m. Finally, consider the case when v = v(0) is 
the root of eguation (1 2 ), whereas y = y(G) - the root of equa­



tion (12'). Then from (17) we have v0 £ v S m and v0 S p £ m, and 
from Lemma B it follows that

0 S x2 £ X0 (v) and 0 S y2 S X0 (p).

It can be demonstrated that X0 (v) + X0 (p) 2 (1 - e- m )2 when v0 2 
S v £ m and O0 Z p S m. So, the maximum of G(x , y ; v) can be 
attained only if:
1° x2 = 0 and y2 = 0 ,
2° x2 = Xg(v) and y2 = 0,

3° x2 = XB(v) and y2 = (1 - e"m )2 - X0 (v),

4° x2 = (1 - e- m )2 - X0 (p) and y2 = X0 (p),

5° x2 = 0 and y2 = X0 (p),

with that v0 2 v £ m and v0 2 p S m.
Summing up cases a-f, we shall next obtain the suitable func­

tions of the variable v, mentioned of earlier, whose maxima can 
realize the sought-for maximum of the functional G(F).

From cases a.l°, b.l° and d.l° as well as from (11) and 
(2 0 ') we have, for m > 0 ,

G(x2, y2; v) S ^(v)
where
(22) cA^v) = |[4(me'2m - ve"2v) - (1 - e"2m)]2, 0 S v S v*.

From cases c.l°, e.l° and f.l° as well as from (13) and 
(2 0 ') we obtain, for m > 0 ,

G(x2, y2; v) 2 ^(v)

where
(23) iB^v) = j[2(2v + 1 )e_2v - (1 + e"2m)]2, 0 2 v 2 m.

Cases a.2°, b.2° and d.2° as well as (11), (18) and (20') 
yield, for m > 0 ,

G(x2, y2; v) 2 tA2(\>)
where

(24) t42(v) = m<me'2,n “ \'e"2v) + ^[(3m - 4) (me"2ln - ve"2v)
+ 1 - e-2m]2, 0 2 v 2 v*.



Cases c.2°, e.2° and f.2° as well as (13), (19) and (20) 
give, for m > 0 ,

G(x2 , y2; v) £ 2 (v )
where
(25) i02 (v) = [(v + 1)e-v - e- m ] 2 + ^[(3\>2 + 2\> + l)e"2v

- 6 (v + l)e_ve'm + 4e"2m + l]2, 0 £ v £ m.

From cases a.3°, b.3° and d.3° as well as from (11), (18) 
and (2 0 ') we get, for m > 0 ,

G(x2, y2; v) £ cAj (v)
where
(26) t/t3 (v) = (1 - e'm )2 + [(3m - 2)(me_2m - ve~2v)

- (1 - e"m )(l - 2e"m )]2, 0 £ v £ v*.
From cases c.3°, e.3° and f.3° as well as from (13), (19) 

and (20 ) we have, for m > 0 ,

G(x2, y2; v) £ 3&3 (v)
where
(27) S 3 (v) = (1 - e"m )2 + [(3v2 + 4\> + 2)e"2v

- 6 (v + 1)e”ve-m + 4e"2m - (1 - e"m )(l - 2e"m)]2,
0 £ v £ m.

By taking account of relation (14), it is not difficult to 
check that:
from cases a.4°, c.4° and e.4° we shall obtain, for m > 0 ,

G(x2, y2; y) £ «43 (y), 0 £ y £ v*,
where cÂ is defined by formula (26); 
cases b.4°, d.4° and f.4° will yield, for m > 0 ,

G(x2, y2; y) £ ^ 3 (y), 0 £ y £ m,
being defined by (27); 

from cases a.5°, c.5° and e.5° we shall get, for m > 0 ,

G(x2, y2; y) £ c42 (y), 0 £ y £ v*,
c4-2 being defined by (24);



cases b.5°, d.5° and f.5° will give, for m > 0 ,
G(x2, y2; p) £ £ 2 (p), 0 £ p 2 m,

with i8 2 defined by (25).
In consequence, the above considerations imply that, for a 

fixed m > 0 ,

G(x2, y2; v) 2 max (e4k(v), J5k( v), k = 1, 2, 3}
if v e <0 , v*>,

whereas
G(x2, y2; v) £ max (®k(v), k = 1, 2, 3} if v e (v*, m>.

4. In this section we shall occupy ourselves with the exami­
nation of the functions c4k, i8 k, k = 1, 2, 3; namely, we shall 
determine the maxima of the functions c/*k(v), 0 £ v £ v* and 
0 £ v S m, for any fixed m > 0 .

In an easy way, from (22) and (23) one obtains, for m > 0,

(28)

where

(29)

c41(\)) So^fv*) 5«4*1 *(m), 

¿3. (v) s J8. (0 ) = cA(1) (m),

v 6 <0 , v*>, 

v e <0 , m>,

( 1 ) , -2m. 2 m > 0 .

Examining the function c42 (v) given by (24), for 0 S v £ v*, 
we get (cf. [5])

when 0 < m i mj, 
when m^ < m S m2, 

when m > m2,

tA-2 (v) S cA2 (0) = c4(2) (m)
(30) cA2(v) £ c42 (v*) = c4-(1 )(m)

&4-2 (v) £ *42 (0) s <A(2) (m)

where e4^(m) is given by (29), whereas

(31) tA(2 )(m) = m2e"2m + j[(3m2 - 4m - 1)< 
and m^, m2 are the roots of the equation c>4̂ 2 ,(m) - o^'tm) = 0 ,

e (0,28; 0,3), m2 e (0, 5; 0, 54).
The investigation of the function 432 (v) given by formula (25) 

is very arduous. Proceeding similarly as in paper [5], one can

-2m I]2,



prove that i8 2 a decreasing function of the variable v e <0 , m> 
if 0 < m £ log 6 ; whereas if m > log 6 , then -®2 (v) has a local 
maximum at a point vQ where vQ, vQ e (0 , m), is the only root 
of the eguation $ 2 <v) = 0. Conseguently,

i®2 (v) £ JSj(0 ) 3 iQ^^m) when 0 < m £ log 6 ,
(32)

£ 2 (v) £ $2 ( )  when m > log 6 ,
where
(33) £ (1 )(m) = (1 - e- m )2 + [(1 - e"m )(l - 2e"m )]2,

(34) ^ 2 (vo) = C(vo + 1)e V° ' e"mJ2

+ ±[(3v2 + 2vo + 1)e 2V°

- 6 ( v q  + 1)e V°e'm + 4e'2m + l]2, 

while vQ, vQ e (0 , m), is the root of the eguation

(35) 2[(v q  + 1 )e V° - e“m] + [( 3v q  - l)e ° - 3e"m]

_ ~2v -v
* [(3^ + 2vq + l)e ° - 6 (vQ + l)e °e"m

+ 4e-2m +1] =0.
In turn, examining the function <A3 (v) given by (26), for 

0 £ v S v*, we obtain

c43 (v) £ <A3 (v*) = «(1 )(m) when o < m S |,
/ -a \ 2(36) cA3 (v) S <*3 (0 ) = tAK Mm) when j < m S m3,

tAj(v) S cA3 (v*) = ¡8(1 )(m) when m > m3, 

where jfi^tm) is defined by (33),

c4(3 )(m) = (1 - e”m )2 + [(3m - 2)me_2m

- (1 - e"m)(l - 2e"n’)]2,

while m3 is the root of the eguation eA(3 *(m) - 39*̂ (m) = 0 , 
m3 e (0,7; 0 ,8 ).



To finish with, let us examine the function ¿8 3 (v) given by 
formula (27), for 0 £ v £ m, m > 0 .  In paper [5], only its 
partial examination was carried out, namely, with a fixed m > log 3 

We have

$'3 (v) = -4ve-vg(\i)h(v)
where

g(v) = (3v + l)e"v - 3e"m ,

h(v) = (3v2 + 4\> + 2)e-2v - 6 ( v  + l)e-ve'm

+ 4e_2m - (1 - e-m)(1 - 2e”m ), 0 S v S m.

Note that if 0 < m <|, then g(v)S 0, 0 S v S m. If m i  log 3, then 

g(v)20, 0 £ v £ m. If y < m < log 3, then the function g(v) 

has exactly one zero e (0, y). Since h'(\>) = -2ve“vg(v), it

suffices to examine the values of h(0) and h(m). It can be shown 
that h(0 ) 2 0 when 0 < m £ log 2 and h(0 ) > 0 when m > log 2 . 
Whereas h(m) £ 0 when 0 < m £ m4 and m Z mg and h(m) > 0 when 
m^ < m < mg, with m^, m^ being the roots of the equation h(m) = 
= 0, m4 < j, m5 e (log 2, log 3). Making use of the form of the 
derivative of the function iSj(v), we shall obtain that:

- if 0 < m £ m4, then ¿83 (v) is a decreasing function of the 
variable v ;

2- if m4 < m i j, then iS3 (v) has a local minimum at the point 
\>2 where h(v2) = 0 , v2 e (0 , m);

2- if y < m £ log 2 , then has a local minimum at the 
point \>2, h(v2) = 0 , and $j(v) has a local maximum at the 
point where gtv^ = 0 , v 2 <

- if log 2 < m j m^, then £j(v) has a local maximum at the 
point vx, giVĵ ) = 0 ;

- if nig < m < log 3, then iSj(v) has a local maximum at the 
point v^, g(v1) = 0 , and ^(v) has a local minimum at the 
point \j2 where h(\>2) = 0 , vi < v2»‘



■ if m i log 3, then $ 3 (v) has a local minimum at the point 
v2 where h(v2) = 0 .

Hence and from the examination of the values of the function 
^ 3 (v) at the points v = 0 and v = m we shall finally get

Æ 3 (v) £ ^ 3 (0 ) = when 0 < m £ -,

(37) ^(v) £ Æj(v^) when j < m < log 3,

Æ 3 (v) i ^ 3 (0) = ^ * 1 '(m) when m Z log 3, 

where Æ ^ i m )  is given by formula (33), while

^ 3(V;L) = (1 - e- m )2 + [( 3v2 + 4vx + 2)e 2^1

- 6 ^  + 1 )e ',1e"m + 4e'2m

- (1 - e_ m )(1 - 2e-m)J 2,

being the only root of the equation g(v) = 0 , i.e.

(3vx + 1)e Vl - 3e"m =0, V;l e (o, |).

We have thus determined the maxima of the functions cA 
k = 1, 2, 3, for all values of m > 0.

5. We shall next carry out a comparison of the estimates 
of the functions ( A 8̂^ obtained, for suitable values of m. 
Before we proceed to this, let us observe that the functions c43<\>) 
and $ 3 (v) given by formulae (26) and (27), respectively, have been

2 2 —m 2obtained in the case when x + y = (l - e ) , m > 0 (compare 
a-f in section 3). It is known from the estimate of the coef­
ficient A2 = -2(x + iy) in the class S(M), log M = m, that this 
eguality is possible only for the Pick function w = P(z, M) = 
s PE(z, em ) given by equation (5). The coefficients A2, A3 of 
this function are defined by the formulae

A2 = 2e(e_m - 1 ),

A3 = e2(e m - l)(5e m - 3), |e| =1, m = log M.
Putting F = Pe<z/ em)f from (7) we shall get



G(P£(z, em)) = (1 - e- m )2

+ [(1 - e“ra)(l - 2e'm )cos 2<J.J2,

e = e^*, 0 2 <t> £ 2tt.
It is easily verified that

(38) G(P (z, em )) 2 max G(P (z, em )) = (1 - e- m )2
|c|-l

+ [(1 - e"m )(l - 2e-m)J 2,

the last equality holding for $ = ly, 1 = 0 ,  1, 2, 3.

On the other hand, as we have mentioned above, for any v e
e <0 , v*> and m > 0 , there should exist an e^, |ê | = 1 , such
that cA (v) = G(P (z, em)). Thus (38) implies that we may take j ‘"I
into consideration only those v and m for which

(39) c4,(v) £ max G(P„ (z, em ) ) = (1 - e'm )2
3 1^ 1=1 £ 1

+ [(1 - e"m )(l - 2e_m)]2.
2In consequence, in the case y < m 2 m3, estimate (36) contra­

dicts (39) because it can be checked thate4*3 *(m) 2 (1 - e"m )2 + 

+ [(1 - e-m) (1 - 2e‘m )]2 for | < m i m3> Since ^ (1 )(m) =

= (1 - e m )2 + [(1 - e m)(l - 2e-m)]2, therefore, of course, the 
remaining two estimates in (36) satisfy condition (39).

Analogously, for any v e <0, m> and m > 0, there should exist 
an e2, |e2| = 1, such that <8 *3 *(v) = G(Pe (z, em)). Consequently,

(38) implies that we may take into account only those v and m for 
which

(40) J3,(v) 2 max G(Po (z, em )) = (1 - e'm )2
|t, | - 1 e 2

+ [(1 - e~m ) (1 - 2e_n1)]2.
2If j < m < log 3, then from the examination of the function 

353 (v) it follows that, in (37), also ^(Vj) > (1 - e- m )2 + [(1 -
- e m )(l - 2e m )]2, which, in virtue of (40), is impossible. The



remaining two estimates in (37) evidently satisfy condition
(40).

The above remarks do not concern, of course, the remaining 
functions, i.e. c^^tv), &4-2 (v)» J&^iv), # 2 (v)» given by formulae
(22), (24), (23), (25), respectively (cf. a-f). So, taking account 
of estimates (28), (30) and (32) obtained for them and of the 
above conclusions concerning estimates (36) and (37), we shall get 
that, for any function F e S(M), M = em ,

G(F) £ maxM* 1 *(m),cA*2 *(m), 1 * (m) } 
when m e  (0, m^> U (m2, log 6>,

G(F) S max{c4(1) (m), * (1) (m)} 
when m e (n̂ , m2>,

G(F) 2 max{cA(1) (m), c4-(2) (m), £ (1> (m), ^ 2 (vq) } 
when m e (log 6 , +=>).

Let us first notice that, for each m > 0, the inequalities

cA(1 )(m) S cA(2 )(m) < £(1 )(m) 
hold. Whereas from the examination of the function & 2 (v) defined 
by (25), carried out in section 4, it follows that

r6 *1 ’(m) < sS2 (vQ) when m > log 6 .

So, we have finally obtained that, for each function F e S(M), 
M = em > 1, the following estimate of functional (7) takes place:

(41) G(F) S •
ffo' (m ) when 0 < m £ log 6 ,

& 2(vq) when m > log 6 ,

where SS^fm), jQ2 (vQ) are defined by formulae (33), (34), res­
pectively, with vQ being the only root of equation (35).

It still remains to prove that estimate (41) we have obtained 
is sharp for each m > 0 .  If m e ( 0 ,  log 6>, the equality in
(41) takes place for the Pick function defined by equation (5) 
for e = ±1 , e = ±i, m = log M.

In order to show that, also for m > log 6 , estimate (41) in 
the class S(M) is sharp, it is enough to prove, in view of c.2°,



e.2°, f.2° from section 3 and on account of Lemma B, that there
2exists a function 0 *(x), 0 £ t £ m, for which y = 0 , i.e.

m 
f
o

and | X -̂ ( t ) | = X ( t ).

S  e-T sin 0 *(x)dx = 0

Let vQ, v e (0, m), be a solution of equation (35), where­
as 0 *(x) a function defined by the formulae

cos 0 *(i) =

Then

e for 0 £ x £ v .o
1 for vQ £ x £ m.

sin 0*(x) =
/ 2 <T-vo>' ±/l-e for 0 £ x £ vQ, 

for vQ £ x £ m,
whence one can easily obtain the formulae for the function k*(x) = 

i0,(x)
= e and, in consequence, determine the respective solution
F* e S(M) of the Lowner equation. Of course, **(t) -
= e T cos 0 *(x) = X(x).

By choosing different signs in portions of the interval 
<0, vQ>, one can make condition (42) be satisfied. Indeed, let us 
consider, for instance, the function

>(x) = S  e 
o

x e <0 , vQ>.

2 (x-v y
dx - S  

x
v °  r 2 (t-0 '

dx,

It is continuous in the interval <0, vQ>, <i(0) < 0, ♦(''q) > 
thus there exists a point xQ e (0 , vQ) such that <(>(xQ) = 0 . 
Putting then

sin 0 *(x) =

for 0 £ x £ xQ,

for x„ £ x £ v„,o o
for vQ £ x £ m,

we finally obtain condition (42).



We have thus shown that, for each M > 1, there exist functions 
of the classes S(M) realizing the eguality of estimate (41), 
with that m = log M. Thereby, (41), (7) and (3) imply the fol­
lowing

THEOREM. If H is any function of form (1) from the class 
S(2 )(/JD, then the following estimates hold:

(43) |C,r + I Cc

(1 - S )2 + [(1 - M )(1 - I ^ 2 
when 1 < M £ 6 ,

[<vo + l)e V° - i] 2 + I [ ( 3v 2 + 2vo + l)e 2V°

- + D e  ° + 4  + 1]'M
when M > 6 ,

where v q  e (0, log M) is the root of the eguation

2 [(v + l)e'v - jjp + [(3v - 1 )e-v - |][(3v2 + 2v + 1)<

| ( v  + l)e~v + -f + 1] = 0 . 
M

For each M > 1, there exist functions of the class S*2 (̂/ti) for 
which the eguality sign in (43) takes place.

REMARK. It can be shown that if M ■* “, then the root v ofo
equation (35), tends to zero. Consequently, from (43) it follows 
that, for each function H e S*2' ([4]),

|C3I 2 + |C5 |2 S 2.
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Oznaczmy przez S(M), M > 1, rodziną funkcji jednolistnych, holomorficznych 
w kole E = (z: |z | <1} postaci
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0 OSZACOWANIU PEWNEGO FUNKCJONAŁU 
W KLASIE OGRANICZONYCH NIEPARZYSTYCH FUNKCJI JEDNOLISTNYCH

F(z) = z + A_z2 + ... + A z11 + ...,2 n
spełniających w kole E warunek |F(z)| < M, M > 1. Przez S^2\ >/Tf) oznaczmy 
klasę funkcji jednolistnych, nieparzystych, postaci

spełniających w kole E warunek |H(z)| < /if, M > 1.
Oczywiście, dla każdej funkcji F € S(M) funkcja H(z) = /f(z2) należy do 

S*2 (̂ /H) i na odwrót.
W pracy dowodzi się, że ma miejsce następujące

Twierdzenie. Jeżeli H jest dowolną funkcją klasy , to zachodzą
następujące oszacowania

lc3i2 + I c512 < •
(1 - fi)2 + [(1 - fi)*1 - fi>]2* ßdy 1 < M < 6,

[(V0 + D e  ° - £]2 + ±[(3v2 + 2vo + l)e ^  - 

"V° + + l] , gdy M > 6,
M



gdzie V^ E (0, log M) jest pierwiastkiem równania

2[(v + l)e*V - i ]+ [(3v - l)e'V - [(3v2 + 2v + l)e'2v -

- S(V + 1)e"V + ~2 + “ °*" M
( 2 )Dla każdego M > 1 istnieją funkcje klasy S (VS), dla których ma miejsce 

znak równości w powyższym oszacowaniu.


