Inga Libicka, Ewa Łazarow

THE SYMMETRIC 7-APPROXIMATE DERIVATIVES

In this paper we shall give a definition of a symmetric \Im -approximate derivative of a function $f : \mathbb{R} \to \mathbb{R}$. We shall prove several properties of its \Im -approximate derivative.

Throughout this paper & will denote the family of all subsets of R (the real line) having the Baire property, I will denote sigma ideal of sets of the first category. For two sets A, B c R, $A \sim B$ will mean that $A \land B \in \mathfrak{I}$. For $a \in R$ and $A \subset R$ we denote $a \cdot A = \{a \cdot x : x \in A\}$ and $A - a = \{x - a : x \in A\}$. Recall [4] that 0 is an U-density point of a set A & & if and only if $\chi(n \cdot A) \cap [-1, 1] \xrightarrow{\mathfrak{I}} 1$ i.e. if and only if for every increasing sequence {n_m}_{m ∈ N} of natural numbers there exists a subsequence $\{n_{m_p}\}_{p \in \mathbb{N}}$ such that $\chi(n_{m_p} \cdot A) \cap [-1, 1] \xrightarrow{p + \infty} 1$ except on a set belonging to \Im (in abbr. \Im -a.e.). A point $x_0 \in \mathbb{R}$ is an J-density point of AEB if and only if 0 is an J-density point of A - xo. The set of all 3-density points of A will be denoted by $\Phi(A)$. Recall that Φ has the following properties: for each $A \in \mathfrak{B} \quad \phi(A) \sim A$; for each A, $B \in \mathfrak{B}$ if $A \sim B$ then $\phi(A) = \phi(B)$; $\Phi(\emptyset) = \emptyset; \quad \Phi(R) = R; \text{ for each A, B \in } \Phi(A \cap B) = \Phi(A) \cap \Phi(B).$ Further the family $T_{ci} = \{A \in \mathfrak{B} : A \subset \Phi(A)\}$ is a topology,

which we call J-density topology (see [4]).

Real functions continuous with respect to T_{ij} topology we call the J-approximately continuous functions.

In [1] was introduced the topology τ such that τ is a coarsest topology making all \Im -approximately continuous functions continuous.

Throughout this paper cl(A), int(A) will denote closure and interior of the set A with respect to natural topology. Except where a topology is specifically mentioned, all topological notions are with respect to the natural topology.

Definition 1 [1]. For $x \in \mathbb{R}$ by $\mathfrak{P}(x)$ we will denote the family of all closed intervals [a, b] such that $x \in (a, b)$ and of all interval sets $\bigcup_{n=1}^{\infty} [a_n, b_n] \cup \bigcup_{n=1}^{\infty} [c_n, d_n] \cup \{x\}$ where for all $n = b_{n-1} < a_n < b_n < x$ and $x < c_n < d_n < c_{n-1}$ and $x \in \varphi(\bigcup_{n=1}^{\infty} [a_n, b_n] \cup \bigcup_{n=1}^{\infty} [c_n, d_n])$.

Definition 2 [1]. Let τ be the collection of all subsets U of R such that:

1. U∈ Tg

2. if $U \neq \emptyset$ and $x \in U$, then there exists a set $P \in \mathcal{P}(x)$ such that P_{C} int $U \cup \{x\}$.

Theorem 1 [1]. τ is topology on R, $\tau \in T_{ij}$ and if f is any \mathcal{I} -approximately continuous function then f is a continuous function with respect to τ .

In this paper we shall need the following lemmas:

Lemma 1 [4]. If 0 is an \Im -density point of a set A, then for every natural number n there exists a number $\delta_n > 0$ such that for every h, with $0 < h < \delta_n$ and for every natural k fulfilling the inequality $-n \le k \le n-1$ we have

$$A \cap \left[\frac{k}{n} \cdot h, \frac{k+1}{n} \cdot h\right] \neq \emptyset$$

Lemma 2 [2]. Let $G \subset R$ be an open set. Then 0 is an \Im -dispersion point of G if and only if, for every natural number n, there exist a natural number k and a real number $\delta > 0$ such that, for each $h \in (0, \delta)$ and for each $i \in \{1, \ldots, n\}$ there exist two natural numbers j_r , $j_1 \in \{1, \ldots, k\}$ such that

$$G \cap \left(\left(\frac{i-1}{n} + \frac{j_r - 1}{n \cdot k} \right) \cdot h, \quad \left(\frac{i-1}{n} + \frac{j_r}{n \cdot k} \right) \cdot h \right) = \emptyset$$

and

$$G \cap (-(\frac{i-1}{n} + \frac{j_1}{n \cdot k}) \cdot h, -(\frac{i-1}{n} + \frac{j_1-1}{n \cdot k}) \cdot h) = \emptyset$$

We shall use the above lemmas for $x \in R$ by translating the set if necessary.

Definition 3. Let f be a function having the Baire property defined on the closed interval [a, b]. We shall call upper symmetric \Im -approximate derivative of f at a point $c \in (a, b)$, $\overline{f}_{\Im-ap}^{S}(c)$, the greatest lower bound of all the numbers $\alpha(+\infty \text{ included})$ for which the set

 $\{t: \frac{f(c+t) - f(c-t)}{2t} \leq \alpha\}$

has 0 as a point of J-density.

Similarly we can define lower symmetric \Im -approximate derivative $\underline{f}_{\Im-ap}^{S}(c)$. When these derivatives are equal, their common value is termed symmetric \Im -approximate derivative of f at c and is written $\underline{f}_{\Im-ap}^{S}(c)$.

At the end points a and b, we mean $\overline{f}_{\Im-ap}^{S}(a) = \overline{f}_{\Im-ap}(a)$ and $\underline{f}_{\Im-ap}^{S}(b) = \underline{f}_{\Im-ap}(b)$ where $\overline{f}_{\Im-ap}$, $\underline{f}_{\Im-ap}$ is ordinary upper (lower) \Im -approximate derivatives (see [3]).

Theorem 2. If $f : \mathbb{R} \to \mathbb{R}$ is an \Im -approximately continuous function then $\overline{f}_{\Im-ap}^{S}(x)$ and $\underline{f}_{\Im-ap}^{S}(x)$ have the property of Baire.

Proof. First we observe that $\underline{f}_{\Im-ap}^{S}(x) = -(-\overline{f})_{\Im-ap}^{S}(x)$. Therefore it is sufficient to show that for each $a \in R$, $a = \{x : \overline{f}_{\Im-ap}^{S}(x) < a\}$ has the property of Baire.

Let $H(x, h) = \frac{f(x + h) - f(x - h)}{2h}$ for all $x \in R$ and h > 0. Let $a \in R$ and $\{a_m\}_{m \in N}$ be an arbitrary sequence such that, for each $m \in N$, $a_m < a_{m+1} < a$ and $\lim_{m \to \infty} a_m = a$. For each $m \in N$, we shall denote $B_m(x) = \{h > 0 : H(x, h) > a_m\}$ and $A_m = \{x : B_m(x) has an$ \Im -dispersion point at 0}. It is obvious that $A = \bigcup_{m=1}^{\infty} A_m$. Since for each $x \in R$ the function $H(x, h) : R^+ \to R$ is an \Im -continuous function therefore for each $x \in R$ and $m \in N$ we have $B_m(x) \in \tau$, int $B_m(x) \neq \emptyset$ and $A_m = \{x : int B_m(x) has an \Im$ -dispersion point at 0}.

Let $m \in N$ and $x \in R$. By lemma 2 we have that for each $n \in N$, there exist $k \in N$ and $p \in N$ such that, for each $\delta \in (0, \frac{1}{p})$ and for each $i \in \{1, ..., n\}$, there exists $j \in \{1, ..., k\}$ such that,

$$(\frac{(i-1)\cdot k+j-1}{n\cdot k}\cdot \delta, \frac{(i-1)\cdot k+j}{n\cdot k}\cdot \delta) \cap \text{ int } B_m(x) = \emptyset$$

Thus

$$A = \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{p=1}^{\infty} \bigcap_{\delta \in \{0, \frac{1}{p}\}}^{\infty} \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} D(m, n, k, p, \delta, i, j),$$

where D(m, n, k, p, δ , i, j) = {x : $(\frac{(i-1) \cdot k + j - 1}{n \cdot k} \cdot \delta$,

 $\frac{(i-1)\cdot k+j}{n\cdot k}\cdot \delta) \ o \ int \ B_m(x) = \emptyset\}.$

Let m, n, k, $p \in N$, $\delta \in (0, \frac{1}{p})$, $i \in \{1, ..., n\}$ and $j \in \{1, ..., k\}$. We shall show that $D = D(m, n, k, p, \delta, i, j)$ is a closed set with respect to τ -topology.

Let $x_0 \notin D$. Then there exists an open interval (α, β) such that $(\alpha, \beta) \subset \operatorname{int} B_m(x_0) \cap (\frac{(i-1) \cdot k + j - 1}{n \cdot k} \cdot \delta, \frac{(i-1) \cdot k + j}{n \cdot k} \cdot \delta)$. By \Im -continuity of the function $H(x_0, h)$ on (α, β) (see [4]), we know that there exists $h_0 \in (\alpha, \beta)$ such that, $H(x_0, h)$ is continuous at h_0 . Since $H(x_0, h_0) > a_m$ then there exist $\varepsilon_0 > 0$ and $\eta > 0$ such that,

(*) if
$$|h - h_0| < \eta$$
 then $\frac{f(x_0 + h) - f(x_0 - h)}{2h} > a_m + \varepsilon_0 > a_m$.

Let $\varepsilon < 2\varepsilon_0 h_0$. We shall consider the point $x_0 - h_0$. The function f is G-continuous at $x_0 - h_0$ and therefore $x_0 - h_0$ belongs to $\{t : |f(t) - f(x_0 - h)| < \frac{\varepsilon}{2}\}$ which is open with respect to topology τ . If $C = int \{t : |f(t) - f(x_0 - h_0)| < \frac{\varepsilon}{2}\} \cup \{x_0 - h_0\}$ then $C \in \tau$. Let $E = C \cap (-C + 2x_0 - 2h_0)$. We observe that $E \in \tau$, $x_0 - h_0 \in E$, for each $t \in E$, $-t + 2x_0 - 2h_0 \in E$ and

(**) for each $t_1, t_2 \in E$, $|f(t_1) - f(t_2)| < \varepsilon$.

In the similar way we can find the set F \in τ such that x_{O} + h_{O} \in F, for each t \in F, -t + $2x_{O}$ - $2h_{O}$ \in F and

(***) for each t_1 , $t_2 \in F$, $|f(t_1) - f(t_2)| < \varepsilon$.

Let $E_1 = (E \cap (x_0 - h_0 - \eta, x_0 - h_0]) + h_0$ and $x \in E_1$. Then $x - x_0 \in (-\eta, 0]$ and $x - h_0 \in E$. Therefore, if $h = x - x_0$ then $x_0 - h_0 + h \in E$ and $x_0 - h_0 - h \in E$. Then, by (*) and (**), we have that

$$\frac{f(x + h_0) - f(x - h_0)}{2h_0} = \frac{f(x_0 + h_0 + h) - f(x_0 - h_0 + h)}{2h_0}$$

The	Symmetrics	J-1	Approx	imate	Der:	ivati	ives
-----	------------	-----	--------	-------	------	-------	------

$$\frac{f(x_{o} + h_{o} + h) - f(x_{o} - h_{o} - h) - \varepsilon}{2h_{o}} > \frac{f(x_{o} + h_{o} + h) - f(x_{o} - h_{o} - h)}{2(h_{o} + h)}$$
$$- \frac{\varepsilon}{2h_{o}} > a_{m} + \varepsilon_{o} - \frac{\varepsilon}{2h_{o}} > a_{m}.$$

Therefore $x \notin D$.

Now, let $F_1 = (F \cap [x_0 + h_0, x_0 + h_0 + \eta)) - h_0$ and $x \in F_1$. In the similar way, by (*) and (***) we can show that $x \notin D$.

Let $M = F_1 \cup E_1$. Then $M \in \tau$, $x_0 \in M$ and $M \subset R \setminus D$. Thus D is a closed set with respect to τ -topology and by it, D has the property of Baire.

Now, it is obvious that A has the property of Baire and proof of theorem is complete.

In the similar way we can prove the following proposition:

Proposition 1. If $f : R \neq R$ is a continuous function then $\overline{f}_{\mathfrak{N}-\mathfrak{ap}}^{\mathbf{S}}(\mathbf{x})$ and $\underline{f}_{\mathfrak{N}-\mathfrak{ap}}^{\mathbf{S}}(\mathbf{x})$ belong to third class of Baire.

Theorem 3. Let f be a monotone function defined on open interval I. Then for each $x \in I \quad \underline{f}_{\Im-ap}^{S}(x) = \underline{f}^{S}(x)$ and $\overline{f}_{\Im-ap}^{S}(x) = \overline{f}^{S}(x)$.

Proof. We shall assume that f is a nondecreasing function. First we observe that for each $x \in I$, $\underline{f}^{S}(x) \leq \underline{f}^{S}_{g-ap}(x)$. Now we suppose that there exists $x_{o} \in I$ such that,

 $k_1 = \underline{f}^{s}(x_0) < \underline{f}^{s}_{g-ap}(x_0) = k_2.$

Let $0 < \varepsilon < \frac{k_2 - k_1}{2}$ and $B = \{h > 0 : \frac{f(x_0 + h) - f(x_0 - h)}{2h} \ge$ $\ge k_2 - \frac{\varepsilon}{2}\}.$

Since $f_{\Im-ap}^{S}(x_{o}) = k_{2}$, therefore 0 is a right-hand \Im -density point of the set B. Thus, by lemma 1,

(*) for each $n \in N$, there exists $\delta_n > 0$ such that, for each $0 < h < \delta_n$ and for each $0 \leq 1 \leq n-1$ $\left[\frac{1}{n} \cdot h, \frac{1+1}{n} \quad h\right] \cap B \neq \emptyset$. By assumption that $\underline{f}^S(x_0) = k_1 < k_2 - 2\varepsilon$, we know that there exists a sequence $\{h_n\}_{n \in N}$ such that, $\lim_{n \to \infty} h_n = 0$ and for each $n \in N$, $h_n > 0$, $x_0 + h_n \in I$ and

**)
$$\frac{f(x_{o} + h_{n}) - f(x_{o} - h_{n})}{2h_{n}} < k_{2} - 2\varepsilon.$$

We shall consider closed intervals $J_n = \left[\frac{f(x_0 + h_n - f(x_0 - h_n))}{2(k_2 - \epsilon)}, h_n\right]$ for each $n \in \mathbb{N}$ and we shall show that for each $n \in \mathbb{N}$ B $\cap J_n = \emptyset$. Indeed, if $h \in J_n$ then $\frac{f(x_0 + h_n) - f(x_0 - h_n)}{2(k_2 - \epsilon)} \leq h \leq h_n$. Thus, by monotonicity of the function f we have that

 $f(\mathbf{x}_{o} + \mathbf{h}) \leq f(\mathbf{x}_{o} + \mathbf{h}_{n}) \leq f(\mathbf{x}_{o} - \mathbf{h}_{n}) + 2\mathbf{h}(\mathbf{k}_{2} - \varepsilon) \leq f(\mathbf{x}_{o} - \mathbf{h}_{n}) + 2\mathbf{h}(\mathbf{k}_{2} - \varepsilon)$

and

$$\frac{f(x_0 + h) - f(x_0 - h)}{2h} \leqslant k_2 - \varepsilon.$$

Therefore h ¢ B.

Now, let $n_0 > \frac{k_2 - \varepsilon}{\varepsilon}$, $\delta_{n_0} \in \mathbb{R}$ such that δ_{n_0} and n_0 satisfy the condition (*). We choose $h_{n_1} \in \{h_n\}_{n \in \mathbb{N}}$ such that $h_{n_1} < \delta_{n_0}$ Then, by (**), we know that the length of the interval J_{n_1} equals $h_{n_1} - \frac{f(x_0 + h_{n_1}) - f(x_0 - h_{n_1})}{2(k_2 - \varepsilon)}$ and by simple computations we

know that it is not less then $\frac{h_{n_1}}{n_0}$. Thus $\left[\frac{n_0 - 1}{n_0} \cdot h_{n_1}, h_{n_1}\right] \subset J_{n_1}$ and by above $\left[\frac{n_0 - 1}{n_0} \cdot h_{n_1}, h_{n_1}\right] \cap B = \emptyset$ which gives a contradiction.

To prove of $\overline{f}_{\Im-ap}^{S} \equiv \overline{f}^{S}$ we observe that for each $x \in I$ $\overline{f}_{\Im-ap}^{S}(x) \leq \overline{f}^{S}(x)$. Now, we suppose that there exists $x_{o} \in I$ such that

$$k_1 = \overline{f}_{\Im-ap}^{S}(x_0) < \overline{f}^{S}(x_0) = k_2$$

Let $0 < \varepsilon < \frac{k_2 - k_1}{2}$ and $C = \{h > 0 : \frac{f(x_0 + h) - f(x_0 - h)}{2h} \leq$

 $\leq k_1 + \frac{\varepsilon}{2}$. Since $\overline{f}_{\Im-ap}^s(x_0) = k_1$, therefore 0 is a right-hand \Im -density point of the set C.

Thus, by lemma 1

(***) for each $n \in N$ there exists $\delta_n > 0$ such that, for each $0 < h < \delta_n$ and for each $0 \le 1 \le n-1$ $\left[\frac{1}{n} \cdot h, \frac{1+1}{n} \cdot h\right] \cap C \neq \emptyset$.

74

By assumption that $\overline{f}^{s}(x_{0}) = k_{2} > k_{1} + 2\varepsilon$, we know that there exists a sequence $\{h_{n}\}_{n \in \mathbb{N}}$ such that, $\lim_{n \to \infty} h_{n} = 0$ and for each $n \in \mathbb{N}$, $h_{n} > 0$, $x_{0} + h_{n} \in \mathbb{I}$ and

$$(****) \frac{f(x_0 + h_n) - f(x_0 - h_n)}{2h_n} > k_1 + 2\varepsilon.$$

We shall consider the closed intervals $J'_n = [h_n, \frac{f(x_0 + h_n) - 2(k_1 + \epsilon)}{2(k_1 + \epsilon)}$ - $\frac{f(x_0 - h_n)}{for all n \in \mathbb{N}}$ and in the similar way as above we can prove that

Now, let $n'_{O} > \frac{k_{1} + \varepsilon}{\varepsilon}$ and $\delta'_{n_{O}} \in \mathbb{R}$ such that $\delta'_{n_{O}}$ with n_{O} satisfy the condition (***). We choose $h'_{n_{1}} \in \{h_{n}\}_{n \in \mathbb{N}}$ such that $h'_{n_{1}} < \delta'_{n_{O}}$. Then, by (****), we know that length of the interval $J'_{n_{1}}$ is not less then $\frac{h'_{n_{1}}}{n_{O}}$. Thus $\left[\frac{n'_{O} - 1}{n_{O}} \cdot h'_{n_{1}}, h'_{n_{1}}\right] \cap \mathbb{C} = \emptyset$ which gives a contradiction and proof of the theorem is complete.

Corollary. If f is a monotone and symmetrically J-approximately differentiable function on an open interval I then f is a symmetrically differentiable function.

REFERENCES

- [1] E. Łazarow, The Coarsest Topology for J-approximately Continuous Functions (to appear in Math. Ustav. Univ. Karlovy).
- [2] E. Łazarow, On the Baire Class of J-approximate Derivatives (to appear in Proc. Amer. Math. Soc.).
- [3] E. Łazarow, W. Wilczyński, 𝔅-approximate Derivatives (to appear).
- [4] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A Category Analogue of the Density Topology, Fund. Math. 125 (1985).

Institute of Mathematics University of Łódź Inga Libicka, Ewa Łazarow

J-APROKSYMATYWNA SYMETRYCZNA POCHODNA

W pracy tej podana jest definicja J-aproksymatywnej symetrycznej pochodnej funkcji. f : R + R i udowodnione są pewne własności tej pochodnej, które zachodzą również dla aproksymatywnej symetrycznej pochodnej. A mianowicie pokazano, że przy założeniu J-ciągłości funkcji f J-aproksymatywne symetryczne pochodne górna i dolna posiadają własności Baire a oraz że pochodne te są równe pochodnej symetrycznej odpowiednio górnej i dolnej w przypadku gdy funkcja f jest funkcją monotoniczną określoną na przedziale otwartym.