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THE SYMMETRIC O -APPROXIMATE DERIVATIVES

in this paper we shall give a definition of a symmetric *3 -approxi-
mate derivative of a function f : R »R. We shall prove several pro-

perties of its 3 -approximate derivative.

Throughout this paper i will denote the family of all subsets
of R (the real line) having the Baire property, o will denote
sigma ideal of sets of the first category. For two sets A, B c R,
A~ B will mean that A nBe 0. For ae R and Ac R we denote
aA={ax :xe A and A-a={x-a:xeA}. Recall 41
that O is an TJ-density point of a set Ae if and only if

XM <A n [-1, 1] - 1 i.e. if and only if for every incre-
asing sequence (nmjnen natural numbers there exists a subsequ-

ence {n~"} ~~ ~ such that x, A n [LAC 3] _ i except

on a set belonging to 9 (in abbr. «3-a.e.). A point xQe R is an

J-density point of A£<£ if and only if O is an ‘3-density point
of A - Xo - The set of all -density points of A will be denoted
by (A). Recall that $ has the following properties: for each
Ae £ &H(A)~A; for each A, Be 6 if A~ B then ®CA) = 4@B);
<M0) =0; 4® =R; for each A, Be % 4(An B = 4@ n 4>B).

Further the family Tg = {A 6 ii : A c <)} is a topology,
which we call D-density topology (see [4]).-

Real functions continuous with respect to topology we call
the <8-approximately continuous functions.

In [1] was introduced the topology t such that t is a coarsest
topology making all *3-approximately continuous functions con-
tinuous .



Throughout this paper cl(A), int(A) will denote closure and
interior of the set A with respect to natural topology. Except
where a topology is specifically mentioned, all topological no-
tions are with respect to the natural topology.

Definition 1 [I]. For x e R by <P(X) we will denote the fami-
ly of all closed intervals [a, b] such that x e (@, b) and of

all interval sets fi [a,, b 1u U [c, d]1 U {x} where for all n
ol n n n- n n
bn-1 <an <bn <x and x <cn <dn <cn-1 and x e bm

u RjCn® dn]>-

Definition 2 [1]. Let t be the collection of all subsets U of
R such that:

1. Ue Tg

2. iIfFOM and x e U, then there exists a set P e 9(x) such
that Pc int U u {x}.

Theorem I [1]. t 1is topology on R, t ~ Tq and 1if f 1is any
0 -approximately continuous function then ¥ is a continuous func-
tion with respect to t.

In this paper we shall need the following lemmas:

Llemma i [4] - If O is an $S-density point of a set A, then for
every natural number n there exists a number >0 such that

for every h, with O < h < 6n and for every natural k fulfilling

the inequality -n i ki1 n-1 we have

Anf mh- ek > x>

Lemma 2 [2] - Let G ¢ R be an open set. Then 0 is an *3-dis-
persion point of G if and only if, for every natural number n,
there exist a natural number k and a real number 6 > 0 such
that, for each he (0, i) and for each 1 e {1, ..., n} there
exist two natural numbers jr, e {1, k} such that

O""Hrl*VArlee< 'H-1+j"n;1le>»-8
and
0n +TA> eh" —«H-1+ «h) =0

We shall use the above lemmas for x e R by translating the set
if necessary.



Definition 3. Let f be a function having the Baire property de-
fined on the closed interval [a, b]. We shall call upper symmetric
‘3-approximate derivative of f at a point c e (a, b), *g-ap*c/”
the greatest lower bound of all the numbers a(+ < included) for
which the set

1 - 2t -
has 0 as a point of &a-density.

Similarly we can define Jlower symmetric *3-approximate deriva-
tive fr\].‘d(c)_ When these derivatives are equal, their common
value is termed symmetric -approximate derivative of f at c and
is written fg_ap<c)*

At the end points a and b, we mean ~-ap™) = ~"-ap”a* and
Ig-ap(®) = icj-ap(b) where Vap*® **_ap is ordinary upper (lower)

3-approximate derivatives (see [3])-
Theorem Iff R E is an 3-approximately continuous func-

tion then fA_ap() and ¢]_ap() have the property of Baire.
Proof. First we observe that fq ap(X) = -(-f)g-ap X)-The*
refore it is sufficent to show that for each ae R, a set A =

= {x:f« “dp(x) < a} has the property of Baire.

Let H(X, h) = K x "£1 h) for an x e R and h > 0. Let
ae R and {arn mE M be an arbitrary sequence such that, for each

meN, a <a ., <a and lim_am = a. For each m e N, we shall
m m+1 n = <

denote Bm(X) = {h > 0 : H(X, h) >am) and Ah* {x : Bn(X) has an
®

‘3-dispersion point at O}. It is obvious that A = 1J A . Since for
m«l

each x e R the function H(x, h) : R =R 1is an 3-continuous func-
tion therefore for each x e R and m e N we have ®m”™~"6 T-
int Bhn®) # 0 and = {x : int Bm() has an ~-dispersion point
at 0}

Let m6 N and xe R. By letma 2 we have that for each n e N,
there exist ke N and p 6 N such that, for each 6 e (0, |) and

for each 1 s {1, n), there exists js {1, ..., k> such that,
U -1 - . 6f ~ P nintBn®X =0

Thus



where D(m, n, k, p, 6, i, J) = {x : ™Mm . £ N "4
b ~-0- kt-1 «5)n intB ()= 01.
n ek m
Let m, n, k, peN, 6e (O, ~), ie {1» eee>n) and 3 e {I»

..., k}. We shall show that D = D(m, n, k, p, 5, i, J) is a closed
set with respect to x-topology.

Let x O D. Then there exists an open interval @, @ such
that (@, 0) c int Bn(xQ) n (d n" .kk+ 2 “ "6"11 N €k N "6
By <8-continuity of the function H(xqg, h) on (@, @ (see [4]), we
know that there exists hQ e (a, 8) such that, H(xQ, h) 1is conti-
nuous at hQ. Since H(xQ, hQ) > am then there exist eQ > 0 and

n > 0 such that,

f(x0 + h) - f(x - h)
( if |h - hQ] <n then ——————- M- >am + Eo > am*“

Let e < 21Qho. We shall consider the point xQ - hQ. The func-

tion T is <3-continuous at xQ - hQ and therefore xQ - hQ belongs

to {t : |f() - F(x - h)] < which is open with respect to to-
pology t. If C = int {t : |f(t) - FTXQ - hQ)] < ® u xqg ” hQ}
then Cs t. Let E =Cn (-C + 2x0 - 2hQ). We observe that E e t,
xO —hoe E, for each te E, -t + 2xu - 2h e E and

~ N for each t, t2 E, |F() - f(t2)] < e.
In the similar way we can find the set F e t such that xQ + hQ e F,
for each te F, -t + 2xQ - 2hQ e F and

n ® for each t, t2 e F, |fF(x) - F(t2)] < e.

Let E~ = (En (XQ - hQ - n, xO "™ hQ]* + h0O and 116 Ei* Then x
-xQ e (-n, 0] and x - h0O e E. Therefore, if h = x - xQ then xQ -
- h0 + h 6 E and Xy = ho - h e E. Then, by (*) and (**), we have
that

fx *+ hQ) - f(x - hp) = f(xp + hQ + h) - F(xQ - hQ + ) ~



f(xo + ho + h) " f(xo “ ho " h) “E f(xo+h0O+h) - F(xQ - hQ - h)
> 2(h0 + h)

" > am + Eo > am-

Therefore x g D.

Now, let F1 = (Fn [XQ + hQ, xQ + hQ + n)) - hQ and x e F~/.
In the similar way, by (*) and (***) we can show that x # D.

Let M = u . Then Met, xQe M and M c R\D. Thus D
is a closed set with respect to T-topology and by it, D has the

property of Baire.
Now, it is obvious that A has the property of Baire and proof

of theorem is complete.
In *he similar way we can prove the following proposition:
Proposition 1. If £ : R + R 1Is a continuous function then

f%“gp(x) and f%—ap () belong to third class of Baire.

Theorem 3. Let f be a monotone function defined on open inter-

val I. Then for each x e I Ffrap(X) = fs( and f*_ap(x> = fSX)-
Proof. We shall assume that f is a nondecreasing function.
First we observe that for each x e I, fs() < '_fgl?_ap(x)- Now
we suppose that there exists xQ e | such that,

= fS(xD> <4 _ap(x0) = k2.

k, -k, f(x +h)y - f(x - h)
Let 0 <e <-=-5- - and B={h >0 : ——————— jh——-2———— n

Since I?i_ap(x0) = k2" therefore 0 is a right-hand <3-density
point of the set B. Thus, by ieram i.

™ for each ne N, there exists 6n > 0 such that, for each

0 <h <6n and for each 0~ 14 n-1 e h, 1 h] n B # O.
By assumption that fS(x0) = k™ < k2 - 2e, we know that there
exists a sequence {h } __ M such that, jjl_i,\rp)o h, = 0 and for each

neN, hn>0’ xé+hﬁel and

<**)y fx~+h )-FfXxx - h)
< k, - 2e.
Thn



f(x0* hn - F(xQ - hn)

We shall consider closed intervals JR = [———- - ,
h I for each ne N and we shall show that for each n e N
n fx +h)-f(x -h) h~h
B nJdn=0. Indeed, if he then -——- 2(k» -T) —-—--5 n*

Thus, by monotonicity of the function f we have that

fF(xXQ + h) « F(xQ + hn) « F(XQ - hn) + 2h(k2 - e)s F(xQ - hn) +
+ 2h(k2 - )
and

f(xQ + h) - f(xQ - h)
2h

Therefore h $ B.

k,
Now, let nQ > -E= , 6n e R such that 6n and nQ satisfy
the condition (*). We choose hn”s ne N such that hn”™ < 6n .

Then, by (**), we know that the length of the interval JR equals
f(xQ +h >-Ff(xXQ - h )

h e = and by simple computations we
22 - e)
know that it is not less then DD—I. Thus [99— i h _,h 3 c J
n no ni nl nl
n -1 B B
and by above — <«h_,h 1 n B =0 which gives a contra-
L nU ﬂ1 11‘1.,

diction.

To prove of fg_ap = ?S we observe that for each xel f*_ap(X)

< fs(X). Now, we suppose that there exists xQe | such that

kl = M"-ap<xo> < iS(xo> = k2-
k, - k. f(x +h) - f(x - h)
Let 0 < e < N~ and C=¢h >0 1 ————————— n n
4 + <8} Since f®-ap(xo> = kI" therefore 0 1is a right-hand

m3-density point of the set C.
Thus, by lemma 1

1 *** for each n e N there exists 5n > 0 such that, for each

O<h<e6n and for each 0 < 1 <n-1 [ <h, 1 -h] n C# O.



By assumption that fs(Q) = k2 > kK* + 2c, we know that there

exists a sequence {hn) n g N such that, lim hn = 0 and for each

ne N, hn >0, x0 + hnel and

¢***) ftxo * hn* "™ f(xo " hn} k ,
2hn > ZE*

We shall consider the closed intervals Jn = Ehn’ ——————2—(T(7\—;—e)-.

-fx -h) ) o
—————————— — 1 and in the similar way as above we can prove that
for all neN CnJd~"=0.

Now, let n* > ————— and S° e R such that 6" with n"
o n0 n

Q o]
satisfy the condition (***). We choose h™ e {hn} n e N such that

h® < 6" . Then, by (****), we know that length of the interval
1 o h>

J- is not less then — . Thus F -— <h®" , h®"]InC = 0 which
nl no no nl nl

gives a contradiction and proof of the theorem is complete.

corollary. If f is a monotone and symmetrically 0O -approxima-
tely differentiable function on an open interval | then F is a
symmetrically differentiable function.
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Inga Libicka, Swa Lazaroéw

0 -APROKSYMATYWNA SYMETRYCZNA POCHODNA

W pracy tej podana Jest definicja "Sl-aproksymatywnej symetrycznej pochodnej
funkcji, ¥ : R » R 1 udowodnione sa pewne whkasnosci tej pochodnej, Kktore za-
chodza roéwniez dla aproksymatywnej symetrycznej pochodnej. A mianowicie poka-
zano, ie przy zatozeniu O-ciggtosci funkcji f 0 -aproksymatywne symetryczne po-
chodne gérna i dolna posiadaja wkasnoéci Baire a oraz ie pochodne te S3a
rowne pochodnej symetrycznej odpowiednio goérnej i dolnej w przypadku gdy fun-

kcja f Jjest funkcja monotoniczng okreslong na przedziale otwartym.



