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LOCAL CONTROLLABILITY
OF STATE CONSTRAINED LINEAR SYSTEMS

This paper deals with a comprehensive solution of the ILC problem 
for a linear system with a state constraint. There is considered the 
system x e Ax + V, x(0) » 0, <x, 1>)0, where x e Rn, V c Rn, 1 jt 0,
A is a matrix of corresponding dimension.

1. INTRODUCTION

The property of a linear control system to be small time lo
cally controllable (abbreviated further as ILC - Instantaneously 
Locally Controllable) plays an important role and was comprehen
sively studied in a great number of papers, among which we shall 
mention B r a m m e r  [2], B i a n c h i n i  [1], S u s- 
s m a n n [4] and V e l i o v  [5], where the ILC problem 
was completely solved for arbitrary control constraints. However, 
to the authors' knowledge, there are no results concerning the 
ILC property of a state constrained linear system, despite that 
this is the case in many economical and physical models.

In the present paper we give a comprehensive solution of the 
ILC problem for a linear system with a state constraint. The 
exact formulation is the following. We consider the system
(1.1) x g Ax + V, x(0) = 0, <x, 1> > 0,
where x e Rn, V c Rn, 1 t 0, A is a matrix of corresponding 
dimension. Denote by R(t) the reachable set of (1.1) on [0, t], 
that is, the set of all points x(t) where s -*• x(s) is an abso
lutely continuous function on [0 , t] satisfying the relations 
in (1.1) for almost every s e [0, t]. Since R(t) is a subset of 
the half-space



n+ = {x: <x, 1> £ 0 }, 
the ILC property can be defined as

0 e intn R(t) for every t > 0,
+

where intn is the interior in n,.

We show in the next section that the above property is very 
strong and holds only under quite restrictive conditions. For 
this reason, in sections 3 and 4 we characterize the "expansion 
cone" of R(•) at t = 0, which gives a comprehensive informa
tion about the evolution of the reachable set at t = 0. In doing 
this we use ideas of F r a n c o w s k a  [3], W a l c z a k
[8] , V e l i o v  and K r a s t a n o v  [6] , [7] .

2. NECESSARY CONDITIONS FOR ILC

The results of this section will point out the importance of 
the existence of a vector v e V such that <v, 1> < 0. If such a 
vector does not exist, then system (1.1) is ILC only under rather 
specific conditions which are easily checkable, as seen below.

PROPOSITION 2.1. Let system (1.1) be ILC and let <v, 1> £ 0 
for every v e V. Then the following conditions are fulfilled:

(i) 1 is an eigenvector of the matrix A* (* means transposi
tion) ;

(ii) there is v e V such that <v, 1> > 0;
(iii) the system

x e Ax + V fl nQ, x( 0 ) = 0,
is ILC when is considered on 

nQ = {x: <x, 1> = 0 }
(in view of (i), nQ is invariant with respect to A).

P r o o f .
(i) For an arbitrary trajectory x(-) of (1.1) on [0, t],

<x(s), 1> = <Ax(s), 1> + <v, 1> > <Ax(s), 1>.
If <x(t), 1> = 0, since <x(s), 1> > 0, we have

t t
0 = <x(t), 1> = <x(s), 1> + / <x (t ), l>dT > f <Ax(t), 1> dx

s s



for every s £ t, which implies <Ax(t), 1> S 0. Since (1.1) is sup
posed to be ILC, we conclude that the equality <x, 1> = 0 must 
imply <Ax, 1> g 0 or, equivalently, <Ax, 1> = 0, which holds if 
and only if A*1 = al for some a.

(ii) If <v, 1> = 0- for every v e V, then 
<x(s), 1> = <Ax(s), 1> = a<x(s), 1>,

which shows that <x(s), 1 > = 0 for every trajectory x(•) of (1 .1 ).
(iii) If x(•) is a trajectory of (1.1) on [0, t], correspon

ding to some v(*), v(s) e V, then y(s) = <x(s), 1> and w(s) = 
= <v(s), 1> satisfy

ÿ = ay + w, y(0 ) = 0 , w(s) ^ 0 , 
which apparently gives that if y(t) = 0 , then y(s) = w(s) = 0 
for every s e [0, t], which means that v(s) e V D nQ. Hence, the 
ILC of (1.1) implies (iii).

REMARK 2.1. Necessary and sufficient conditions for (iii) are 
given in the above-mentioned papers [1], [2], [4], [5].

In the "unconstrained" case, V = BU, U C Rr, 0 e int U, B - 
(n x r) - matrix, the inequality <v, 1> > 0 holds for every v e V 
if and only if B*1 = 0. In this case, property (ii) in Propo
sition 2.1 is never satisfied, which implies the following

COROLLARY 2.1. If B*1 = 0, then the system
(2.1) x 6 Ax + BU, <x, 1> S 0 
is not ILC.

If B*1 # 0, then a necessary and sufficient condition for 
the ILC of (1.1) can be extracted from the more general results 
in [6] and [7], but it will also be obtained as a consequence of 
the results in the next sections.

3. DIRECTIONS OF EXPANSION OF THE REACHABLE SET

Consider in Rn system (2.1), where U s Rr, 0 e int U and A 
and B are of corresponding dimensions. As seen in the previous 
sections, the condition B*1 ^ 0 is necessary for the ILC of
(2.1). This condition, however, is not fulfilled by many systems 
of interest. Fçr this reason, we shall use the notion of direc
tion of expansion of the reachable set to characterize its local 
behaviour at t = 0 .



DEFINITION 3.1. The vector p e Rn will be called direction of 
expansion of R(•) if there is strictly positive function y (•) 
defined for t > 0 , such that

lim dist(u>(t)p, R(t) )/a>(t) = 0. 
t-»o T

The function (p (•) can be considered as a lower estimate of 
the speed of expansion of R(•) in the direction p.

It is also reasonable to apply the same definition to the 
mapping t ■* R(t) n nQ, insted of R(t), coming in this way to the 
notion of direction of expansion of R(t) in nQ. By D (or D ) we
shall denote the set of all directions of expansion of R(•) (resp. 
in no).

The above notion can be illustrated by the simplest example 
x = y, x t 0 , 
y = u.

Here D = {(p, q); p * 0}, while Dq = {(0, -1)}.
We shall also mention that p e D implies that for any o > 0, 

e > 0 and t > 0, the inclusion ape R(t) + 0(e) holds, provided 
that the set U is sufficiently large (depending on p, a, t and 
e), (0 (e) denotes the ball with radius e, centered at the origin 
of the respective space).

LEMMA 3.1.
(i) D and Dq are convex cones;
(ii) D and Dq are closed;
(iii) if p e int D or p e intn D, then

o
m ) p  e R(t), (resp. m ) p  e R(t) n nQ) for some strictly positive 
function ')'(•)» (i.e. in this case p is a direction of expansion 
of R(') in a stronger sense, as all vectors from D in the examp, 
except for (0 , 1 ).

P r o o f .
(i) Follows apparently from the definition and from the con

vexity of R(t).
(ii) Let p. e D and lim p. = p # 0. Let («,(•) be the func-

K k->“> T k
tion from Definition 3.1. Then, given t > 0, we have cpk(t)pk = 
= *k(t) + °k(t) for some xk(t)eR(t) and ok(-), such that ak(t) =



= ok(t)/cpk(t) tends to zero with t. We shall define a sequence 
s^, s2, ... as follows: s^ is such that a^(s)£;l for s e [0 , s1] 
and inductively, sk+1 < sk /2 is such that £ l/(k + 1 )
for s e [0, sk+1]. Define

a (s) = ak(s) if s e (sk+1, sk),
1 if s > s,*1 *

Since (sk) tends to zero, a(s) is correctly defined for s > 0. 
Moreover, for s < sk, we have ot(s) = ak, (s) < 1/k' < 1/k for 
some k 1 £ k, which means that a(s) goes to zero with s. Now, 
define, for t < s , the integer k(t) by the requirement t e

*sk(t)+l' sk(t)^ and the function = <f’k(t)*t *' We have
(f(t)p = <fk(t)(t)P = <Pk(t)(t)Pk(t) + ^k(t)(t)lp - Pk(t)J 

= xk(t)(t) + °k(t)(t) + ^ M p  " Pk(t)>-
since G R(t)r it remains to prove that

--- >0.{°k(t)(t) + V(t) (P - Pk(t)) }/<f(t)-----

For the second term, this follows from the obvious property 
k(t) +« as t -*■ 0. Moreover,

°k(t)/<<’(t) = °k(t)^k(t)(tl = “k(t)(t) = “(t) “*■ °' 
which completes the proof of (ii).

(iii) The proof uses in a standard way the convexity and the 
monotonicity of R(t).

As a consequence of Lemma 3.1 (iii) we obtain that if D = n+
and D = n , then (2.1) is ILC. If only D = n,, then (2.1) is only o o +
"approximately" ILC, in particular, cl R(t) = n+ for every t > 0 
if U = Rr (as in the example considered above).

In the next section we shall describe constructively the cones 
D and Dq.

4. CHARACTERIZATION OF THE EXPANSION CONES

Let k be the smalest integer such that 
<AkBu, 1> > 0 for some u e Rr.



If such a k does not exist, then R(t) c nQ for every t and the 
set D = Dq can be characterized in the standard way (there is no 
more state constraint) related to the Kalman rank condition. 
Thus we can suppose that the integer k exists.

Denote b = Bu and define the matrix C by
(4.1) Cu = Bu - p<AkBu, l>b

)rwhere p = 1/<A Bu, 1>. Consider the system
(4.2) x e Ax + CU + b[-l, 1].

Obviously, the sets D and Dq do not depend on the "size" of 
the set U since 0 e int U, and that is the only difference be
tween (2.1) and (4.2). We shall consider the system (4.2) which 
is in a more convenient form, because of the relations

<Cu, 1> = ... = <AkCu, 1> = 0, u e Rr.
Now, introduce the matrix P by

k+iPx = Ax - p <A x, l>b.
By [c]̂  we shall denote the j-th column of C.

THEOREM 4.1. The expansion cones Dq and D of the reachable 
set of system (2 .1 ) are

DQ = cone {±Pi[p]j, i = 0, ..., n - 2, j = 1, 2, ..., r, 
±Pmb, m = 0, ..., k - 2, -Pk-1b, Pk+1b},

D = cone {Dq, Pk_1b, Pkb}.
(here cone denotes the convex conic hull).

P r o o f .
1. First, we shall prove that Dq and D contain all the vec

tors listed above, having Lemma 3.1. in mind.
Define a subspace S of nQ by

S = {x e Rn; <x, 1> = ... = <Akx, 1> = 0}.
From (4.1) we get Cu e S for every u e Rr. Moreover, the space S 
is invariant with respect to P, which follows from the equalities

<AiPx, 1> = <Ai+1x, 1> - p<Ak+1x, l><Aib, 1> = 0 
for i = 0, ..., k and x e s. Hence the system 

x e Px + CU, x(0) = 0, 
can be considered as a system on S. Moreover, if x(*) is its tra
jectory, then



k+1x(s) 6 Ax( s) - p<A x(s), l>b + CUsAx(s) + CU + b[-l, 1] 
if only x(s) is sufficiently small. From this, by a standard 
argument, we conclude that

±P^[c]j € Dq, 1 = 0 , ..., n - 2 , j = 1 , ..., r.
Now, take a measurable v(•) on [0, 1], |v(s)| £ 1, and deno

te vt(s) = v(s/t) for t > 0. Let us apply vfc(*) on [0, t] as a 
selection of [-1, 1] in (4.2). The solution xfc(*), corresponding 
to the zero-selection of U, is then a trajectory of (4.2) and is 
given by

x̂ _(s) = / eP(s-T)b • v (x)dT = t 8f eP(s_0t)b, v(6 )d0 . 
c 0 0

Denoting <o = s/t, we have

x (s) = tf ePt(u"0)b • v(0)d9 = I ti+1pib / ^■P)1v(0 )d0■ 
t 0 i=0 o 11

l / n _ Q \ i  ” i il i
Denote 0, = / * : , 1 - v(0)d0. Then x(t) = I t* ■L|3,Pib. The tra-

1 0 11 i~0
jectory xt(*) satisfies the state constraint in (2 .1 ) if and only 
if

<x(s), 1> = I ti+1<Pib, 1> J ^  Tv9  ̂ v(0 )d0 
i-0 0 11

_ tk+l “ v(0)d0 <Pkb, 1> > 0.
0

for every u e [0, 1]. We used here the relations <P^b, 1> = 0 for
i t k, which easily follows from the definition of P and the 
property of k.

Thus, we obtained that the trajectory xt(-) on [0, t], cor
responding to v(*), satisfies the state constraint if and only if

J r V( 0 ) d 0  > 0 ,  to 6  [ 0,  1 ] .
0 K1

Moreover, xt(t) e nQ if and only if = 0 .
Now, take m e {0, ..., k - 2} and an arbitrary k + 1 - times 

differentiable function cp(*) on [0 , 1], satisfying the relations



( i )  cp C 0)  = <p'(0) = . . .  = <p( k ) ( 0)  = 0 ,

(ii) if (1) = 0, <i>(k"m) (1) = 6, cp(k_m+1) (1) = ... = </k) (1) - 0 
where 6 is equal to 1 or to -1 .

(iii) (f(w) i 0 , w e  [0 , 1].
Such a function obviously exists since m i k - 2. Observe that 

for m = k - 1 , ip (•) with the above properties also exists but if 
6 = -1. Defining v(s) = <^k+^  (s), we obviously have

<p(w) = / ;e}k v(0 )d0 
0 K1

and, moreover, pi = <f>(k_i)(l), i = 0, ..., k. From (ii) and (iii) 
we conclude that

xfc(t) = 6tm+1Pmb + o(tm+1) e R(t) n nQ,

which means that ±Pmb e DQ, m = 0, ..., k - 2 and -Pk-1b e Dq.

If we remove the requirement <p(l) = 0 in (ii), then obviously
if(') exists also for m = k - 1 and 6 = 1 .  Hence Pk_1b e D. Taking 
m = k and replacing (ii) by

(ii') <p(l) = 1 , tp(l) = ... = <p(k) (1 ) = 0 ,
Jrwe get P b e D.

k+1The inclusion P b e Dq can be proved in the same way by 
using a (k + 2 )-times differentiable function ¥(•) on [0 , 1], sa
tisfying the relations

(i) ¥(0 ) = <i"(0 ) = ... = V(k+1 )(0 );
(ii) m )  = 1 , t'(l) = ... = 4'(k+1 )(l) = 0
(iii) Y'(w) * 0 , for a) e [0 , 1] .
Thus, the first part of the proof is completed.
2. We shall prove that Dq and D do not contain more vectors 

than is claimed by Theorem 4.1.
Denote

SQ = Lin (Cu, PCu, ..., Pn-2Cu; u e Rr},
= Lin {b, ..., Pm_1b}.

Let q be an arbitrary element of D (or of DQ). By definition,



there are functions <p (-) and o( •), cp(t) > 0 , o( •)/Cf>(t), tending 
to zero with t, such that

cp (t) q + o(t) e R(t) (resp. R(t) fl nQ).
Let ut(-): [0, t] -► U and vt(-): [0, t] -► [-1, 1] be such 

that the corresponding trajectory xfc(') of (4.2) satisfies the 
state constraint <xt(s), 1> * 0 , s e [0 , t] (resp <xt(t),l> = 0 , 
in addition) and

(p(t)q + o(t) = xt(t).
Changing the variable in the Cauchy formula for xfc(*) and denoting 
u = s/t, we get

(4 .3 ) Xj_(s) - t / etP(a,"0 )b, v. (te)de + ?(t, u)
r 0

= I t1+1pib S’. (t, u>) + ?(t, u>) 
i-0

where ?(t, oj) e SQ and ^(t, u) are defined in an obvious way. 
The inequality <xt(s), 1> I 0 is satisfied if and only if

. a) k
(4.4) *k(t, u) = / (<*> - 9L- vt(te)de I 0, u> e [0 , 1].

Then ^ k+1 (t, u) = Yk(t, w) > 0 and \ +1 (t, 1) = max i'»'k+1 (t, u>); 

w e  [0, 1]}. Hence

Hk+2 (t' u) = f0 '*'k+l(t' T)dT * q \ + l (t' 1)dT - yk+l(t' X)

and, successively,
H'i(t, u>) < U *  i > k + 1 .

Taking (4.3) into account, we obtain

q»(t)q + O (t ) = 2̂  t P b Y.(t, 1) + t* \ +1<t, l)i(t) + 

+ C(t, 1)
k+2where $(t) is bounded. From this we easily get q e M + SQ,

k+1 k+1
and since 1 ) £ in fact» <3 e cone <M + So' P b}'
which completes the proof of the representation of D.

If q e Dq, then Vk(t, 1) = 0 and, because of (4.4) and



\_l<t, = g“ 1 ̂ ' we obtain 4'jc_ 1 (t, 1 ) ś 0 , which easily

implies that q e cone {Mk_1 + SQ, - Pk_1b, Pkb}. The proof is com
pleted.
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LOKALNA STEROWALNOŚĆ UKŁADÓW LINIOWYCH 
Z OGRANICZENIEM NA STAN

W pracy rozważa się problem momentalnej lokalnej sterowalności liniowego
układu z ograniczeniem na współrzędne stanu.


