ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 5, 1992

Marek Balcerzak

ORTHOGONAL *σ*-IDEALS AND ALMOST DISJOINT FAMILIES

Two σ ideals I and J of subsets of an uncountable set X are called orthogonal if there are $A \in I$ and $B \in J$ such that $A \cup B = X$. For a family M of σ -ideals on X, we formulate three problems concerning orthogonality. We solve them in the case when M consists of all σ -ideals generated by almost disjoint families on ω_1 .

1. ORTHOGONALITY OF σ-IDEALS

Recall that measures μ and ν defined on a σ -algebra Σ of subsets of a given set X are orthogonal if there is a set $A \in \Sigma$ such that $\mu(A) = 0$ and $\nu(X \setminus A) = 0$. This definition can obviously be reformulated in the language of σ -ideals (consisting of sets on which the measures vanish). That leads to a general definition of orthogonal σ -ideals (cf. [6], [15]).

We shall use the standard set-theoretical notation (see [7]). Throughout the paper, we assume that X is an uncountable set, and that each σ -ideal of subsets of X contains all singletons and does not contain X. We then use the phrase "a o-ideal on X". By $[X]^{\leq \omega}$ we denote the family of all countable subsets of X. Thus each σ -ideal on X contains $[X]^{\leq \omega}$. We say that a σ -ideal J on X is generated by $\mathcal{F} \subseteq \mathcal{P}(X)$ if each set in \mathfrak{I} is contained in the union of a countable subfamily of F . Two o-ideals I and I on X are called orthogonal (abbr. $\Im \perp \Im$) if there is $E \in \Im$ such that $X \setminus E \in \Im$. We then say that 7 is an orthogonal complement of J. It is obvious that if I, I', I, I' are σ -ideals on X fulfilling $\Im \subseteq \Im'$ and $\Im \subseteq \Im'$, then $\Im \perp \Im$ implies $\Im' \perp \Im'$.

The well-known fact that the real line \mathbb{R} is a union of a Lebesgue null set and a set of the first category (briefly: a meager set) yields a classical example of orthogonal σ -ideals (cf. [12]; for the generalizations, see [8]). New nontrivial examples of orthogonal σ -ideals were given in [11], [9], [13], [14] and [1], [2]. The orthogonality of σ -ideals appears in the Sierpiński-Erdös duality theorem (see [12]) which, besides the classical case concerning Lebesgue null sets and meager sets, can be applied to other pairs of σ -ideals (see [2] - [4]). Note that in this theorem (originally formulated for X = \mathbb{R}) the Continuum Hypothesis (CH) is assumed. Some special properties of orthogonal ideals are observed in [6] and [15].

In the paper we propose the studying of a few problems connected with the orthogonality of σ -ideals. At first, consider the following natural question: has a σ -ideal \Im on X an orthogonal complement \Im ? The answer is no if $\Im = [X]^{\leqslant \omega}$. If $\Im \neq [X]^{\leqslant \omega}$, the answer is yes since it suffices to fix an uncountable $A \in \Im$ and define \Im as the family of all $E \subseteq X$ such that $E \cap A$ is countable. The above question becomes interesting if one searches for orthogonal complements in more restrictive families of σ -ideals.

Let \mathfrak{m} be a fixed nonempty family of σ -ideals on X. We say that $\mathfrak{I} \in \mathfrak{m}$ is orthogonalizable in \mathfrak{m} if it has an orthogonal complement in \mathfrak{m} . The set of all σ -ideals orthogonalizable in \mathfrak{m} will be denoted by ORT(\mathfrak{m}).

PROBLEM A. Establish ORT(m).

We say that a set $E \subseteq X$ realizes orthogonality in \mathfrak{M} if there are \mathfrak{I} and \mathfrak{J} in \mathfrak{M} such that $E \in \mathfrak{I}$ and $X \setminus E \in \mathfrak{J}$. The family of all sets realizing orthogonality in \mathfrak{M} will be denoted by REA (\mathfrak{M}) . Obviously, neither countable nor co-countable sets belong to REA (\mathfrak{M}) .

PROBLEM B. Establish REA(M).

From the definitions we easily deduce that

 $ORT(m) = \bigcup \{\{ \exists \in m : E \in \Im\} : E \in REA(m) \}.$

The following lemma describes simple relations when two families m_1 and m_2 are considered.

LEMMA 1.1. If $m_1 \subseteq m_2$, then $ORT(m_1) \subseteq ORT(m_2)$ and $REA(m_1) \subseteq REA(m_2)$. \Box

4

We say that $\Im \in ORT(m)$ is sharper than $\Im \in ORT(m)$ (abbr. $\Im \prec \Im$) if there is $\Im' \in m$ such that $\Im \perp \Im'$ and $\Im \subseteq \Im \cap \Im'$ (cf. [2]). Obviously, the relation \prec is antireflexive and transitive. Observe that $\Im \prec \Im$ implies $\Im \subsetneq \Im$.

PROBLEM C. Find all pairs $\langle \Im, \Im \rangle$ from $ORT(m) \times ORT(m)$ such that $\Im \subseteq \Im$ implies $\Im \prec \Im$.

The studying of Problems A, B and C for various fixed families m is a project of a research. In the present paper, we start that research with the case of σ -ideals generated by almost disjoint families on ω_1 .

2. THE σ -IDEALS GENERATED BY ALMOST DISJOINT FAMILIES ON ω_1

An uncountable set $\mathcal{F} \subseteq \mathcal{P}(\omega_1)$ is called an almost disjoint family (abbr. adf) on ω_1 if $|A| = \omega_1$ for each $A \in \mathcal{F}$ and if $|A \cap B| < \omega_1$ for any distinct $A, B \in \mathcal{F}$. It is well known that each adf on ω_1 is not maximal with respect to inclusion and (by Zorn's lemma) it can be extended to a maximal adf of size $> \omega_1$ (see [7]). The size of a maximal adf on ω_1 depends on special axioms of set theory (see [5, 7]).

Let T be the set of all cardinalities of adfs on ω_1 and, for $\varkappa \in T$, let $\mathcal{A}(\varkappa)$ denote the set of all σ -ideals which can be generated by adfs on ω_1 of size \varkappa (note that $\varkappa > \omega$ for all $\varkappa \in T$). Then define $\mathcal{A} = \bigcup \{\mathcal{A}(\varkappa) : \varkappa \in T\}$.

Here we study Problems A, B and C when m equals $\mathcal{A}(\varkappa)$ or \mathcal{A} . Problems A and B seem rather self-evident. We solve them adding an observation about isomorphisms between the respective orthogonal σ -ideals.

A bijection f from X onto X is called an involution if $f = f^{-1}$. We say that σ -ideals J and J on X are bi-is omorphic (abbr. $\Im \approx \Im$) if there is an involution f from X to X such that $f_*[\Im] = \Im$ where $f_*: \mathcal{P}(X) \to \mathcal{P}(X)$ is given by $f_*(E) = f[E]$ for $E \in \mathcal{P}(X)$ (cf. [4]).

LEMMA 2.1. For each $E \subseteq \omega_1$ such that $|E| = |\omega_1 \setminus E| = \omega_1$ and for each adf \mathcal{F} on ω_1 containing E, there is an involution f from ω_1 to ω_1 such that $\omega_1 \setminus E$ belongs to the adf $f_*[\mathcal{F}]$.

5

Proof. Consider any bijection g from E onto $\omega_1 \setminus E$. Then f: $\omega_1 \to \omega_1$ equal to g on E and to g^{-1} on $\omega_1 \setminus E$ is the desired involution. \Box

PROPOSITION 2.2. Let $\varkappa \in T$. For each set $E \subseteq \omega_1$ such that $|E| = |\omega_1 \setminus E| = \omega_1$ and for each σ -ideal $\Im \in \mathcal{A}(\varkappa)$ such that $E \in \Im$, there is $\Im \in \mathcal{A}(\varkappa)$ fulfilling $\omega_1 \setminus E \in \Im$ and $\Im \approx \Im$.

Proof. Let \mathcal{F} be any adf on ω_1 of size \mathcal{X} , generating \mathcal{J} . We can always modify \mathcal{F} so that $E \in \mathcal{F}$. Thus assume that $E \in \mathcal{F}$. Let \mathcal{J} be the σ -ideal generated by $f_*[\mathcal{F}]$ where f is the involution from Lemma 2.1. \Box

COROLLARY 2.3. Let $\varkappa \in T$.

(a) $ORT(\mathcal{A}(\mathfrak{X})) = \mathcal{A}(\mathfrak{X}), ORT(\mathcal{A}) = \mathcal{A};$

(b) REA($\mathcal{A}(\mathcal{X})$) = REA(\mathcal{A}) = {E $\subseteq \omega_1$: |E| = $|\omega_1 \setminus E| = \omega_1$ }. \Box

Now, let us turn to Problem C.

LEMMA 2.4. If \Im and \Im belong to \mathcal{A} , and $\Im \subseteq \Im$, then, for each adf \Im generating \Im , there is an adf \mathscr{H} generating \Im such that, for each $A \in \mathscr{F}$, there is $B \in \mathscr{H}$ containing A.

Proof. Consider any adf \mathcal{G} generating \mathcal{G} . For each $A \in \mathcal{F}$, choose a countable family $\mathcal{G}_A \subseteq \mathcal{G}$ such that $A \subseteq \cup \mathcal{G}_A$. The family

 $\Re = \{ \bigcup \mathcal{G}_A : A \in \mathcal{F} \} \cup (\mathcal{G} \setminus \bigcup \{ \mathcal{G}_A : A \in \mathcal{F} \})$ is as desired. \Box

LEMMA 2.5. For \Im and \Im from \mathcal{A} , fulfilling $\Im \subseteq \Im$, let \Im and \mathscr{X} have the meanings as in 2.4. If $A \in \mathscr{X} \setminus \Im$, then at least one of the conditions holds:

(1) there is $B \subseteq A$, $B \notin \mathcal{J}$, such that $\mathcal{F} \cup \{B\}$ is an adf on ω_1 (2) there are $B \subseteq A$, $B \notin \mathcal{J}$, and an uncountable adf $\mathcal{F}_A \subseteq \mathcal{F}$ such that $\bigcup \mathcal{F}_A = B$.

Proof. Define $\mathcal{F}_{A} = \{ E \in \mathcal{F} : E \subseteq A \}$. Consider two cases. They will give (1) and (2), respectively.

<u>Case</u> 1. $\bigcup \mathcal{F}_{A} \in \mathfrak{I}$. Put $B = A \setminus \bigcup \mathcal{F}_{A}$. It suffices to show that $|B \cap E| \leq \omega$ for all $E \in \mathcal{F}$. It $E \in \mathcal{F}_{A}$, then $B \cap E = \emptyset$. If $E \in \mathcal{F} \setminus \mathcal{F}_{A}$, then $E \subseteq C$ for some $C \in \mathcal{H} \setminus \{A\}$, by the properties of \mathcal{H} established in 2.4. Hence $|B \cap E| \leq |B \cap C| \leq |A \cap C| \leq \omega$.

<u>Case</u> 2. $\bigcup \mathcal{F}_{A} \notin \Im$. Put B = $\bigcup \mathcal{F}_{A}$. We get (2) immediately. \Box

LEMMA 2.6. For any J and J from 4, such that $\Im \subsetneq \Im$, there exists an adf generating \Im such that, for each $A \in \mathfrak{K} \setminus \Im$, there is $\Im' \in \mathcal{A}$ for which $\Im \subseteq \Im'$ and $\omega_1 \setminus A \in \Im'$ (thus $\Im \perp \Im'$).

Proof. Fix an adf generating \mathcal{T} and choose an adf \mathcal{H} generating \mathcal{J} according to 2.4. Let $A \in \mathcal{H} \setminus \mathcal{T}$. Now, use 2.5. If (1) holds, consider any uncountable adf \mathcal{F}^* such that $\bigcup \mathcal{F}^* = B$ and define \mathcal{J}' as the σ -ideal generated by $\{\omega_1 \setminus B\} \cup \mathcal{F}^*$. Thus $\mathcal{J}' \in \mathcal{A}$ and $\omega_1 \setminus A \in \mathcal{J}'$. To show that $\mathcal{T} \subseteq \mathcal{J}'$, consider any $E \in \mathcal{T}$. Then $E \subseteq \bigcup_{\substack{n < \omega \\ n < \omega}} E_n$ for some $E_n \in \mathcal{F}$, $n < \omega$. Since $|\bigcup_{\substack{n < \omega \\ n < \omega}} E_n \cap B| \leqslant \omega$, it is obvious that $E \in \mathcal{J}'$. If (2) holds, let \mathcal{J}' be the σ -ideal generated by the adf $\{\omega_1 \setminus B\} \cup \mathcal{F}_A$. Thus the assertion is clear. \Box

REMARK 2.7. Observe that Lemmas 2.4-2.6 and their proofs work when c4 is replaced by c4 (ω_1).

From Lemma 2.6 and Remark 2.7 we derive:

PROPOSITION 2.8. The relation \prec considered on ${\cal A}$ (resp. ${\cal A}(\omega_1))$ is identical with \subsetneq . \Box

That solves Problem C for A and $A(\omega_1)$. For $A(\chi)$ where $\chi \in T \setminus \{\omega_1\}$, it remains open.

Note that our results from this section can easily be extended to the case when ω_1 is replaced by any uncountable cardinal λ . Then the definition of an almost disjoint family must be modified in an obvious manner and the family A would consist of all λ -additive ideals on λ generated by adfs on λ (the λ -additivity of \Im means that $\bigcup_{\alpha < \varkappa} A_{\alpha} \in \Im$ whenever $\{A_{\alpha} : \alpha < \varkappa\} \subseteq \Im$ and $\varkappa < \lambda$).

REFERENCES

- Balcerzak M., The decomposition property of σ-ideals, Radovi Matematički, 2 (1986), 305-315.
- Balcerzak M., The decomposition property of σ-ideals II, Radovi Matematički, 3 (1987), 261-266.
- [3] Balcerzak M., On σ-ideals having perfect members in all perfect sets, Demonstratio Math., 22 (1989), 1159-1168.
- [4] Balcerzak M., Some properties of ideals of sets in Polish spaces, Acta Universitatis Lodziensis, Łódź 1991.

7

Baumgartner J.E., Almost-disjoint sets, the dense set
problem and the partition calculus, Ann. Math. Logic, 10 (1976), 401-439.
Cichoń J., On two-cardinal properties of ideals, Trans. Amer.
Math. Soc., 314 (1989), 693-708.
Kunen K., Set Theory. An Introduction to Independence Proofs,
North Holland, Amsterdam 1980.
Marczewski E., Sikorski R., Remarks on measure and
category, Colloq. Math., 2 (1949), 13-19.
Mendez C. G., On sigma-ideals of sets, Proc. Amer. Math. Soc.,
60 (1976), 124-128.
Mendez C. G., On the Sierpiński-Erdös and the Oxtoby-Ulam the-
orems for some new sigma-ideals of sets, Proc. Amer. Math. Soc., 72
(1978), 182-188.
Mycielski J., Some new ideals of sets on the real line,
Collog. Math., 20 (1969), 71-76.
Oxtoby J.C., Measure and Category, Springer-Verlag, New York
1971.
Plewik Sz., On completely Ramsey sets, Fund. Math., 127 (1987),
127-132.
Rosłanowski A., On game ideals, Colloq. Math., 59 (1990),
159-168.
Seredyński W., Some operations related with translations,
Collog. Math., 57 (1989), 203-219.
then the definition of an almost distant theoly must be not

Marek Balcerzak

8

Institute of Mathematics University of Łódź

Marek Balcerzak

J-IDEALY ORTOGONALNE I RODZINY PRAWIE ROZŁĄCZNE

Dwa σ -ideały J i J podzbiorów nieprzeliczalnego zbioru X nazywają się ortogonalne, gdy istnieją $A \in J$ i $B \in J$ takie, że $A \cup B = X$. Dla rodziny M σ -ideałów na X, sformułowano trzy problemy dotyczące ortogonalności. Podano rozwiązania w przypadku, gdy M składa się z σ -ideałów generowanych przez prawie rozłączne rodziny na ω_1 .

"And they mean of a lange of a land