
A C T A  U N I V E R S I T A T I S  L O D Z I E N S I S  
FOLIA MATHEMATICA 5, 1992

Marek Balcerzak

O R T H O G O N A L  cr - I D E A L S  
A N D  A L M O S T  D I S J O I N T  F A M I L I E S

Two a ideals *3 and ^  of subsets of an uncountable set X are 
called orthogonal if there are A e 3 and B e ^  such that A U B * X. 
For a family JTt of a-ideals on X, we formulate three problems concer­
ning orthogonality. We solve them in the case when VK consists of all 
a-ideals generated by almost disjoint families on o)̂ .

1. ORTHOGONALITY OF O-IDEALS

Recall that measures u and v defined on a a-algebra E of sub­
sets of a given set X are orthogonal if there is a set A e l  such 
that p(A) = 0 and v(X\A) = 0. This definition can obviously be 
reformulated in the language of a-ideals (consisting of sets on 
which the measures vanish). That leads to a general definition of 
orthogonal a-ideals (cf. [6], [15]).

We shall use the standard set-theoretical notation (see [7]). 
Throughout the paper, we assume that X is an uncountable set, and 
that each a-ideal of subsets of X contains all singletons and 
does not contain X. We then use the phrase "a a-ideal on X". By
[Xj*a we denote the family of all countable subsets of X. Thus
each a-ideal on X contains [X]^w. We say that a a-ideal “0 on X 
is g e n e r a t e d  b y  J q P (X) if each set in V is 
contained in the union of a countable subfamily of 7 . Two 
o-ideals 3 and ^ on X are called o r t h o g o n a l  (abbr. 
“D 1 ) if there is E e 9 such that X\E e . We then say that 
^ is an o r t h o g o n a l  c o m p l e m e n t  of 3. it 
is obvious that if t), V , are a-ideals on X fulfilling

3 1 and Q , then 3 1 implies “D'i



The well-known fact that the real line R  is a union of a Le- 
besgue null set and a set of the first category (briefly: a mea­
ger set) yields a classical example of orthogonal a-ideals (cf. 
[12]; for the generalizations, see [8]). New nontrivial examples 
of orthogonal a-ideals were given in [11], [9], [13], [14] and
[i], [2]. The orthogonality of a-ideals appears in the Sierpin- 
ski-Erdös duality theorem (see [12]) which, besides the classical 
case concerning Lebesgue null sets and meager sets, can be ap­
plied to other pairs of a-ideals (see [2] - [4]). Note that in 
this theorem (originally formulated for X =R) the Continuum Hy­
pothesis (CH) is assumed. Some special properties of orthogonal 
ideals are observed in [6] and [15].

In the paper we propose the studying of a few problems con­
nected with the orthogonality of a-ideals. At first, consider the 
following natural guestion: has a a-ideal 3 on X an orthogonal 
complement *J? The answer is no if 3 = [X]<(0. If 3 t [X]*“, the 
answer is yes since it suffices to fix an uncountable A e 3 and 
define y as the family of all E £ X such that E n A is coun­
table. The above question becomes interesting if one searches for 
orthogonal complements in more restrictive families of a-ideals.

Let nt be a fixed nonempty family of a-ideals on X. We say 
that ^ e nz is o r t h o g o n a l i z a b l e  in TTf if it has 
an orthogonal complement in 1ft. The set of all a-ideals orthogo­
nalizable in TTC will be denoted by ORT(TTi).

PROBLEM A. Establish ORT(Trt) .
We say that a set E £ X r e a l i z e s  o r t h o g o n a ­

l i t y  in m  if there are V and J in Ttt such that E e g and 
X\E e . The family of all sets realizing orthogonality in TTC 
will be denoted by REA (Tit). Obviously, neither countable nor co- 
countable sets belong to REA (TTt) .

PROBLEM B. Establish REA (TTl).
From the definitions we easily deduce that
ORT (m) = u {{‘Jem: E e *3 } : E e  REA (TTt ) }.
The following lemma describes simple relations when two fa­

milies T)7̂  and are considered.
LEMMA 1.1. If m ^ c  m 2, then ORTtTT^) £ ORT(TT!2) and 

REA( TC1) c REA(TR 2). □



We say that *3 e ORT(m) is s h a r p e r  than “3 e ORT(nz) 
(abbr. *3 -< ) if there is ‘J'e'I'Tl such that <3 1 y' and V c ^ n 1̂' 
(cf. [2]). Obviously, the relation -< is antireflexive and tran­
sitive. Observe that 3 -< implies .

PROBLEM C. Find all pairs < e3,J > from ORT(m) x ORT(m) such 
that ^ £ y implies 3 -< .

The studying of Problems A, B and C for various fixed fami­
lies m  is a project of a research. In the present paper, we 
start that research with the case of a-ideals generated by al­
most disjoint families on

2. THE o-IDEALS GENERATED BY ALMOST DISJOINT FAMILIES ON

An uncountable set ^  £ fP(u1) is called an a l m o s t  
d i s j o i n t  f a m i l y  (abbr. adf) on if |A| = u>̂ for 
each A e 7 and if |A n B| < for any distinct A, B s T  . It is 
well known that each adf on is not maximal with respect to in­
clusion and (by Zorn's lemma) it can be extended to a maximal 
adf of size > (see [7]). The size of a maximal adf on de­
pends on special axioms of set theory (see [5, 7]).

Let T be the set of all cardinalities of adfs on and, for 
2t g T, let iA(ic) denote the set of all a-ideals which can be ge­
nerated by adfs on oĵ of size •/, (note that x > u for all % e T). 
Then define ¡A = U { <A(ot) : X e T).

Here we study Problems A, B and C when m  equals cA (x) or cA. 
Problems A and B seem rather self-evident. We solve them adding 
an observation about isomorphisms between the respective ortho­
gonal a-ideals.

A bijection f from X onto X is called an i n v o l u t i o n  
if f = f"1. We say that a-ideals “3 and ^ on X are b i-i s o- 
m o r p h i c (abbr. 3 » ^ ) if there is an involution f from 
X to X such that f*[9] = ^ where f*: iP(X) -*■ £D(X) is given by 
f * (E) = f[E] for E 6 £p (X) (cf. [4]).

LEMMA 2.1. For each E £ <1̂  such that |E| = |u>1\E| = and
for each adf ^ on containing E, there is an involution f
from Wj to Wj such that w^ E  belongs to the adf f * [iF] •



P r o o f .  Consider any bijection g from E onto a)̂\ E. Then 
f: -*■ equal to g on E and to g-1 on w^E is the desired in­
volution. □

PROPOSITION 2.2. Let % e T. For each set E £ oô such that 
| E| = | ŵ \ E j = and for each o-ideal *3 e cA(js) such that E e 3 , 
there is ^ e <A(x) fulfilling E e and t) ■» “J.

P r o o f .  Let “f be any adf on of size X , generating 3. 
We can always modify 7 so that E e 7  . Thus assume that E e y . 
Let "J be the o-ideal generated by f*[7] where f is the involu­
tion from Lemma 2.1. □

COROLLARY 2.3. Let X e T.
(a) ORT(i4 (x)) = iA(%), ORT(eA) = ;
(b) REA(cA(x )) = REA(cA) = {E c w : |E| = | E | = u^}. □
Now, let us turn to Problem C.
LEMMA 2.4. If “3 and “J belong to cA, and 3 £ “J , then, for 

each adf 7 generating ‘3 , there is an adf Of generating ^ Such 
that, for each A e 7 , there is Be K  containing A.

P r o o f .  Consider any adf generating “J. For each A e ?  , 
choose a countable family <£A £ (j, such that A c U £A. The family 

= {(J £a: A e 7 } u ( g \ U{^A: A e 7 }) 
is as desired. □

LEMMA 2.5. For *3 and ^ from cA, fulfilling “0 £ '¿J-, let 7 and 
■Jt have the meanings as in 2.4. If Ae*JC\iJ, then at least one of 
the conditions holds:

(1) there is B c A, Bi 7 , such that 7 U {B} is an adf on
(2) there are B Q A, B '3, and an uncountable adf 7^ q f such 

that U'3rA = B.
P r o o f .  Define T A = (Ee?: E c A}. Consider two cases. 

They will give (1) and (2), respectively.
Case 1. U ? A e “3 . Put B = A \ U*^. It suffices to show that 

|B n E| < u for all E e 7. It E 6 ^ then B n E = 0. If 
E e 7 then E c c  for some C e “%\{A}, by the properties of 

established in 2.4. Hence | B n E | < | B fl C | 4 |ADC| < w.
Case 2. U # A f *3. Put B = U ‘?A. We get (2) immediately. □



LEMMA 2.6. For any *3 and from cA, such that 3 there
exists an adf generating ^ such that, for each A e % \ g ,  there is 
i'e«* for which "3 £ and A e f}' (thus J 1 J').

P r o o f .  Fix an adf generating *3 and choose an adf ‘H ge­
nerating ^ according to 2.4. Let A e ‘K\<3 . Now, use 2.5. If (1) 
holds, consider any uncountable adf such that U<F* = B and
define as the o-ideal generated by {oĵ\ B} U 7*. Thus ‘j' e cA 
and Wj\ A e “J'. To show that “3 £ ■J', consider any E e “D . Then
E s U En for some En e 7 , n < u. Since | U E n B| < u, it is 

new n<w
obvious that E e •}'. If (2) holds, let j' be the a-ideal gene­
rated by the adf {u^\B}U 7^. Thus the assertion is clear. □

REMARK 2.7. Observe that Lemmas 2.4-2.6 and their proofs 
work when cA is replaced by c-4- (co1).

From Lemma 2.6 and Remark 2.7 we derive:
PROPOSITION 2.8. The relation -< considered on cA (resp. c4(a>̂)) 

is identical with ^ . □
That solves Problem C for cA and For c/Utt) where

X e T\{u^}, it remains open.
Note that our results from this section can easily be extended 

to the case when is replaced by any uncountable cardinal X.
Then the definition of an almost disjoint family must be modified 
in an obvious manner and the family <A would consist of all X-ad- 
ditive ideals on X generated by adfs on X (the X-additivity of
“3 means that U A e g  whenever {A : a < *}cO and x < A ). 

a<x a
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O-IDEAŁY ORTOGONALNE I RODZINY PRAWIE ROZŁĄCZNE

Dwa o-ideały i i ■} podzbiorów nieprzeliczalnego zbioru X nazywają się 
ortogonalne, gdy istnieją A e 5  i B £ ^  takie, że A U B => X. Dla rodziny 
m  a-ideałów na X, sformułowano trzy problemy dotyczące ortogonalności. Podano 
rozwiązania w przypadku, gdy TTt składa się z o-ideałów generowanych przez pra­
wie rozłączne rodziny na


