ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 5, 1992

Janusz Jaskuła, Jarosław Lech

Now, we will prove that if F is closed and has at soat four

ON THE SETS A + A AND A - A

In the paper, an example of a closed set F of real numbers satisfying the conditions F + F = [0, 2] and $F - F \neq [-1, 1]$ is presented. It is a negative answer to the problem posed by M. Laczkovich. Also, some necessary condition for sets of this type is formulated.

11 : L+1 & 8 - 1

For the arbitrary set $A \subset R$ we will use the following notation:

 $A + A = \{x + y, x \in A, y \in A\}$

and

 $A - A = \{x - y, x \in A, y \in A\}.$

It is well-known that for Cantor set C, C + C = [0, 2] and C - C = = [-1; 1]. For the set F = $\{1\} \cup [0; 1/2]$, F + F $\neq [0, 2]$ and F - F = [-1; 1]. S. P i c a r d [1] showed in 1942 that there is a set X such that X + X = R and X - X is of measure zero. M. Laczkovich asked if it is true for closed sets that condition F + F = [0; 2] implies F - F = [-1; 1]. The answer is negative.

```
Example. Let
```

on the set of the set of

```
F = [0; 2/20] \cup [3/20; 4/20] \cup [15/40; 25/40]
```

```
U {15/20} U [17/20; 1].
```

F is obviously closed. Moreover,

 $\begin{bmatrix} 0; 2/20 \end{bmatrix} + \begin{bmatrix} 0; 2/20 \end{bmatrix} = \begin{bmatrix} 0; 4/20 \end{bmatrix}, \\ \begin{bmatrix} 0; 2/20 \end{bmatrix} + \begin{bmatrix} 3/20; 4/20 \end{bmatrix} = \begin{bmatrix} 3/20; 6/20 \end{bmatrix}, \\ \begin{bmatrix} 3/20; 4/20 \end{bmatrix} + \begin{bmatrix} 3/20; 4/20 \end{bmatrix} = \begin{bmatrix} 6/20; 8/20 \end{bmatrix}, \\ \begin{bmatrix} 15/40; 25/40 \end{bmatrix} + \begin{bmatrix} 0; 2/20 \end{bmatrix} = \begin{bmatrix} 15/40; 29/40 \end{bmatrix}, \\ \begin{bmatrix} 15/40; 25/40 \end{bmatrix} + \begin{bmatrix} 3/20; 4/20 \end{bmatrix} = \begin{bmatrix} 21, 40; 33/40 \end{bmatrix}, \\ \begin{bmatrix} 15/40; 25/40 \end{bmatrix} + \begin{bmatrix} 15/40; 25/40 \end{bmatrix} = \begin{bmatrix} 30/40; 50/40 \end{bmatrix}, \\ \begin{bmatrix} 17/20; 1 \end{bmatrix} + \begin{bmatrix} 15/40; 25/40 \end{bmatrix} = \begin{bmatrix} 49/40; 65/40 \end{bmatrix}, \\ \\ \begin{bmatrix} 15/20 \end{bmatrix} + \begin{bmatrix} 17/20; 1 \end{bmatrix} = \begin{bmatrix} 32/20; 35/20 \end{bmatrix}, \\ \\ \\ \begin{bmatrix} 17/20; 1 \end{bmatrix} + \begin{bmatrix} 17/20; 1 \end{bmatrix} = \begin{bmatrix} 34/20; 2 \end{bmatrix}, \end{bmatrix}$

so F + F = [0; 2]. It is easy to check that $51/80 \notin F - F$, so $F - F \neq [-1; 1].$ Now, we will prove that if F is closed and has at most four components, then the implication $F + F = [0; 2] \rightarrow F - F = [-1; 1]$ holds. The theorem will be preceded by the following LEMMA. If a closed set $F \subset [0; 1]$ satisfies condition: There exists a component $(\alpha; \beta)$ of [0; 1] such that (1) $\beta - \alpha > \min(\alpha; 1 - \beta),$ then $F + F \neq [0; 2]$. Proof. they calles all of revene autiegen a bl di the $\mathbf{F} + \mathbf{F} \subset [0; 2\alpha] \cup [\beta; 1 + \alpha] \cup [2\beta; 2].$ By (1), $\beta - \alpha > \alpha$ or $\beta - \alpha > 1 - \beta$. Thus $F + F \neq [0; 2].$ THEOREM 1. Let $F \subset [0; 1]$ be a closed set such that: (a) [0; 1]\F has at most three components; (b) $F - F \neq [-1; 1]$, the second set of the second line at 31 then $F + F \neq [0; 2]$. Proof. We started with a case when the set [0; 1]\F has exactly three components. Suppose that there exists a closed set F such that $[0; 1] \setminus F$ has three components, $F - F \neq [-1; 1]$ and (2) F + F = [0; 2] $\mathbf{F} = [\mathbf{x}_{0}; \mathbf{y}_{0}] \cup [\mathbf{x}_{1}; \mathbf{x}_{1}] \cup [\mathbf{x}_{2}; \mathbf{y}_{2}] \cup [\mathbf{x}_{3}, \mathbf{y}_{3}]$ where $0 = x_0 \le y_0 < x_1 \le y_1 < x_2 \le y_2 \le y_3 = 1.$ Let us introduce the following notations: $I_1 = [x_0; y_0], I_2 = [x_1; y_1], I_3 = [x_2; y_2],$ $I_4 = [x_3; y_3], U_1 = (y_0; x_0), U_2 = (y_1; x_2),$ 118/201 35/ $U_3 = (Y_2; X_3).$ (15/40) 25/40] + [3/30; 1/20] = [21,40; We can assume that |I₁| ≥ |I₄|. (3)If it were not the truth, then one should consider the set 1 - F. Since $F - F \neq [-1; 1]$, therefore there exists a number

 $d \in (0; 1)$ such that $(d + F) \cap F = \emptyset$ and $d \in U_1 \cup U_2 \cup U_3$.

First, let us consider the case (*) $d \in U_1$. Since $d + I_1 = [d; d + Y_0] \subset U_1,$ (4) we have (5) $|I_1| < |U_1|$. By Lemma, $F + F \neq [0; 2]$ which contradicts (2). Now, consider the case: (**) de U3. The case and the state and the state and the Using the same argumentation as in (*), we obtain (6) |I1 < |U3| $|\mathbf{I}_4| < |\mathbf{U}_3|$. By (6) and (3), (7) Component U₂ satisfies the assumptions of Lemma so $F + F \neq [0; 2]$ which contradicts (2). It remains the case: (***) $d \in U_2$, $d + I_1 = [d + x_0; d + y_0] \subset U_2.$ 2100 Thus (8) $|I_1| < |U_2|$. Let us consider three following subcases: $d + x_1 \in U_2$, $d + x_1 \in (1; \infty),$ $d + x_1 \in U_3$. If $d + x_1 \in U_2$, then $d + y_1 \in U_2$ and $|U_2| > d - y_1 - d = y_1$, so by Lemma, $F + F \neq [0; 2]$. If $d + x_1 \in (1; \infty)$ and $d + y_0 \in U_0$, then $|\mathbf{U}_1| > |\mathbf{I}_3| + |\mathbf{U}_3| + |\mathbf{I}_4|.$ (9) Since $|U_1| \leq |I_1| < |U_2|$ (which is a consequence of (8) and Lemma), we obtain $|U_2| > |U_1| > |I_3| + |U_3| + |I_4|$ (10)and U2 satisfies the assumption of Lemma.

(11) $|I_2| < |U_3|$

and

(12) $|I_3| < |U_1|$.

Let $\rho(A; B) \stackrel{\text{def}}{=} \inf \{ |x - y|; x \in A, y \in B \}$. By (8) and (3) (13) $\rho(I_2 + I_4; I_3 + I_4) = |U_2| - |I_4| > 0$.

anthen water man an anthen with a part of the

It is obvious that only the set $I_3 + I_3$ can cover the gap between sets $I_2 + I_4$ and $I_3 + I_4$. But then $2y_2 \ge x_2 + x_3$, so (14) $|I_3| \ge |U_3|$.

Similarly, $\rho(I_1 + I_2; I_1 + I_3) = |U_2| - |I_1| > 0$ and for the set $I_2 + I_2$, we obtain the inequality $2x_1 \le y_0 + y_1$ which imply

(15) $|U_1| \le |I_2|$. By (11), (12), (14), (15),

 $|v_3| \le |i_3| < |v_1| \le |i_2| < |v_3|.$

This contradiction establishes the theorem in case when the set [0, 1]\F has exactly three components. If [0, 1]\F has one or two components the proof is analogous to the proofs of cases (*) and (**).

REMARK. If the closed sed $F \subset [0, 1]$ satisfies the condition F = 1 - F, then

 $F + F = [0; 2] \iff F - F = [-1; 1].$

REFERENCE

 Picard S., Sur des ensembles parfaits, Mem. de Univ. de Neuchatel, 16 (1942).

> Institute of Mathematics University of Łódź

Janusz Jaskuła, Jarosław Lech

O ZBIORACH A + A i A - A

W pracy przedstawiony został przykład zbioru domkniętego F liczb rzeczywistych spełniający warunki F + F = [0, 2] i F - F \neq [-1, 1]. Jest to negatywna odpowiedź na problem postawiony przez M. Laczkovicha. Sformułowano także pewien warunek konieczny dla zbiorów tego typu.