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O N  D E N S I T Y  O K  P A I R S  O F  N A T U R A L  N U M B E R S

R. C r e i g h t o n  B u c k  in [1], using the notion of a 
density of the set A “ { an : n e N } where (an)n e N is an increasing 
sequence of positive integers, has introduced a measure defined on some 
non-trivial class of subsets of the set of positive integers.

In this paper we develop the notion of density for sets of pairs 
of positive integers. Using the notion of two-dimensional density, we 
define a measure and we study its properties.

R. C r e i g h t o n  B u c k  in[l] using the notion of 
a density of the set A = {an : n e N}, where {*n }n e N  is an increa­
sing sequence of positive integers, has introduced a measure de­
fined on some non-trivial class of subsets of the set of positive
integers. Recall that the density of a set A is equal to lim — ,n -* * a.
if this limit exists.

In this paper we shall develop the notion of density for sets 
of pairs of positive integers. Roughly speaking, the density of a 
subset B of N x N will mean the limit of the quotient having in 
the numerator the number of elements of B which lie in the square 
with vertices (0, 0), (0, n), (n, 0), (n, n) and in the denominator 
the number n (obviously if it is the number of all integer points 
in the above square). If A c N, then A"1 = A^ u Aj, where by de­
finition a | = {Oj, k> : j e N, 1 ^ k ^ a^}, A2 = {<k, a^> : je N,
1 $ k < a^}. Observe that the density of A^ exists if and only 
if the density of Aj exists, and in this case both densities are 
equal and equal to half of density of A1. In theorem 1 we shall 
show that if A c n possesses a density, then an associated set 
An has the same density. It is a starting point for the deve­
lopment of a measure defined on a family of subsets of N x N and



to construct a measure theory similar to that in [1]. In the part 
of this paper devoted to these problems we shall om.it all proofs 
which are similar to those in Buck's paper.

Let be an increasing sequence of positive integers
Definition 1. Let n e N thus 
i(n) = card {ak : ak ^ n, k e N).
Then the following lemma is true.
Lemma 2. Let A = {a^ : k e N}. Then

lim = D (A ) if an only if lim 1^— - = D(A).n -.co «n n -»co n

P r o o f .  The sufficient condition. For each positive in­
teger k g [an , an+ ]̂ inequalities

i(k ) ^ iU)> i(k) 
an k an+l

hold.
Thus

n > i(k) n 
an " “  an+l

By the assumption —  and with n ■* tend to D (A ) therefore
n n+1

by the theorem about three sequences we have 

lim = D(A) .K -► t-o K
The necessary condition.

We assume that there exists lim ¿iü! = D(A). It is easy to
n ■+ n

see that lim as a limit of the subsequence of a sequence
n -.<*> a n

_ . also exists and equals D(A).n n e N
We give the denotations which will be valid on in this paper. 
Let ianfn e N  be an increasing sequence of positive integers

for which lim = D(A). 
n ^  n

Definition 2 . Let n e N then
I(n) = Ix(n) + I2(n),

where
= cara na^, k ? : j fc in, a^ s. n, i ^ k s; a j.

12(n ) = card {<k, a^> : j e N, a^ $ n, 1 i k < a^ >.



For any positive integer the inequalities 
Ix(n ) - n sg 12(n) s; Ij^n)

hold. From it we have the following lemma.
2I1(n)

Lemma 2. If there exists limn + «  n(n + 1) then there exists

lim
2I2(n) 
n ( n + 1 ) and equals lim

2I1(n) 
n -T<U n(n + 1) '

We give the following definition.
Definition 3. Let b.̂ , bj £ R+, then
i(b1# b2) = card {m : b.̂  ¡s am ̂  b2 

Lemma 3. If r| > 0, then

lim 4( î nU +  n? = d (a ). n -+ to n ri + 1

P r o o f .  Let e > 0. Put < min (y, | n). 
positive integer N such that for n > N.

|±i&L - D(A) | < Er

Increasing N, if it is necessary, we can assume that for n > N an
1 ' radditional condition ^.x < j is fulfilled. We shall show that

There exists a

|itn, n(l M U  . D(A)| 
n ti + 1 '

for n > N. Observe that if n > N then n(l + ri) > N. Thus the 
following inequalities

(D (A ) - ex) (n - 1) < i(n - 1) < D{ A) + tx) (n - 1)

(D(A) - ex) [n( 1 + n)] < i ( [n( 1 + n)]) < (D( A) + ex) [n(1 + n )J 
hold.
Hence we have

~(D(A) + ex) (n - 1) < - i(n - 1) < - (D(A) - ) (n - 1) (1)
(D(A) - ex) (n(1 + n) - 1) < i( [n(1 + n)]) < (D(A) +
+ e x n(1 + n) (2)

Adding sides (1) and (2) we have
(D(A) - tx) (n(1 + n) - 1) - (D(A) + ex) (n - 1) <
< i( [n(1 + n)]) - i(n - 1) < d (A) + e x) (n(1 + n)) +
- (D(A) e1) (n - 1).



Hence
D(A) n + D(A) n n - D(A) - e-̂ n - ê nri + - D(A) n +
+ D(A) - Eĵ n + e1 < i(n, n (1 + n))

D(A) n n + D(A) n + Eĵ n n + exn + Eĵ n - e -̂ - D(A)n + D(A) 
and after reducing we have

D(A) n ti + 2ej  ̂ - Eĵ n n - 2Eĵ n < i(n, n(l + n)) <
< D(A) (n n + 1) + Eĵ fn n - 1) + E12n. (3)

We divide the sides (3) by n n + 1

d(a) - itW t  - ei - 2 ^  ^  í ^  < d (a ) + El + Lii.
Hence

D(A) " f - f ~ f < n)) < D(A) + f + f *
Finally we have

l'~(,BlnnÜ V l tin " D(A)I < E <J.e.d.
We give the following definition.
Definition 4 . I ^ n ,  n(l + t))) = I ^ n ,  (1 + ti )) - Ijin - 1 ).

Lemma 4. For any e > 0 there exists n > 0 and a positive inte­
ger N1 such that for n >

2I,(n, n(1 + n))
D(A) ' E < n(n r, + ij (2 + n) < D(A) + e

P r o o f .  For any positive integer n the inequalities
i(n, n(l + n)) n < Ij(n, n(l + n)) $ i(n, n(l + n)) •
• n(l + n) (4)

hold. For any 0 < e < 1 put } = f- We choose n < 2J. Then the 
inequality

r + " ñ  < > (5>
is satisfied.
From lemma 3 for n chosen earlier and for the number y > 0 there 
exists such that if n > ^  then

°(A) - j < ^ n"j,V1ri)> < D(A) + 1 <«>
By inequality (4) applied for n > Nx and (6) we have



(D(A) - -j) (n n + 1) n < Ij^n, n(l + n>) < (D(A) + -j) (n n + 
+ 1) n(l + n) •

We divide the sides (7) by n(n n + 1) 2 We obtain
, 21,(n, n(l + n)) 2 + 2n

'■>1*1 - 1' r h ;  < nin n <■ ll 13 ' ■*- ni r < * V
Hence by (5) we have

21,(n, n (1 + n))
( D ( A )  -  })  (1 -  -}) < n ( n  n -t- 1) ( 2 "+'"nV  < (Dl A> + (1 +

Next
, 21,(n, n(1 + n))

D(A) - * - D(A)3 + Y  < n(n n 4 1V(2 + n) < D <A > +

+  ̂ D (A )  +  ̂ + I2. 
therefore

21,(n, n(l + n))
D<A) * 21 < n(n n + i y i T ~ ñT D(A) + 3?‘

Finally
21,In, n (1 + n))

D(A) - e < n(n n + 1) (2 + n) < D(A) + e

Theorem 1. By the preceding assumptions 
21,(n) 

nlí"U K 7 T T T Í  - ■><»>•

P r o o f .  Suppose e > 0. We want to find N2 such that for
n > N2

21,(n)
D(A) - e < H T n T TT  < D(A) + E- (8>

From lemma 4 for e/4 we take 0 < n < 1 and e N. For n > N.̂ 
we have

I1(N1, n) (. I^n) é n > +
N1(N1 - 1)

Having divided the sides by \ we have

2I1(N1, n) 2Ix(n)  ̂ 2I1(N1, n) N1(N1 - 1) 
n(n+ iT *= n(n + l) ^ n(n + 1) + n(n + 1)

We take such N; so that for n > Nj the inequality
2N1(2N1 - 1! 

n (n + 1)



holds.
If Nt< k <  2NX and n > 2N1, then

I^k, n) $ Ix(n ) <: Ix(K, n) + k<k ;■■■■ •

Dividing the sides by n n̂ we have

2I1(k, n) 211(n) 2I1(k, n) k(k _ 
n(n + 1) ** n(n + i) $ n(n + l) + n(n + 1) '

Since we have taken such N2 so that (9) may hold for n > N2 thus 
irrespective of what k e (N^, 2N^) is like, we have

ni-n - H f < 1  for n > N2-
Now we shall show that for n > N2 (8) holds. Let us make a de­
creasing sequence 

nQ = n > N2,
nj such a positive integer so that [n^l + n)] = nQ ,
n2 = n^ — 1,
n3 such a positive integer so that [n3(l + n)] = n2 and so on 

until we obtain for the first time a number n2i-1 < 2NX +1. It
is clear that n2i-i > Ni* If were n2i-l < N1 and n2i-2 > 2N1 
then 2i-2 > 2 which is impossible because 1 + t) < 2. We denote

n2i-l
the number n2^_^ as n2  ̂ We have then

i
Xl(n2i -1' no) = £  Il(n2i-1' n2a-2)-o 11

Considering the construction of the numbers nj we have

(D(A) - |) n2i-2 ' n2i-l * n2i-2 l l j i d  < <

2 2 £- “ n5i~i + n2i-2 + n2i-l< (D( A ) + |) -1ŁJ---- 21 1,. ---- ¿1

Summing up i = 1, 2, ..., i0, we obtain
2 2 n + n - n2i

,D U , - | ------- 5----2 _  < n) <



< (D(A) + |)
n2 + n - n2

2i -1 n2i -1o ■_______ o
2

We divide by *).(n ki and we have ■* n

(D(A) - |) (1 n210-l 2Il*n2i -1' n *
n(n + 1)

(D(A) + |) (1
-1 " n2i -1
n( n + 1 )

Hence

(D(A) - |) (1 - |) <
2Il*n2i -1' n)o < D(A) + 4n(n + 1)

Thus

< D(A) + |

which proves (8).
Let an increasing sequence of positive integers {an)n e N de­

note arithmetic progression of the form (a • n + b)n & N where a, 
b e N are any constants for that sequence. Let us consider A c  
c N x N where

A = {<a j, k> : ] 6 N ,  U k ^ a ^ u  {<k, a ^  : j e N,
1 ^ k < a^} . (10)

Let us make the class DQ .
Definition 5 . Let the class D 0 be a family of sets of the form

(10), or of finite unions of such sets, or of the sets which 
differ from these by finite sets.

Let us have denotations which will be used on. A dot placed 
above the symbol for a relation will be used to indicate that the 
relation holds modulo the class of finite sets. Thus A c B means 
that if finite sets are deleted from both sets we will have A c B, 
while A = 0 means that A itself is finite.

Obviously if A, B c N and A c B then A-1 c b"1 . The class DQ 
has the following properties.

A 1. If A s D0 , then A' e DQ where A* is the complement 
of A.

A 2. If A e dq , B e dq, then A u B and A n B belong to Dq .



A 3. If A e DQ and A = B, then B € DQ .
Definition 6. If A is a set of the form
{<a • j + b, k> : j e N, 1 < k « a • j + b} u 
u {<)c, a • j + b> : j e N, l < k < a - J + b }

then A(A) =

If A is the union of the disjoint sets Aj, A2, Ar, r e N

of the form as above, then
M A )  = A( Ax ) + A( A2 ) + . . .  + A( Ar ) .

If A(A ) is defined and A * B, then A(B ) = A(A ).
The function A has the following properties.
B 1. If A and B belong to DQ and A d B, then A( A) ^ M B ) . 
B 2. If A and B belong to DQ and A n B = 0, then A(A u B) * 

= A(A) + A(B ) .
B 3. If A and B belong to the class DQ , then A(A u B) + 

+ A(A n B) = A(A) + A(B ).
We now define an outer measure on N x N.
Definition 7. If s c N x N, then y(S ) = inf A(A) for A 6 S and 

A g  0 o .

The function y has the following properties.
C 1. If Sj c n x N, s2 c N x N, c S2, then yfSj) $ y(S2>.
C 2. If S1# S2 c N x N, then yfS.̂  u S2) ^ ytSj) + y(S2) •
C 3. If A e DQ , then y(A) = A(A).
Definition 8. Dy is the class of all sets S c N x N for which 
y(S) + y(S') = 1.
This class is the Caratheodory extension of DQ since the de­

finition above is equivalent to either of the following
(i) S belongs to Dp if for any set X

y (X) - y(X n S) + u(X n S')
(li) S belongs to Du if, given e > 0, there exist sets A and 

B in DQ with A C S c B and A(B ) - A(A) = A(B - A) < E.
Let us denote

Du = fS : y(S) + w(S') = 1}
Dy = {S : V  u(X) = y(X n S) + y(X n S ’)}

XcN x N
Dy = { S C N x N  s V  3 ( A C S C B  and A(B) - A(A) =

E> 0 A, Be Dq
= A(B - A) < E))



One can prove
—  ADy = Dp = Du

For the class Du the following properties hold.
D 1. If S e Du, then S' e Du.
D 2. If Sj and S2 belong to Du, then so do Sĵ n S2 and Sj. 
D 3. If Sx and S2 are any two sets of Du, then ufSĵ  u s2) + 

+ u(Sj n S2) = ufSj) + u(S2).
Now we shall try to show that the class Du property contains

the class D . An immediate consequence of the definition of D„o o
is that if A e Dq and A(A) = 0, then A = 0. We shall prove 
that the class Du contains infinite sets of measure zero.

Theorem 2. Let P„ be a set of primes such that £  i = <». Let
pe Pr o P

S be a set of positive integers having the property that if p e P Q, 
no more then a finite number of integers of S are divisible by 
p. Let us form from the elements belonging to the set S an in­
creasing sequence ian )n e N and next the set S* of the form (10). 
Then u(S*) = 0.

P r o o f .  Let X be a product of primes of PQ and let Ak 
be the arithmetic progression {X n + k)n N for k = 1, 2,..., X. 
Every positive integer of A^ is divisible by (X, k), and this in 
turn is either 1, or a product of primes of PQ . Let us.form the 
sets a£ of the form (10) for particular sequences Ak. Consider 
the set S* n a£ in case (X, k) # 1. First we consider the set 
S n A^. Each element of this set is divisible by at least one 
prime of PQ which is also a divisor of X.

By the hypothesis only a finite number of terms of S is di­
visible by any one prime of PQ , and hence by any of the finite 
collection of primes dividing X. We conclude that the set s n A^ 
is finite, thus also the set S* n a£ is finite.
It is clear

N X N = U A?k<X K
and thus

S* ■ U (S* n Aj) = U (S* n Ai)k < X x k < X K
where the dash indicates that the union is to be taken only for k 
with (X, k) = 1. Hence we have



s* c U  a£
k s: X K

and by Jemma 1 and theorem l we have

y(S*) « £  A(A*) = 4-*-̂ -k ¡S X K . x

where as usual «(m) is Euler's phi function and is equal to the
number of primes to m and less than m. Let us now choose X as
tt p where the subscript indicates that we are considering only 
p <m ° 1 1
primes belonging to P . Since <J> ( X) = tt (1 - — ) s; X exp { - Z! — }»

° p $ m Po p <m P*o *o*
we have

U(S*) exp {- £  -i).
P0 Si™ F0

Using the hypothesis of the set P , we obtain y (S *) = 0.
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0 OgSlOSCI ZBIORU PAR LICZB NATURALNYCH

R. Creighton Buck w [lj korzystając z pojęcia gęstości zbioru A = {an : 
: n e N } gdzie |an 1 n jj jest rosnącym ciągiem liczb naturalnych, wprowadził 

pojęcie miary definiowanej na pewnej klasie podzbiorów zbioru liczb naturalnych.
Praca niniejsza przenosi pojęcie gęstości na odpowiednie, zbiory par liczb 

naturalnych. Korzystając z dwuwymiarowej gęstości definiuje się miarę i bada 
jej własności.


