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ON SOME TOPOLOGICAL PROPERTIES
OF THE CLASS OF NORMALIZED
AND STARLIKE MAPS
OF THE UNIT POLYDISK I N c”

In this paper we consider univalent holomorphic maps of the unit
polydisk Pn into Cn. We find a necessary and sufficient condition for
this function to be starlike. Further, we show that the class of nor-
malized and starlike maps of the unit polydisk Pn into Cn is compact

and connected.

Let Cn denote the space of n complex variables z = (zl#

zn), ZyecC, j=1, ..., n. For (@ ..., zn) = ze Cn, define
Iz0= max |zs|= Let p" = {ze Cn; QJzll<r} and Pn = P?. We
ISjsn J i
shall denote by I the identity map on Cn. The class of holomorphic
maps of a domain (contained in Cn) into Cn is denoted by H(£2).

The class H(£2) will be taken as a topological space with topology
of almost uniform convergence (see [5], p- 66).

Let M(p”) be the class of maps h : p£ 4+ Cn which are holo-
morphic and satisfy the following conditions: h(0) = 0, Dh(0)=1
and re (W (@)/z~») >0 when Jzll= |zJ]1 >0 Q@ « j < n), where h =
= (i, hn) (see [8], [9D-

We say that Ff e H(p£) 1is starlike if it is univalent f(0) = 0
and f(p£) 1is a starlike set (i.e. (@ - ©)Ff(pE) c F(pL) for on
« t « 1).

Let GO@E£) denote the class of starlike maps f : p£ ¢ Cn such
that DF(0) = 1.



The proofs of the main theorems in this paper are based on re-

lations between the classes SO(Pn) and M(Pn).

With the above notation, we can write theorem 1 from [8] in the
form:

Theorem a. If £ 6 go(Pn), then there exists a function he

e M(Pn) such that

f(z) = DF(@)h(2) for z e Pn

A continuation of studies of these relations can ba found in
paper [6]-

In our case (i.e. X = Cn), every starlike map is biholomorphic

hence theorems 3, 4 and 5 from [6] can be formulated in the fol-
lowing form:

Theorem B. If h e M(Pn), then the equality

DF(x)h(x) = fX) for x e Pn
where f(@©) = 0, DFf(0) =1, has a unique solution T which belongs
to <D(CPn).

At the beginning of this paper we are occupied in streng-
thening theorem b. The following lemma which is a generalization of
theorem 7 from [2] will be useful.

Lemma 1. Let f e h(pE) be a locally biholomorphic map such that
f(0) =0 and DF(O) = I. Then f is a starlike map on pf if and
only if there exists a function h s M(P") such that

f(z) = DF@)h(z) for zePj

Proof. Suppose that f e H(p'™) 1is a locally biholomorphic
map such that f(@) = 0, DF@) =1 and Df@)h(z) = f(z) for z e
e pE£, where he M(p™) .

Now, we define the functions:

f(2) = if(rz) and h@) = ~h(rz) TFfor z e Pn.

It is easy to see that f : Pn #@aCn is locally biholomorphic,
f(0) = 0, DFf@ =1, while h e M(Pn). Since *F(rz) = DFf(rz)h(rz)
for z e pn, therefore T(z) = Df(z)h(z) for ze Pn. By theorem 7
from [2], we obtain that ? e G0 (Pn), which implies f e 90 (pf)-

Suppose now that T 6 @ (pE)- Let us consider, as previously,
amap ?(z) = if(rz) for ze Pn. Such a map belongs to Qo (Pn),
hence, by theorem a, there exists ';1/ e M(Pn) such that 'il‘(z) =
= DF(z)h(z) Tfor z e Pn. Observe that rf(]) = D?2(PrK(D) for



ze pE. Put h(z) = rK(]) for ze pE; then h 6 M(p£) and the
equation F(z) = DFf(z2)h(z) for =z e p" is satisfied. This comple-
tes the proof.

Corollary. If £ £ GO(®n), then f(P®) is a starlike set for any

r e <0, 1).

Theorem 1. If h 6 M(Pn), then the equation

DFf(z)h(z) = (@) for z e Pn @)
possesses exactly one solution fe H(Pn) such that () = 0 and
Df(@©) = 1. Moreover, f e @ (Pn).

Proof. Let he M(Pn) and let v = v(z, ©t) for z« Pn and

for t > 0 be a solution of the equation

@, © = -h(v(z, t)), Vv(z, 00 =z for ze Pn
(see lemma 1 from [6])- Then, by theorem 3 from [o], the function

f defined as f(2) = IIi_mGD etv(z, t) for ze Pn belongs to (?jo(Pn)-

Hence, 1in virtue of theorem 4 from [6], we obtain that f fulfils
equation (1). Suppose that there exists a map g e H(Pn) such that

g(0) =0, Dg(0) =1 and g satisfies equation (1). Since Dg(0) =
= 1, therefore, in virtue of theorem 1.3.7 from 7], there exists
0(0 <0< 1) such that g | 1 s a biholomorphic map. It follows

from Jlemma I that g|P” is starlike.

ret us now consider a map u : P x[0, ») *cn defined in the
following way:

u(z, ©) = g-1(etg(z)) for ze p£ and t~" O

It is not difficult to show that -Y(z, ©t) = -h(u(z, 1)) for
ze p£ and t5 0.

Since v = v(z, t) for zs Pn and t ~ 0 fulfils the above
equation as well, the uniqueness of the solution of this equation
(see lema 5 from [2]) 1implies that v(z, t) = u(z, © for ze pE
and t ~ 0. It is easy to see that tlim(D etu(z, v = g(@ for

ze ptE. Since f(2) = lim_ etv(z, t) for 2z e P” therefore f(z2)=
a tae £

=g(z) Tfor 2z e pE. This and the analytic extension principle
(see theorem 9.4.2. Ffrom [1]) imply that f(z) = g(z) for 2z e pn,

which ends the proof.
The next theorem will be preceded by two lemmas.

Lemma 2. I¥ h e M(pn), then
Ih(@) 1 Bz ! Fr-jffij for z e Pn.



Proof. Let h ¢ M(Pn). Denote e£E = (z e Pn; JzP < |zk|

where z = (@°, zn)} for k = 1, n. Let k @™ k<n) be
hk (z)

any fixed number and put = - for z e — {0}, where z =

= (zl, ..., zn) and h = (G~, hn). It 1is obvious that

re Fk(z > 0 for z e Ek~{0}. Now, we define a function Hk in the

following way:

Hk CtIf tn) = Fk(tltk, ..., tk_1tk, tk> tk+ltk, tntk)

for all t = (tjy tn) e Pn such that tyi 0. Since hk 1is a

holomorphic function on Pn and Dh(0) =1, therefore we can repre-
sent it in the form of the absolutely convergent power series

hv(@ =zt + £ a(k)zv for z e Pn
K K Jvi>1 \Y;
vsNn

(see 9.3 from [1j). Using this representation, we obtain that

Hit) -1+ £ ak tVk-1 tvk+l twn tju]-1
k 1 k 1 k+1 ** n k -
V»Nn

where v = (v*, ..., W), for all t = (tj, tR) e Pn such that
Y o-

Let us extend the function Hk to the entire polydisk Pn by
putting, for t = 117"; _ee, ~N, 0, eoeff 6 P ,

Hk(® = 1

It is easy to see that Hk is holomorphic on Pn and satisfies
the following conditions: Hk(@) = 1, re(Hk()) > 0 for te Pn.
Taking the function Hk as a function of one complex variable tk
(with other variables fixed) we obtain (by theorem 2, p. 365 from

[4])

fHecere o, )~ YTy for = ., tnh) 6 P.
Let z = (zJ, ---, zR) be any point of ef£ - {0}. Put 2 ="
N

for i k, 1< i<n, and tk = zk. 1t 1is obvious that tQ =

= (t°, t°) s Pn and, since Hk(Q) = Fk(z), therefore



By the free choise of z, we obtain that inequality (2) takes
place for all z e ef - {0}. This implies that

1+ Jzk] n
Ihk @] < IZidd X for z 6 Ek - {0}
Further, observe that (rei(®, reich) e Ejj - {0} for any
re (@, 1) and gne [0, 2ir], m = 1, n. Hence the inequality
liyr.1»~ ____. r.“*-iu r
takes place for re (@0, 1) and gme [0, 2n], m = 1, n.Con-

sidering the Tform of the Bergman-Silov boundary for the polydisk
Pn, we obtain that

I»*<zH < m K + H for zePn

From the arbitrariness of k (1$k i n) we have
ih(z)n 11Z1f- rffil for ze Pn.

Lanmms 3. The set M(Pn) is closed in H(Pn).

Proof. Let 1 )<rri c M(Pn) be a sequence converging to
h e H(Pn). Let »~ = <hlIm..... hnm> for m e N, From the defini-
tion of M(Pn) we have that
hu_(2)
e - — PO
zk

for JzQ= lz«k| >0, k=1, ..., n andm=1, 2, ... From the

convergence of the sequence {hﬁﬁ%_l to h we obtain that

htU)
re - —— 50
zk
for Jzd= |z,J > 0, where h = (hj, hn). Since h(0) = 0 and
Dh(0) = 1, therefore h e M(Pn).
Theorem 2. The set M(Pn) is compact in H(Pn).
Proof. Let K ¢ pn be a compact set. By lannu 2, there
exists a number > 0 such that Gh(z)] ™ i for ze K and for

any h e M(Pn). Hence, in virtue of the generalized theorem of
Montel (see [5], p- 68) and Jam 3, we obtain that M(Pn) is
compact.



Remark. Directly from the definition of the class M(Pn) it
follows that this set is convex, thus (by theorem 4, p. 93, from
[3]) connected.

Lemma 4. The set "0 (Pn) 1is relatively compact in H(Pn).

Proof. With the application of theorem 6 from [6], the
proof of this lemma runs similary as that of theorem 2.

Now, we shall consider a map F : M(Pn) ® SO<Pn* defined in
following way. Let h e M(Pn), then F(h) = f where Ff 1is holo-
morphic on Pn, (@) = 0, Df(@ =1 and f fulfils equation (1).
The correctness of the definition of F follows immediatly from
theorem 1.

Theorem 3. The map F is continuous on M(Pn).

Proof. Let {hm}rn:i' c M(Pn) be a sequence converging to
some function h e H(Pn). By Jemma 2, we have that h e M(Pn). Let
f = F(hm) and f = F(h). Suppose that the sequence {fm}mzl does
not converge to f. By the relative compactness, we can choose two

subsequences {fu } ° , {F } ” which converge to functions L
m ">=1 xm nFzl

and f, respectively, such that they belong to H(Pn), €(0) = 0,
f(©) = 0, DF(O) =1 and DF(O) = 1. Since the functions fm for
each m e N Ffulfil the equation Dfm(2)hm (@) = fm(E@) for ze Pn,
therefore f and f satisfy equation (1). This contradicts the
uniqueness of the solution of equation (1) with the conditions
DF(0) =1 and f(@) = 0 (see theorem 1).

Theorem 4. The set g0 (Pn) is compact in H(Pn).

Proof. Observe that from the definition of F it follows
that F(M(Pn)) = gO(Pn). Since, in virtue of theorem 3, F is conti-
nuous and, by theorem 2, the set M(Pn) is compact, therefore, by
theorem 3.17.9. Ffrom [1j , Q0 (Pn) is compact in H(Pn).

Theorem 5. The set $0 (Pn) is connected in H(Pn).

Proof. By the continuity of F and the connectedness of
M(Pn) (see remark) and theorem 3.19.7. from [1], we obtain that
the set D (Pn) = FM(Pn)) is connected.
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Tadeusz Poreda

0 PEWNYCH WEASNOSCIACH TOPOLOGICZNYCH KLASY ODWZOROWAN GWIAZDZISTYCH
1 UNORMOWANYCH POLICYLINDRA JEDNOSTKOWEGO W Cn

W pracy tej rozwazana jest pewna podklasa klasy odwzorowan jednokrotnych
holomorficznych policylindra jednostkowego w Cn. Na poczatku przedstawiony
zostat pewien warunek konieczny i dostateczny na to, aby odwzorowanie by4o
gwiazdziste. Podstawowy rezultat tej pracy to wykazanie, Zze unormowana klasa
odwzorowan gwiazdzistych jest zwarta i spdjna.



