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In this paper we consider univalent holomorphic maps of the unit 
polydisk Pn into Cn. We find a necessary and sufficient condition for 
this function to be starlike. Further, we show that the class of nor­
malized and starlike maps of the unit polydisk Pn into Cn is compact 
and connected.

Let Cn denote the space of n complex variables z = (z1#
zn), Zj e C, j = 1, ..., n. For (zJf ..., zn ) = z e Cn , define
|| z II = max | z_s | • Let p " = {z e  Cn ; || z || < r} and Pn = P ? .  We 

lSjsn J i
shall denote by I  the identity map on Cn . The class of holomorphic
maps of a domain (contained in Cn ) into Cn is denoted by H(£2). 
The class H(£2) will be taken as a topological space with topology 
of almost uniform convergence (see [5], p. 66).

Let M(p” ) be the class of maps h : p£ -♦ Cn which are holo­
morphic and satisfy the following conditions: h(0) = 0, D h ( 0 ) = I  
and re (h^ ( z)/z^ ) > 0  when || z || = | z j | > 0 (1 « j < n), where h = 
= (hj, hn ) (see [8], [9]).

We say that f e H(p£) is starlike if it is univalent f(0) = 0 
and f(p£) is a starlike set (i.e. (1 - t)f(p£) c f(p£) for 0 ^ 
« t « 1).

Let G0 (p£) denote the class of star like maps f : p£ •* Cn such 
that Df(0) = I.



The proofs of the main theorems in this paper are based on re­
lations between the classes S0(Pn ) and M(Pn ).

With the above notation, we can write theorem 1 from [8] in the 
form:

Theorem a . If f 6 go(Pn ), then there exists a function h e  
e M(Pn ) such that

f(z) = Df(z)h(z) for z e Pn
A continuation of studies of these relations can ba found in 

paper [6].
In our case (i.e. X = Cn ), every starlike map is biholomorphic 

hence theorems 3, 4 and 5 from [6] can be formulated in the fol­
lowing form:

Theorem B. If h e M(Pn ), then the equality 
Df(x)h(x) = f(x ) for x e Pn 

where f(0) = 0, Df(0) = I, has a unique solution f which belongs 
to <30(Pn ).

At the beginning of this paper we are occupied in streng­
thening theorem b . The following lemma which is a generalization of 
theorem 7 from [2] will be useful.

Lemma 1. Let f e h(p£) be a locally biholomorphic map such that 
f(0) = 0 and Df(0) = I. Then f is a starlike map on p£ if and 
only if there exists a function h s M(P^) such that 

f(z) = Df ( z )h( z ) for zePj
P r o o f .  Suppose that f e H(p") is a locally biholomorphic 

map such that f ( 0 ) = 0, Df ( 0 ) = I and Df(z)h(z ) = f(z ) for z e 
e p£, where he M(p") .

Now, we define the functions:
f(z) = if(rz) and h(z) = ^h(rz) for z e Pn .

It is easy to see that f : Pn -*■ Cn is locally biholomorphic, 
f(0) = 0, Df(0) = I, while h e M(Pn). Since f(rz) = Df(rz)h(rz) 
for z e pn , therefore f(z) = Df(z)h(z) for z e Pn . By theorem 7 
from [2], we obtain that ? e Cj0 (Pn ), which implies f e 90 (p£)- 

Suppose now that f 6 C}0 (p£). Let us consider, as previously, 
a map ?(z) = if(rz) for z e Pn . Such a map belongs to Qo (Pn ),

/v n Nhence, by theorem a , there exists h e M(P ) such that f(z) = 
= Df(z)h(z) for z e Pn . Observe that rf(|) = D?(|)rK(|) for



z e p£. Put h(z) = rK(|) for z e p£; then h 6 M(p£) and the 
equation f(z) = Df(z)h(z) for z e p" is satisfied. This comple­
tes the proof.

Corollary. If £ £ Cj 0 (Pn ) , then f(P^) is a starlike set for any 
r e <0, 1).

Theorem 1. If h 6 M(Pn ), then the equation
Df(z)h(z) = f(z) for z e Pn (1)

possesses exactly one solution f e H(Pn ) such that f(0) = 0 and 
Df(0) = I. Moreover, f e (J0 (Pn ).

P r o o f .  Let h e  M(Pn ) and let v = v(z, t) for z « Pn and 
for t >, 0 be a solution of the equation

(z, t) = -h(v(z, t)), v(z, 0) = z for z e Pn 
(see lemma 1 from [6]). Then, by theorem 3 from [o], the function 
f defined as f(z) = lim etv(z, t) for z e Pn belongs to Q (Pn).I ■+ 00 J o
Hence, in virtue of theorem 4 from [6], we obtain that f fulfils 
equation (1). Suppose that there exists a map g e H(Pn ) such that 
g(0) = 0, Dg(0) = I and g satisfies equation (1). Since Dg(0) = 
= I, therefore, in virtue of theorem 1.3.7 from ¡7], there exists
o (0 < o < 1) such that g | i s  a biholomorphic map. It follows 
from lemma l that g|P” is starlike.

ret us now consider a map u : P*̂  x[0, ») -* cn defined in the 
following way:

u(z, t) = g-1(etg(z)) for z e p£ and t ^ 0 
It is not difficult to show that -|̂ r(z, t) = -h(u(z, t)) for 

z e p£ and t 5 0.
Since v = v(z, t) for z s Pn and t ^ 0 fulfils the above 

equation as well, the uniqueness of the solution of this equation 
(see .lemma 5 from [2]) implies that v(z, t) = u(z, t) for z e p£
and t ^ 0. It is easy to see that lim etu(z, t) = g(z) for

t 00
z e p£. Since f(z) = lim etv(z, t) for z e P” therefore f(z)=cr t -*■ ® £
= g(z) for z e p£. This and the analytic extension principle 
(see theorem 9.4.2. from [1]) imply that f(z) = g(z) for z e pn, 
which ends the proof.

The next theorem will be preceded by two lemmas.
Lemma 2. If h e M(pn ), then
1! h(z) II I! z !! f-r-jffij for z e Pn.



P r o o f .  Let h c M(Pn ). Denote e£ = (z e Pn; || z |J < |zk |
where z = (z^, zn )} for k = 1, n. Let k (1 ^ k < n) be

hk ( z )
any fixed number and put = —  for z e — {0}, where z =

= (z1, ..., zn ) and h = (h^, hn ). It is obvious that 
re Fk (z) > 0 for z e Ek~ {0}. Now, we define a function Hk in the 
following way:

Hk(tlf tn ) = Fk(t1tk , ..., tk_1tk, tk> tk+1tk , tntk )

for all t = (tjy tn ) e Pn such that tyi 0. Since hk is a
holomorphic function on Pn and Dh(0) =1, therefore we can repre­
sent it in the form of the absolutely convergent power series

hv(z) = zt + £  a(k)zv for z e Pn
K K |vl>1 v 

vsNn
(see 9.3 from [lj). Using this representation, we obtain that

H it) - 1 + £  a(k) tVk-1 tVk+1 tvn t|u|-1
k 1 k_1 k+1 ** n k '

V»Nn

where v = (v^, ..., \>n), for all t = (tj, tR ) e Pn such that
v  o-

Let us extend the function Hk to the entire polydisk Pn by 
putting, for t = 11^; . • •, ^, 0, •••# 6 P ,

Hk(t) = 1.
It is easy to see that Hk is holomorphic on Pn and satisfies 

the following conditions: Hk(0) = 1, re(Hk(t)) > 0 for t e  Pn . 
Taking the function Hk as a function of one complex variable tk 
(with other variables fixed) we obtain (by theorem 2, p. 365 from
[4] )

1 + 1**1|Hk (tlf ..., tn )| ^ | for t = (tj, tn ) 6 P .

Let z = (zj, ..., zR ) be any point of e£ - {0}. Put t? = ^
- ^ 

for i k, 1 < i < n, and tk = zk . It is obvious that tQ = 
= (t°, t°) s Pn and, since Hk(tQ ) = Fk(z), therefore



By the free choise of z, we obtain that inequality (2) takes 
place for all z e e£ - {0}. This implies that

1 + |zk | n|hk (z)| < IZfcl x for z 6 Ek - {0}.

Further, observe that (rei(̂ , reicPn) e Ejj - {0} for any
r e  (0, 1) and cpm e [0, 2ir] , m = 1, n. Hence the inequality

liyr.1»’..... r.‘* - i u  r
takes place for r e  (0, 1) and cpm e [0, 2n], m = 1, n.Con­
sidering the form of the Bergman-Silov boundary for the polydisk 
Pn , we obtain that

l»*<zH < m  K + H  for z e P n

From the arbitrariness of k (l$k i n) we have

i h (z ) n I IZ1 f - r f f i l for z e Pn .

Lamms 3. The set M(Pn ) is closed in H(Pn ).

P r o o f .  Let i )°<in= i c M(Pn ) be a sequence converging to 
h e H(Pn ). Let ^  = <hlm..... hnm> for m e N, From the defini­
tion of M(Pn ) we have that

hu_(2)re — --- i> 0
zk

for || z || = | zk | > 0, k = 1, ..., n and m = 1, 2, ... From the
COconvergence of the sequence {h[n)nl_1 to h we obtain that

htU)
re — --- 5 0

zk
for || z (I = |z,J > 0, where h = (hj, hn ). Since h(0) = 0 and
Dh(0) = I, therefore h e M(Pn ).

Theorem 2 . The set M(Pn) is compact in H(Pn ).
P r o o f .  Let K c pn be a compact set. By lannu 2, there 

exists a number > 0 such that G h( z) | ^ rt̂  for z e K and for 
any h e M(Pn ). Hence, in virtue of the generalized theorem of 
Montel (see [5], p. 68) and J a m  3, we obtain that M(Pn ) is 
compact.



Remark. Directly from the definition of the class M(Pn) it 
follows that this set is convex, thus (by theorem 4, p. 93, from 
[3]) connected.

Lemma 4. The set ^0 (Pn ) is relatively compact in H(Pn ). 
P r o o f .  With the application of theorem 6 from [6], the 

proof of this lemma runs similary as that of theorem 2.

Now, we shall consider a map F : M(Pn ) ■+ S0 <Pn* defined in 
following way. Let h e M(Pn ), then F(h) = f where f is holo- 
morphic on Pn , f(0) = 0, Df(0) = I and f fulfils equation (1). 
The correctness of the definition of F follows immediatly from 
theorem 1 .

Theorem 3. The map F is continuous on M(Pn ).
P r o o f .  Let {h„}„ .. c M(Pn ) be a sequence converging to m m=i

some function h e H(Pn ). By Jemma 2, we have that h e M(Pn ). Let
00

f = F(hm ) and f = F(h). Suppose that the sequence {fm }m=1 does 
not converge to f. By the relative compactness, we can choose two

CD 00subsequences {fu } , {f-, } which converge to functions f 
m ">=1 xm m=:1

and f, respectively, such that they belong to H(Pn ), f(0) = 0, 
f(0) = 0, Df(0) = I and Df(0) = I. Since the functions fm for 
each m e N fulfil the equation Dfm (z)hm (z) = fm (z) for z e Pn , 
therefore f and f satisfy equation (1). This contradicts the 
uniqueness of the solution of equation (1) with the conditions 
Df(0) = I and f (0 ) = 0 (see theorem 1).

Theorem 4. The set g 0 (Pn) is compact in H(Pn ).
P r o o f .  Observe that from the definition of F it follows 

that F(M(Pn )) = g0(Pn ). Since, in virtue of theorem 3, F is conti­
nuous and, by theorem 2, the set M(Pn ) is compact, therefore, by 
theorem 3.17.9. from [lj , Q 0 (Pn ) is compact in H(Pn ).

Theorem 5. The set $0 (Pn ) is connected in H(Pn ).
P r o o f .  By the continuity of F and the connectedness of 

M(Pn ) (see remark) and theorem 3.19.7. from [1], we obtain that 
the set <30 (Pn ) = F(M(Pn )) is connected.
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0 PEWNYCH WŁASNOŚCIACH TOPOLOGICZNYCH KLASY ODWZOROWAŃ GWIAŹDZISTYCH
I UNORMOWANYCH POLICYLINDRA JEDNOSTKOWEGO W Cn

W pracy tej rozważana jest pewna podklasa klasy odwzorowań jednokrotnych 
holomorficznych policylindra jednostkowego w Cn . Na początku przedstawiony 
został pewien warunek konieczny i dostateczny na to, aby odwzorowanie było 
gwiaździste. Podstawowy rezultat tej pracy to wykazanie, że unormowana klasa 
odwzorowań gwiaździstych jest zwarta i spójna.


