Tadeusz Poreda

ON SOME TOPOLOGICAL PROPERTIES OF THE CLASS OF NORMALIZED AND STARLIKE MAPS OF THE UNIT POLYDISK IN Cⁿ

In this paper we consider univalent holomorphic maps of the unit polydisk P^n into \mathbb{C}^n . We find a necessary and sufficient condition for this function to be starlike. Further, we show that the class of normalized and starlike maps of the unit polydisk P^n into \mathbb{C}^n is compact and connected.

Let \mathbb{C}^n denote the space of n complex variables $z = (z_1, \ldots, z_n)$, $z_j \in \mathbb{C}$, $j = 1, \ldots, n$. For $(z_1, \ldots, z_n) = z \in \mathbb{C}^n$, define $||z|| = \max_{\substack{1 \leq j \leq n \\ 1 \leq j \leq n}} ||z_j|$. Let $\mathbb{P}_r^n = \{z \in \mathbb{C}^n; ||z|| < r\}$ and $\mathbb{P}^n = \mathbb{P}_1^n$. We shall denote by I the identity map on \mathbb{C}^n . The class of holomorphic maps of a domain Ω (contained in \mathbb{C}^n) into \mathbb{C}^n is denoted by $H(\Omega)$. The class $H(\Omega)$ will be taken as a topological space with topology of almost uniform convergence (see [5], p. 66).

Let $M(P_r^n)$ be the class of maps $h : P_r^n \to \mathbb{C}^n$ which are holomorphic and satisfy the following conditions: h(0) = 0, Dh(0) = Iand re $(h_j(z)/z_j) \ge 0$ when $||z|| = |z_j| \ge 0$ ($1 \le j \le n$), where $h = (h_1, \ldots, h_n)$ (see [8], [9]).

We say that $f \in H(P_r^n)$ is starlike if it is univalent f(0) = 0and $f(P_r^n)$ is a starlike set (i.e. $(1 - t)f(P_r^n) \subset f(P_r^n)$ for $0 \leq \leq t \leq 1$).

Let $\mathcal{G}_{o}(\mathbb{P}_{r}^{n})$ denote the class of starlike maps $f : \mathbb{P}_{r}^{n} + \mathbb{C}^{n}$ such that Df(0) = I.

The proofs of the main theorems in this paper are based on relations between the classes $G_o(\mathbf{p}^n)$ and $\mathbf{M}(\mathbf{p}^n)$.

With the above notation, we can write theorem 1 from [8] in the form:

Theorem A. If $f \in \mathcal{G}_0(\mathbb{P}^n)$, then there exists a function h $\in \mathbb{M}(\mathbb{P}^n)$ such that

f(z) = Df(z)h(z) for $z \in P^n$

A continuation of studies of these relations can be found in paper [6].

In our case (i.e. $X = c^n$), every starlike map is biholomorphic hence theorems 3, 4 and 5 from [6] can be formulated in the following form:

Theorem B. If $h \in M(P^n)$, then the equality

Df(x)h(x) = f(x) for $x \in P^n$

where f(0) = 0, Df(0) = I, has a unique solution f which belongs to $\mathcal{G}_{\alpha}(\mathbb{P}^{n})$.

At the beginning of this paper we are occupied in strengthening theorem B. The following lemma which is a generalization of theorem 7 from [2] will be useful.

Lemma 1. Let $f \in H(P_r^n)$ be a locally biholomorphic map such that f(0) = 0 and Df(0) = I. Then f is a starlike map on P_r^n if and only if there exists a function $h \in M(P_r^n)$ such that

f(z) = Df(z)h(z) for $z \in P_r^n$

Proof. Suppose that $f \in H(P_r^n)$ is a locally biholomorphic map such that f(0) = 0, Df(0) = I and Df(z)h(z) = f(z) for $z \in P_r^n$, where $h \in M(P_r^n)$.

Now, we define the functions:

 $\widetilde{f}(z) = \frac{1}{r}f(rz)$ and $\widetilde{h}(z) = \frac{1}{r}h(rz)$ for $z \in \mathbb{P}^n$.

It is easy to see that $\tilde{f} : P^n \to \mathbb{C}^n$ is locally biholomorphic, $\tilde{f}(0) = 0$, $D\tilde{f}(0) = I$, while $\tilde{h} \in M(Pn)$. Since $f(rz) = Df(rz)\tilde{h}(rz)$ for $z \in P^n$, therefore $\tilde{f}(z) = D\tilde{f}(z)\tilde{h}(z)$ for $z \in P^n$. By theorem 7 from [2], we obtain that $\tilde{f} \in \mathcal{G}_0(P^n)$, which implies $f \in \mathcal{G}_0(P^n_r)$.

Suppose now that $f \in \mathcal{G}_0(\mathbb{P}^n_r)$. Let us consider, as previously, a map $\tilde{f}(z) = \frac{1}{r}f(rz)$ for $z \in \mathbb{P}^n$. Such a map belongs to $\mathcal{G}_0(\mathbb{P}^n)$, hence, by theorem A, there exists $\tilde{h} \in M(\mathbb{P}^n)$ such that $\tilde{f}(z) = D\tilde{f}(z)\tilde{h}(z)$ for $z \in \mathbb{P}^n$. Observe that $r\tilde{f}(\frac{z}{r}) = D\tilde{f}(\frac{z}{r})r\tilde{h}(\frac{z}{r})$ for

88

 $z \in P_r^n$. Put $h(z) = r\tilde{h}(\frac{z}{r})$ for $z \in P_r^n$; then $h \in M(P_r^n)$ and the equation f(z) = Df(z)h(z) for $z \in P_r^n$ is satisfied. This completes the proof.

Corollary. If $f \in G_0(P^n)$, then $f(P_r^n)$ is a starlike set for any $r \in \{0, 1\}$.

Theorem 1. If $h \in M(P^n)$, then the equation

Df(z)h(z) = f(z) for $z \in P^n$ (1)

possesses exactly one solution $f \in H(P^n)$ such that f(0) = 0 and Df(0) = I. Moreover, $f \in G_o(P^n)$.

P r o o f. Let $h\in M(P^n)$ and let $v=v(z,\,t)$ for $z\in P^n$ and for $t\geqslant 0$ be a solution of the equation

 $\frac{\partial v}{\partial t}(z, t) = -h(v(z, t)), v(z, 0) = z$ for $z \in P^n$

(see lemma 1 from [6]). Then, by theorem 3 from [6], the function f defined as $f(z) = \lim_{t \to \infty} e^t v(z, t)$ for $z \in P^n$ belongs to $g_o(P^n)$. Hence, in virtue of theorem 4 from [6], we obtain that f fulfils equation (1). Suppose that there exists a map $g \in H(P^n)$ such that g(0) = 0, Dg(0) = I and g satisfies equation (1). Since Dg(0) = I, therefore, in virtue of theorem 1.3.7 from [7], there exists $g(0 < \rho < 1)$ such that $g|P_\rho^n$ is a biholomorphic map. It follows from lemma 1 that $g|P_\rho^n$ is starlike.

Let us now consider a map $u : \mathbb{P}^n_{\varrho} \times [0, \infty) \to \mathbb{C}^n$ defined in the following way:

 $u(z, t) = g^{-1}(e^{t}g(z))$ for $z \in P_{\rho}^{n}$ and $t \ge 0$

It is not difficult to show that $\frac{\partial u}{\partial t}(z, t) = -h(u(z, t))$ for $z \in P_0^n$ and $t \ge 0$.

Since v = v(z, t) for $z \in P^n$ and $t \ge 0$ fulfils the above equation as well, the uniqueness of the solution of this equation (see lemma 5 from [2]) implies that v(z, t) = u(z, t) for $z \in P_Q^n$ and $t \ge 0$. It is easy to see that $\lim_{t \to \infty} e^t u(z, t) = g(z)$ for $z \in P_Q^n$. Since $f(z) = \lim_{t \to \infty} e^t v(z, t)$ for $z \in P_Q^n$ therefore f(z) == g(z) for $z \in P_Q^n$. This and the analytic extension principle (see theorem 9.4.2. from [1]) imply that f(z) = g(z) for $z \in P^n$, which ends the proof.

The next theorem will be preceded by two lemmas.

Lemma 2. If $h \in M(P^n)$, then

 $\|h(z)\| \leq \|z\| \frac{1+\|z\|}{1-\|z\|}$ for $z \in P^{n}$.

Proof. Let $h \in M(P^n)$. Denote $E_k^n = \{z \in P^n; \|z\| \le |z_k|$ where $z = (z_1, \ldots, z_n)\}$ for $k = 1, \ldots, n$. Let $k \ (1 \le k \le n)$ be any fixed number and put $F_k(z) = \frac{h_k(z)}{z_k}$ for $z \in E_k^n - \{0\}$, where $z = (z_1, \ldots, z_n)$ and $h = (h_1, \ldots, h_n)$. It is obvious that re $F_k(z) > 0$ for $z \in E_k^n - \{0\}$. Now, we define a function H_k in the following way:

 $\begin{array}{l} {}^{H_k}(t_1,\ \ldots,\ t_n) = {}^{F_k}(t_1t_k,\ \ldots,\ t_{k-1}t_k,\ t_k,\ t_{k+1}t_k,\ \ldots,\ t_nt_k) \\ \text{for all } t = (t_1,\ \ldots,\ t_n) \in {P}^n \text{ such that } t_k \neq 0. \text{ Since } h_k \text{ is a} \\ \text{holomorphic function on } {P}^n \text{ and } Dh(0) = I, \text{ therefore we can represent it in the form of the absolutely convergent power series} \end{array}$

$$h_{k}(z) = z_{k} + \sum_{\substack{|v| > 1 \\ v \in N^{n}}} \alpha_{v}^{(k)} z^{v} \text{ for } z \in \mathbb{P}^{n}$$

(see 9.3 from [1]). Using this representation, we obtain that $H_{k}(t) = 1 + \sum_{|y|>1} \alpha_{y}^{(k)} t_{1}^{y_{1}} \dots t_{k-1}^{y_{k-1}} t_{k+1}^{y_{k+1}} \dots t_{n}^{y_{n}} t_{k}^{|y|-1},$

where $v = (v_1, \ldots, v_n)$, for all $t = (t_1, \ldots, t_n) \in \mathbb{P}^n$ such that $t_k \neq 0$.

Let us extend the function H_k to the entire polydisk P^n by putting, for t = (t₁, ..., t_{k-1}, 0, t_{k+1}, ..., t_n) $\in P^n$,

 $H_k(t) = 1.$

It is easy to see that H_k is holomorphic on p^n and satisfies the following conditions: $H_k(0) = 1$, $re(H_k(t)) \ge 0$ for $t \in p^n$. Taking the function H_k as a function of one complex variable t_k (with other variables fixed) we obtain (by theorem 2, p. 365 from [4])

$$|H_{k}(t_{1}, ..., t_{n})| \leq \frac{1 + |t_{k}|}{1 - |t_{k}|}$$
 for $t = (t_{1}, ..., t_{n}) \in P^{n}$.

Let $z = (z_1, ..., z_n)$ be any point of $E_k^n - \{0\}$. Put $t_i^o = \frac{z_i}{z_k}$ for $i \neq k$, $1 \leq i \leq n$, and $t_k^o = z_k$. It is obvious that $t_o = (t_1^o, ..., t_n^o) \in P^n$ and, since $H_k(t_o) = F_k(z)$, therefore

$$F_{k}(z) \leq \frac{1 + |z_{k}|}{1 - |z_{k}|}$$
 (2)

90

By the free choise of z, we obtain that inequality (2) takes place for all $z \in E_k^n - \{0\}$. This implies that

$$|h_k(z)| \leq |z_k| \frac{1+|z_k|}{1-|z_k|}$$
 for $z \in E_k^n - \{0\}$.

Further, observe that $(re^{i\varphi_1}, ..., re^{i\varphi_n}) \in E_k^n - \{0\}$ for any $r \in (0, 1)$ and $\varphi_m \in [0, 2\pi]$, m = 1, ..., n. Hence the inequality

$$|\mathbf{h}_{\mathbf{k}}(\mathbf{re}^{\mathbf{i}\varphi_{1}}, \ldots, \mathbf{re}^{\mathbf{i}\varphi_{n}})| \leq r \frac{1+r}{1-r}$$

takes place for $r \in (0, 1)$ and $\varphi_m \in [0, 2\pi]$, m = 1, ..., n. Considering the form of the Bergman-Šilov boundary for the polydisk P^n , we obtain that

$$|h_{k}(z)| \leq ||z|| \frac{1+||z||}{1-||z||}$$
 for $z \in P^{n}$

From the arbitrariness of k $(1 \le k \le n)$ we have

$$\|h(z)\| \leq \|z\| \frac{1+\|z\|}{1-\|z\|}$$
 for $z \in \mathbb{P}^n$.

Lemma 3. The set M(Pⁿ) is closed in H(Pⁿ).

Proof. Let $\{h_m\}_{m=1}^{\infty} \subset M(P^n)$ be a sequence converging to $h \in H(P^n)$. Let $h_m = (h_{1m}, \ldots, h_{nm})$ for $m \in N$, From the definition of $M(P^n)$ we have that

$$\operatorname{re} \frac{h_{km}(z)}{z_{k}} \ge 0$$

for $||z|| = |z_k| > 0$, k = 1, ..., n and m = 1, 2, ... From the convergence of the sequence $\{h_m\}_{m=1}^{\infty}$ to h we obtain that

$$\operatorname{re} \frac{\tilde{h}_{k}(z)}{z_{k}} \ge 0$$

for $||z|| = |z_k| > 0$, where $h = (\tilde{h}_1, \dots, \tilde{h}_n)$. Since h(0) = 0 and Dh(0) = I, therefore $h \in M(P^n)$.

Theorem 2. The set $M(P^n)$ is compact in $H(P^n)$.

Proof. Let $K \subset P^n$ be a compact set. By lemma 2, there exists a number $m_{\overline{K}} > 0$ such that $\|h(z)\| \leq m_{\overline{K}}$ for $z \in K$ and for any $h \in M(P^n)$. Hence, in virtue of the generalized theorem of Montel (see [5], p. 68) and lemma 3, we obtain that $M(P^n)$ is compact.

Tadeusz Poreda

Remark. Directly from the definition of the class $M(P^n)$ it follows that this set is convex, thus (by theorem 4, p. 93, from [3]) connected.

Lemma 4. The set $G_0(P^n)$ is relatively compact in $H(P^n)$.

Proof. With the application of theorem 6 from [6], the proof of this lemma runs similary as that of theorem 2.

Now, we shall consider a map $F : M(P^n) \to G_0(P_n)$ defined in following way. Let $h \in M(P^n)$, then F(h) = f where f is holomorphic on P^n , f(0) = 0, Df(0) = I and f fulfils equation (1). The correctness of the definition of F follows immediatly from theorem 1.

Theorem 3. The map F is continuous on M(Pⁿ).

Proof. Let $\{h_m\}_{m=1}^{\infty} \subset M(P^n)$ be a sequence converging to some function $h \in H(P^n)$. By lemma 2, we have that $h \in M(P^n)$. Let $f_m = F(h_m)$ and f = F(h). Suppose that the sequence $\{f_m\}_{m=1}^{\infty}$ does not converge to f. By the relative compactness, we can choose two subsequences $\{f_k\}_{m=1}^{\infty}$, $\{f_1\}_{m=1}^{\infty}$ which converge to functions \tilde{f} and \tilde{f} , respectively, such that they belong to $H(P^n)$, $\tilde{f}(0) = 0$, $\tilde{f}(0) = 0$, $D\tilde{f}(0) = I$ and $D\tilde{f}(0) = I$. Since the functions f_m for each $m \in N$ fulfil the equation $Df_m(z)h_m(z) = f_m(z)$ for $z \in P^n$, therefore \tilde{f} and \tilde{f} satisfy equation (1). This contradicts the uniqueness of the solution of equation (1) with the conditions Df(0) = I and f(0) = 0 (see theorem 1).

Theorem 4. The set $g_o(P^n)$ is compact in $H(P^n)$.

Proof. Observe that from the definition of F it follows that $F(M(P^n)) = G_0(P^n)$. Since, in virtue of theorem 3, F is continuous and, by theorem 2, the set $M(P^n)$ is compact, therefore, by theorem 3.17.9. from [1], $G_0(P^n)$ is compact in $H(P^n)$.

Theorem 5. The set $G_{o}(P^{n})$ is connected in $H(P^{n})$.

P r o o f. By the continuity of F and the connectedness of $M(P^n)$ (see remark) and theorem 3.19.7. from [1], we obtain that the set $G_0(P^n) = F(M(P^n))$ is connected.

REFERENCES

astein a madner m. s d

- J. Dieudonne, Foundations of Modern Analysis, (russian translation), Moskwa 1964.
- [2] K. R. Gurganus, Φ-like Holomorphic Functions in cⁿ and Banach Spaces, Trans. Amer. Math. Soc. 205 (1975), p. 389-406.

92

On Some Topological Properties of the Class

- [3] W. Kołodziej, Analiza matematyczna, Warszawa 1978.
- [4] F. Leja, Teoria funkcji analitycznych, Warszawa 1957.
- [5] K. Maurin, Analiza, part. 2, Warszawa 1971.
- [6] T. Poreda, On the Geometrical Properties of the Starlike Maps in Banach Spaces (in preparation).
- [7] W. Rudin, Function Theory in the Unit Ball of cⁿ, New York, Heidelberg, Berlin 1980.
- [8] T. J. Suffridge, The Principle of Subordination Applied to Functions of Several Variables, Pacific J. Math. 33 (1970), p. 241-248.
- [9] T. J. Suffridge, Starlike and Convex Maps in Banach Spaces, Pacific J. Math. 46 (1973), p. 575-589.

Institute of Mathematics Technical University of Łódź

Tadeusz Poreda

o pewnych własnościach topologicznych klasy odwzorowań gwiaździstych i unormowanych policylindra jednostkowego w \mathfrak{c}^n

W pracy tej rozważana jest pewna podklasa klasy odwzorowań jednokrotnych holomorficznych policylindra jednostkowego w \mathbb{C}^n . Na początku przedstawiony został pewien warunek konieczny i dostateczny na to, aby odwzorowanie było gwiaździste. Podstawowy rezultat tej pracy to wykazanie, że unormowana klasa odwzorowań gwiaździstych jest zwarta i spójna.