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In this paper we consider univalent holomorphic maps of the unit 
polydisk Pn into Cn. We find a necessary and sufficient condition for 
this function to be starlike. Further, we show that the class of nor
malized and starlike maps of the unit polydisk Pn into Cn is compact 
and connected.

Let Cn denote the space of n complex variables z = (z1#
zn), Zj e C, j = 1, ..., n. For (zJf ..., zn ) = z e Cn , define
|| z II = max | z_s | • Let p " = {z e  Cn ; || z || < r} and Pn = P ? .  We 

lSjsn J i
shall denote by I  the identity map on Cn . The class of holomorphic
maps of a domain (contained in Cn ) into Cn is denoted by H(£2). 
The class H(£2) will be taken as a topological space with topology 
of almost uniform convergence (see [5], p. 66).

Let M(p” ) be the class of maps h : p£ -♦ Cn which are holo
morphic and satisfy the following conditions: h(0) = 0, D h ( 0 ) = I  
and re (h^ ( z)/z^ ) > 0  when || z || = | z j | > 0 (1 « j < n), where h = 
= (hj, hn ) (see [8], [9]).

We say that f e H(p£) is starlike if it is univalent f(0) = 0 
and f(p£) is a starlike set (i.e. (1 - t)f(p£) c f(p£) for 0 ^ 
« t « 1).

Let G0 (p£) denote the class of star like maps f : p£ •* Cn such 
that Df(0) = I.



The proofs of the main theorems in this paper are based on re
lations between the classes S0(Pn ) and M(Pn ).

With the above notation, we can write theorem 1 from [8] in the 
form:

Theorem a . If f 6 go(Pn ), then there exists a function h e  
e M(Pn ) such that

f(z) = Df(z)h(z) for z e Pn
A continuation of studies of these relations can ba found in 

paper [6].
In our case (i.e. X = Cn ), every starlike map is biholomorphic 

hence theorems 3, 4 and 5 from [6] can be formulated in the fol
lowing form:

Theorem B. If h e M(Pn ), then the equality 
Df(x)h(x) = f(x ) for x e Pn 

where f(0) = 0, Df(0) = I, has a unique solution f which belongs 
to <30(Pn ).

At the beginning of this paper we are occupied in streng
thening theorem b . The following lemma which is a generalization of 
theorem 7 from [2] will be useful.

Lemma 1. Let f e h(p£) be a locally biholomorphic map such that 
f(0) = 0 and Df(0) = I. Then f is a starlike map on p£ if and 
only if there exists a function h s M(P^) such that 

f(z) = Df ( z )h( z ) for zePj
P r o o f .  Suppose that f e H(p") is a locally biholomorphic 

map such that f ( 0 ) = 0, Df ( 0 ) = I and Df(z)h(z ) = f(z ) for z e 
e p£, where he M(p") .

Now, we define the functions:
f(z) = if(rz) and h(z) = ^h(rz) for z e Pn .

It is easy to see that f : Pn -*■ Cn is locally biholomorphic, 
f(0) = 0, Df(0) = I, while h e M(Pn). Since f(rz) = Df(rz)h(rz) 
for z e pn , therefore f(z) = Df(z)h(z) for z e Pn . By theorem 7 
from [2], we obtain that ? e Cj0 (Pn ), which implies f e 90 (p£)- 

Suppose now that f 6 C}0 (p£). Let us consider, as previously, 
a map ?(z) = if(rz) for z e Pn . Such a map belongs to Qo (Pn ),

/v n Nhence, by theorem a , there exists h e M(P ) such that f(z) = 
= Df(z)h(z) for z e Pn . Observe that rf(|) = D?(|)rK(|) for



z e p£. Put h(z) = rK(|) for z e p£; then h 6 M(p£) and the 
equation f(z) = Df(z)h(z) for z e p" is satisfied. This comple
tes the proof.

Corollary. If £ £ Cj 0 (Pn ) , then f(P^) is a starlike set for any 
r e <0, 1).

Theorem 1. If h 6 M(Pn ), then the equation
Df(z)h(z) = f(z) for z e Pn (1)

possesses exactly one solution f e H(Pn ) such that f(0) = 0 and 
Df(0) = I. Moreover, f e (J0 (Pn ).

P r o o f .  Let h e  M(Pn ) and let v = v(z, t) for z « Pn and 
for t >, 0 be a solution of the equation

(z, t) = -h(v(z, t)), v(z, 0) = z for z e Pn 
(see lemma 1 from [6]). Then, by theorem 3 from [o], the function 
f defined as f(z) = lim etv(z, t) for z e Pn belongs to Q (Pn).I ■+ 00 J o
Hence, in virtue of theorem 4 from [6], we obtain that f fulfils 
equation (1). Suppose that there exists a map g e H(Pn ) such that 
g(0) = 0, Dg(0) = I and g satisfies equation (1). Since Dg(0) = 
= I, therefore, in virtue of theorem 1.3.7 from ¡7], there exists
o (0 < o < 1) such that g | i s  a biholomorphic map. It follows 
from lemma l that g|P” is starlike.

ret us now consider a map u : P*̂  x[0, ») -* cn defined in the 
following way:

u(z, t) = g-1(etg(z)) for z e p£ and t ^ 0 
It is not difficult to show that -|̂ r(z, t) = -h(u(z, t)) for 

z e p£ and t 5 0.
Since v = v(z, t) for z s Pn and t ^ 0 fulfils the above 

equation as well, the uniqueness of the solution of this equation 
(see .lemma 5 from [2]) implies that v(z, t) = u(z, t) for z e p£
and t ^ 0. It is easy to see that lim etu(z, t) = g(z) for

t 00
z e p£. Since f(z) = lim etv(z, t) for z e P” therefore f(z)=cr t -*■ ® £
= g(z) for z e p£. This and the analytic extension principle 
(see theorem 9.4.2. from [1]) imply that f(z) = g(z) for z e pn, 
which ends the proof.

The next theorem will be preceded by two lemmas.
Lemma 2. If h e M(pn ), then
1! h(z) II I! z !! f-r-jffij for z e Pn.



P r o o f .  Let h c M(Pn ). Denote e£ = (z e Pn; || z |J < |zk |
where z = (z^, zn )} for k = 1, n. Let k (1 ^ k < n) be

hk ( z )
any fixed number and put = —  for z e — {0}, where z =

= (z1, ..., zn ) and h = (h^, hn ). It is obvious that 
re Fk (z) > 0 for z e Ek~ {0}. Now, we define a function Hk in the 
following way:

Hk(tlf tn ) = Fk(t1tk , ..., tk_1tk, tk> tk+1tk , tntk )

for all t = (tjy tn ) e Pn such that tyi 0. Since hk is a
holomorphic function on Pn and Dh(0) =1, therefore we can repre
sent it in the form of the absolutely convergent power series

hv(z) = zt + £  a(k)zv for z e Pn
K K |vl>1 v 

vsNn
(see 9.3 from [lj). Using this representation, we obtain that

H it) - 1 + £  a(k) tVk-1 tVk+1 tvn t|u|-1
k 1 k_1 k+1 ** n k '

V»Nn

where v = (v^, ..., \>n), for all t = (tj, tR ) e Pn such that
v  o-

Let us extend the function Hk to the entire polydisk Pn by 
putting, for t = 11^; . • •, ^, 0, •••# 6 P ,

Hk(t) = 1.
It is easy to see that Hk is holomorphic on Pn and satisfies 

the following conditions: Hk(0) = 1, re(Hk(t)) > 0 for t e  Pn . 
Taking the function Hk as a function of one complex variable tk 
(with other variables fixed) we obtain (by theorem 2, p. 365 from
[4] )

1 + 1**1|Hk (tlf ..., tn )| ^ | for t = (tj, tn ) 6 P .

Let z = (zj, ..., zR ) be any point of e£ - {0}. Put t? = ^
- ^ 

for i k, 1 < i < n, and tk = zk . It is obvious that tQ = 
= (t°, t°) s Pn and, since Hk(tQ ) = Fk(z), therefore



By the free choise of z, we obtain that inequality (2) takes 
place for all z e e£ - {0}. This implies that

1 + |zk | n|hk (z)| < IZfcl x for z 6 Ek - {0}.

Further, observe that (rei(̂ , reicPn) e Ejj - {0} for any
r e  (0, 1) and cpm e [0, 2ir] , m = 1, n. Hence the inequality

liyr.1»’..... r.‘* - i u  r
takes place for r e  (0, 1) and cpm e [0, 2n], m = 1, n.Con
sidering the form of the Bergman-Silov boundary for the polydisk 
Pn , we obtain that

l»*<zH < m  K + H  for z e P n

From the arbitrariness of k (l$k i n) we have

i h (z ) n I IZ1 f - r f f i l for z e Pn .

Lamms 3. The set M(Pn ) is closed in H(Pn ).

P r o o f .  Let i )°<in= i c M(Pn ) be a sequence converging to 
h e H(Pn ). Let ^  = <hlm..... hnm> for m e N, From the defini
tion of M(Pn ) we have that

hu_(2)re — --- i> 0
zk

for || z || = | zk | > 0, k = 1, ..., n and m = 1, 2, ... From the
COconvergence of the sequence {h[n)nl_1 to h we obtain that

htU)
re — --- 5 0

zk
for || z (I = |z,J > 0, where h = (hj, hn ). Since h(0) = 0 and
Dh(0) = I, therefore h e M(Pn ).

Theorem 2 . The set M(Pn) is compact in H(Pn ).
P r o o f .  Let K c pn be a compact set. By lannu 2, there 

exists a number > 0 such that G h( z) | ^ rt̂  for z e K and for 
any h e M(Pn ). Hence, in virtue of the generalized theorem of 
Montel (see [5], p. 68) and J a m  3, we obtain that M(Pn ) is 
compact.



Remark. Directly from the definition of the class M(Pn) it 
follows that this set is convex, thus (by theorem 4, p. 93, from 
[3]) connected.

Lemma 4. The set ^0 (Pn ) is relatively compact in H(Pn ). 
P r o o f .  With the application of theorem 6 from [6], the 

proof of this lemma runs similary as that of theorem 2.

Now, we shall consider a map F : M(Pn ) ■+ S0 <Pn* defined in 
following way. Let h e M(Pn ), then F(h) = f where f is holo- 
morphic on Pn , f(0) = 0, Df(0) = I and f fulfils equation (1). 
The correctness of the definition of F follows immediatly from 
theorem 1 .

Theorem 3. The map F is continuous on M(Pn ).
P r o o f .  Let {h„}„ .. c M(Pn ) be a sequence converging to m m=i

some function h e H(Pn ). By Jemma 2, we have that h e M(Pn ). Let
00

f = F(hm ) and f = F(h). Suppose that the sequence {fm }m=1 does 
not converge to f. By the relative compactness, we can choose two

CD 00subsequences {fu } , {f-, } which converge to functions f 
m ">=1 xm m=:1

and f, respectively, such that they belong to H(Pn ), f(0) = 0, 
f(0) = 0, Df(0) = I and Df(0) = I. Since the functions fm for 
each m e N fulfil the equation Dfm (z)hm (z) = fm (z) for z e Pn , 
therefore f and f satisfy equation (1). This contradicts the 
uniqueness of the solution of equation (1) with the conditions 
Df(0) = I and f (0 ) = 0 (see theorem 1).

Theorem 4. The set g 0 (Pn) is compact in H(Pn ).
P r o o f .  Observe that from the definition of F it follows 

that F(M(Pn )) = g0(Pn ). Since, in virtue of theorem 3, F is conti
nuous and, by theorem 2, the set M(Pn ) is compact, therefore, by 
theorem 3.17.9. from [lj , Q 0 (Pn ) is compact in H(Pn ).

Theorem 5. The set $0 (Pn ) is connected in H(Pn ).
P r o o f .  By the continuity of F and the connectedness of 

M(Pn ) (see remark) and theorem 3.19.7. from [1], we obtain that 
the set <30 (Pn ) = F(M(Pn )) is connected.
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0 PEWNYCH WŁASNOŚCIACH TOPOLOGICZNYCH KLASY ODWZOROWAŃ GWIAŹDZISTYCH
I UNORMOWANYCH POLICYLINDRA JEDNOSTKOWEGO W Cn

W pracy tej rozważana jest pewna podklasa klasy odwzorowań jednokrotnych 
holomorficznych policylindra jednostkowego w Cn . Na początku przedstawiony 
został pewien warunek konieczny i dostateczny na to, aby odwzorowanie było 
gwiaździste. Podstawowy rezultat tej pracy to wykazanie, że unormowana klasa 
odwzorowań gwiaździstych jest zwarta i spójna.


