Tomasz Filipczak

A NOTE ON THE SYSTEM OF COMPLEMENTS OF SETS SPARSE AT A POINT

In this note we prove that the system of complements of sets sparse at a point on the right satisfies a strong intersection condition of the form " $S_x \cap S_y \cap (y, y + (y - x)^{\alpha} \neq \emptyset$ " for each $\alpha \in (0, 1)$.

In [1] the definition of a strong intersection condition was introduced. This condition is related to T h o m s o n s intersection condition (see [3]). Let $S = \{S(x); x \in R\}$ be a family of collections of subsets of the real line. We say that S satisfies a strong intersection condition of the form " $S_x \cap S_y \neq \emptyset$ " (" $S_x \cap S_y \cap (x, y) \neq \emptyset$ ", etc.) if, for any $x \in R$ and $S \in S(x)$, there is a positive number $\delta(x, S)$ such that $S_x \cap S_y \neq \emptyset$ ($S_x \cap S_y \cap (x, y) \neq \emptyset$, etc.) whenever $S_x \in S(x)$, $S_y \in S(y)$ and $0 < y - x < \min \{\delta(x, S_x), \delta(y, S_y)\}$.

If E is a measurable subset of the real line, then |E| denotes the Lebesgue measure of E. By a right upper (lower) density of E at a point x we mean

$$d^{+}(E, x) = \lim_{h \to 0^{+}} \sup \frac{|E \cap (x, x + h)|}{h}$$

$$(d_{+}(E, x) = \lim_{h \to 0^{+}} \inf \frac{|E \cap (x, x + h)|}{h}$$

We define the family $S^+ = \{S^+(x); x \in R\}$ in the following way

$$A \in S^+(x) \iff x \in A$$

and there is a measurable set $E \subset A$ such that, for each measurable F with $d^+(F, x) = 1$ and $d_+(F, x) > 0$, we have $d^+(E \cap F, x) = 1$ and $d_+(E \cap F, x) > 0$.

From ([2], Theorem 3.1) it follows that a measurable set E belongs to $S^+(x)$ if and only if

(*) for each $\epsilon > 0$, there is $k = k(x, \epsilon) > 0$ such that each interval (a, b) $\subset (x, x + k)$ with $a - x \le k(b - x)$ contains at least one point y such that $|E \cap (x, y)| > (1 - \epsilon)(y - x)$.

If $R \setminus E \in S^+(x)$, then E is called sparse at x on the right (see [2]).

In [1] it was proved that S^+ satisfies a strong intersection condition of the form " $S_X \cap S_Y \neq \emptyset$ ", and that there is no $\lambda \geq 0$ such that S^+ satisfies a strong intersection condition of the form " $S_X \cap S_Y \cap [y, y + \lambda(y - x)] \neq \emptyset$ " (and even an intersection condition of this form).

THEOREM. For each $\alpha \in (0, 1)$, the family S^+ satisfies a strong intersection condition of the form

$$"s_{x} \cap s_{y} \cap (y, y + (y - x)^{\alpha}) \neq \emptyset".$$

Proof. Let n be a natural number such that $\frac{n-3}{n}>\alpha$. Evidently, $n\geq 4$. Let $x\in R$ and $S\in S^+(x)$. We can assume that S is measurable. Thus S fulfils condition (*). We can additionally assume that $k(x,\,\epsilon)\leq\epsilon$ for each $\epsilon>0$.

Put

$$\delta(x, S) = [k(x, \frac{1}{4}k(x, \frac{1}{4}))]^n.$$

Let $S_x \in S^+(x)$, $S_y \in S^+(y)$ and $0 < y - x < \min \{\delta(x, S_x), \delta(y, S_y)\}$. We must show that $S_x \cap S_y \cap (y, y + (y - x)^{\alpha}) \neq \emptyset$. Put h = y - x, $a = x + h^{(n-2)/n}$ and $b = x + h^{(n-3)/n}$.

We shall consider two cases:

(i)
$$k(x, \frac{1}{4}) \le k(y, \frac{1}{4})$$
.

Since

$$b = x + h^{(n-3)/n} < x + \left[\delta(x, S_x)\right]^{(n-3)/n}$$

$$= x + \left[k(x, \frac{1}{4}k(x, \frac{1}{4}))\right]^{n-3}$$

$$\leq x + k(x, \frac{1}{4}k(x, \frac{1}{4})),$$

therefore $(a, b) \subset (x, x + k(x, \frac{1}{4}k(x, \frac{1}{4})))$. Moreover,

$$a - x = h^{(n-2)/n} = (b - x)h^{1/n}$$
 $< (b - x)k(x, \frac{1}{4}k(x, \frac{1}{4}))$

and, by (*), there exists $b_1 \in (a, b)$ such that

$$|s_x \cap (x, b_1)| > (1 - \frac{1}{4}k(x, \frac{1}{4}))(b_1 - x).$$

Hence

(1)
$$|(x, b_1) \setminus S_x| < \frac{1}{4}k(x, \frac{1}{4})(b_1 - x) \le \frac{1}{4}k(y, \frac{1}{4})(b_1 - x).$$

Put $a_1 = x + (b_1 - x)k(y, \frac{1}{4})$. Then

$$\frac{a_1 - y}{b_1 - y} < \frac{a_1 - x}{b_1 - x} = k(y, \frac{1}{4}).$$

On the other hand,

$$b_1 < b = x + h^{(n-3)/n} < x + [k(y, \frac{1}{4}k(y, \frac{1}{4}))]^{n-3}$$
 $< x + k(y, \frac{1}{4}) < y + k(y, \frac{1}{4})$

and

(2)
$$a_1 - x = (b_1 - x)k(y, \frac{1}{4}) > (a - x)k(y, \frac{1}{4}k(y, \frac{1}{4}))$$
$$= h^{(n-2)/n} [\delta(y, S_y)]^{1/n} > h^{(n-2)/n} h^{1/n} = h^{(n-1)/n}.$$

This means that $(a_1, b_1) \subset (y, y + k(y, \frac{1}{4}))$ and, by (*), there is $z \in (a_1, b_1)$ such that

thate in by a (a, a) such that

(3)
$$|s_y \cap (y, z)| > \frac{3}{4}(z - y)$$
.

From (1) it follows that

(4)
$$|S_{x} \cap (x, z)| = (z - x) - |(x, z) \setminus S_{x}|$$

 $\geq z - x - |(x, b_{1}) \setminus S_{x}| > z - x - \frac{1}{4}k(y, \frac{1}{4})(b_{1} - x)$
 $= z - x - \frac{1}{4}(a_{1} - x) > \frac{3}{4}(z - x).$

Since $h^{1/n} < k(x, \frac{1}{4}k(x, \frac{1}{4})) < \frac{1}{4}$, condition (2) implies

$$z - y > a_1 - y > h^{(n-1)/n} - h > 3h.$$

Thus, from (4) it follows that

(5)
$$|S_x \cap (y, z)| \ge |S_x \cap (x, z)| - (y - x) > \frac{3}{4}(z - x) - h$$

 $> \frac{3}{4}(z - y) - \frac{1}{3}(z - y) = \frac{5}{12}(z - y).$

Inequalities (3) and (5) imply

$$|s_{x} \cap s_{y} \cap (y, z)| > (\frac{3}{4} + \frac{5}{12} - 1)(z - y) > 0.$$

Hence

$$S_{\mathbf{x}} \cap S_{\mathbf{y}} \cap (\mathbf{y}, \mathbf{y} + (\mathbf{y} - \mathbf{x})^{\alpha})$$

$$\Rightarrow S_{\mathbf{x}} \cap S_{\mathbf{y}} \cap (\mathbf{y}, \mathbf{y} + (\mathbf{y} - \mathbf{x})^{(n-3)/n})$$

$$\Rightarrow S_{\mathbf{x}} \cap S_{\mathbf{y}} \cap (\mathbf{y}, \mathbf{z}) \neq \emptyset.$$

(ii)
$$k(x, \frac{1}{4}) \ge k(y, \frac{1}{4})$$
.

Since

$$(a, b) \subset (y, y + k(y, \frac{1}{4}k(y, \frac{1}{4})))$$

and

$$a - y = h^{(n-2)/n} - h < (h^{(n-3)/n} - h)h^{1/n}$$

< $(b - y)k(y, \frac{1}{4}k(y, \frac{1}{4})),$

there is $b_1 \in (a, b)$ such that

$$|s_y \cap (y, b_1)| > (1 - \frac{1}{4}k(y, \frac{1}{4}))(b_1 - y).$$

Hence

(6)
$$|(y, b_1) \setminus s_y| < \frac{1}{4}k(y, \frac{1}{4})(b_1 - y) \le \frac{1}{4}k(x, \frac{1}{4})(b_1 - y).$$

Put $a_1 = x + (b_1 - x)k(x, \frac{1}{4})$. Similarly to case (i) we get $b_1 < x + k(x, \frac{1}{4})$ and

(7)
$$a_1 - x > h^{(n-1)/n}$$
.

This means that $(a_1, b_1) \subset (x, x + k(x, \frac{1}{4}))$ and, by (*), there is $z \in (a_1, b_1)$ such that

(8)
$$|s_x \cap (x, z)| > \frac{3}{4}(z - x)$$
.

In the same way as in case (i), from (8) it follows that

(9)
$$|s_x \cap (y, z)| > \frac{5}{12}(z - y)$$
.

On the other hand, (6) and (7) imply

$$|S_{y} \cap (y, z)| = (z - y) - |(y, z) \setminus S_{y}|$$

$$\geq z - y - |(y, b_{1}) \setminus S_{y}| > z - y - \frac{1}{4}k(x, \frac{1}{4})(b_{1} - y)$$

$$> z - y - \frac{1}{4}k(x, \frac{1}{4})(b_{1} - x) = z - y - \frac{1}{4}(a_{1} - x)$$

$$= z - y - \frac{1}{4}(a_{1} - y)(1 + \frac{h}{a_{1} - y})$$

$$> (z - y)(1 - \frac{1}{4}(1 + \frac{h}{a_{1} - y}))$$

$$> (z - y)(1 - \frac{1}{4}(1 + \frac{h}{a_{1} - y}))$$

$$= (z - y)(1 - \frac{1}{4}(\frac{1}{1 - h^{1/n}})) > (z - y)(1 - \frac{1}{4}(\frac{1}{1 - \frac{1}{4}})$$

$$= \frac{2}{3}(z - y).$$

From (9) and (10) we conclude that

$$|s_x \cap s_y \cap (y, z)| > (\frac{5}{12} + \frac{2}{3} - 1)(z - y) > 0$$

and hence

$$s_{\mathbf{x}} \cap s_{\mathbf{y}} \cap (\mathbf{y}, \ \mathbf{y} + (\mathbf{y} - \mathbf{x})^{\alpha}) \supset s_{\mathbf{x}} \cap s_{\mathbf{y}} \cap (\mathbf{y}, \ \mathbf{z}) \neq \emptyset.$$

REFERENCES

- [1] Filipczak T., Intersection conditions for some density and I-density local systems, Real Analysis Exchange, 15 (1989-90), 170-192.
- [2] Sarkhel D. N., De A. K., The proximally continuous integrals, J. Austral. Math. Soc., Ser. A, 31 (1981), 26-45.
- [3] Thomson B., Real Functions, Lect. Notes in Math., (1987), 1170.

Institute of Mathematics University of Łódź

Tomasz Filipczak

UWAGA O RODZINIE DOPEŁNIEŃ ZBIORÓW RZADKICH W PUNKCIE

W pracy dowodzimy, že dla dowolnej liczby $\alpha \in (0,1)$, rodzina dopełnień zbiorów prawostronnie rzadkich w punkcie spełnia silny warunek przekroju typu "S $_{\mathbf{v}} \cap S_{\mathbf{v}} \cap (\mathbf{y}, \mathbf{y} + (\mathbf{y} - \mathbf{x})^{\alpha}) \neq \emptyset$ ".