Grażyna Horbaczewska

REMARK ON SOME THEOREM OF ZAJÍČEK

For a typical continuous function f on [0, 1], f has an I-essential derived number at each point $x \in (0, 1)$.

Zajíček proved [3] that, for a typical continuous real-valued function f and each $x \in (0,1)$, there exists $y \in \overline{\mathcal{R}}$ which is an essential derived number of f at x. In this paper we shall prove that this theorem remains true if we replace the notion of an essential derived number of f at x by an analogous notion for the Baire category.

Let \mathcal{C} denote the set of continuous real valued functions defined on [0,1] furnished with the metric of uniform convergence. When we say a typical $f \in \mathcal{C}$ has a certain property \mathcal{P} , we shall mean that the set of $f \in \mathcal{C}$ with this property is residual in \mathcal{C} .

The notation used throughout this paper is standard. In particular, \Re stands for the set of real numbers, $\bar{\Re} = \Re \cup \{-\infty, \infty\}$, I for the σ -ideal of sets of the first category, ||f|| for the norm in C, B(f,r) for the open ball in C with centre f and radius r and χ_A for the characteristic function of a set A.

Definition 1. ([1]) We say that $x_0 \in \mathfrak{R}$ is an upper *I*-density point of a set *A* having the Baire property if and only if there exists an increasing sequence of real numbers $\{t_n\}_{n\in \mathbb{N}}$ tending to infinity, such

that

$$\chi_{t_n(E-x_0)\cap(-1,1)} \longrightarrow 1$$
 with respect to I as $n \to \infty$ on $(-1,1)$

(see [2] for the definition of the convergence with respect to I). We shall use the notation $\bar{d}_I(E, x_0) = 1$.

Observe that x_0 is an upper *I*-density point of a set *A* if and only if 0 is an upper *I*-density point of $A - x_0 = \{x - x_0 : x \in A\}$.

It is easy to see that $\bar{d}_I(E, x_0) = 1$ if and only if there exists an increasing sequence of real numbers $\{t_n\}_{n \in \mathbb{N}}$ tending to infinity, such that

$$\lim_{n \to \infty} \chi_{t_n(E-x_0) \cap (-1,1)}(x) = 1$$

I-a.e. on (-1,1).

Definition 2. We say that y is an I-essential derived number of f at x if there exists a set $E \subset \Re$ having the Baire property, such that $\bar{d}_I(E,x) = 1$ and $\lim_{t \to x, t \in E} \frac{f(t) - f(x)}{t - x} = y$.

Theorem. For a typical $f \in C$ and each $x \in (0,1)$, there exists $y \in \Re$ which is an I-essential derived number of f at x.

Proof. Let $\{P_k\}_{k\in N}$ be a sequence of polynomials which is dense in \mathcal{C} . For each $k\in N$, put $M_k=\|P_k''\|=\sup_{x\in[0,1]}|P_k''(x)|$ and choose δ_k such that $0<\delta_k<(kM_k)^{-1}$ and $\delta_k\searrow 0$ as $k\to\infty$. Let

$$G = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} B\left(P_k, \frac{\delta_k}{4k^2}\right) = \limsup_{k} B\left(P_k, \frac{\delta_k}{4k^2}\right).$$

For each $m \in N$, the set $\bigcup_{k=m}^{\infty} B(P_k, \frac{\delta_k}{4k^2})$ is open and dense, so G is a dense G_{δ} -subset of C. Hence G is residual in C. Choose an arbitrary $f \in G$. It is sufficient to prove that, for each $x \in (0,1)$, there exists an I-essential derived number of f at x. Fix $x_0 \in (0,1)$. Since $f \in G$, we can choose an increasing sequence of positive integers $\{k_n\}_{n \in N}$ such that $f \in B(P_{k_n}, \delta_{k_n} \cdot (4k_n^2)^{-1})$ for each $n \in N$. Let $h_n = \delta_{k_n}$, $A_n = P'_{k_n}(x_0), z_n = (k_n)^{-1}$. Since $\delta_n \searrow 0$ as $n \to \infty$, we have $h_n \searrow 0$ for $n \to \infty$. For n large enough, we get $(x_0 - h_n, x_0 + h_n) \subset (0, 1)$. We

shall show that, for such an n and for $x \in (x_0 - h_n, x_0 - h_n(k_n)^{-1}) \cup (x_0 + h_n(k_n)^{-1}, x_0 + h_n)$, we have

$$\left|\frac{f(x)-f(x_0)}{x-x_0}-A_n\right|< z_n.$$

We can assume that $x \in (x_0 + \frac{h_n}{k_n}, x_0 + h_n)$ (the other case is analogous). We have

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - \frac{P_{k_n}(x) - P_{k_n}(x_0)}{x - x_0} \right| \\
\leq \frac{|f(x) - P_{k_n}(x)| + |f(x_0) - P_{k_n}(x_0)|}{|x - x_0|} \\
\leq \frac{2\delta_{k_n}(4k_n^2)^{-1}}{\delta_{k_n}(k_n)^{-1}} = \frac{1}{2k_n}.$$

By the Taylor formula, for some $\xi \in (0,1)$,

$$\left| \frac{P_{k_n}(x) - P_{k_n}(x_0)}{x - x_0} - P'_{k_n}(x_0) \right| = \left| \frac{1}{2} P''_{k_n}(\xi)(x - x_0) \right|$$

$$< \frac{1}{2} M_{k_n} \delta_{k_n} < \frac{1}{2} M_{k_n} \cdot \frac{1}{k_n M_{k_n}}$$

$$= \frac{1}{2k_n}.$$

From (1) and (2) we obtain

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - P'_{k_n}(x_0) \right| < \frac{1}{k_n},$$

hence

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - A_n \right| < z_n$$

for $x \in (x_0 - h_n, x_0 - h_n(k_n)^{-1}) \cup (x_0 + h_n(k_n)^{-1}, x_0 + h_n).$

Denote by $y \in \bar{\Re}$ a cluster point of a sequence $\{A_n\}_{n \in N}$. Then there exists a subsequence $\{n_p\}_{p \in N}$ of the sequence of positive integers, such that $A_{n_p} \to y$ as $p \to \infty$. Define

$$E = \bigcup_{p=1}^{\infty} \left[\left(x_0 - h_{n_p}, x_0 - \frac{h_{n_p}}{k_{n_p}} \right) \cup \left(x_0 + \frac{h_{n_p}}{k_{n_p}}, x_0 + h_{n_p} \right) \right].$$

We shall show that

$$\bar{d}_I(E, x_0) = 1$$
 and $\lim_{\substack{x \to \infty \\ x \in E}} \frac{f(x) - f(x_0)}{x - x_0} = y.$

According to the above remarks, it is sufficient to show that there exists a sequence of real numbers $\{t_n\}_{n\in\mathbb{N}}$ tending to infinity, such that

$$\lim_{n \to \infty} \chi_{t_n(E-x_0) \cap (-1,1)}(x) = \chi_{(-1,1)}(x)$$

I-a.e. on (-1,1). Let $t_p = (h_{n_p})^{-1}$. Then

$$\begin{split} t_p \cdot (E - x_0) \supset t_p \left[\left(-h_{n_p}, -\frac{h_{n_p}}{k_{n_p}} \right) \cup \left(\frac{h_{n_p}}{k_{n_p}}, h_{n_p} \right) \right] \\ &= \left(-1, -\frac{1}{k_{n_p}} \right) \cup \left(\frac{1}{k_{n_p}}, 1 \right). \end{split}$$

Since $h_{n_p} \setminus 0$ for $p \to \infty$ and $k_n \nearrow \infty$ for $n \to \infty$, we have $t_p \nearrow \infty$ as $p \to \infty$ and $1/k_{n_l} \setminus 0$ as $l \to \infty$. Hence, for $x \in (0,1)$, $x \neq 0$, there exists p_0 such that, for each $p \geq p_0$,

$$x \in \left(-1, -\frac{1}{k_{n_p}}\right) \cup \left(\frac{1}{k_{n_p}}, 1\right).$$

Then

$$x \in t_p \cdot \left[\left(-h_{n_p}, -\frac{h_{n_p}}{k_{n_p}} \right), \left(\frac{h_{n_p}}{k_{n_p}}, h_{n_p} \right) \right] \subset t_p \cdot (E - x_0),$$

so, for $p \geq p_0$, we have

$$\chi_{t_p(E-x_0)\cap(-1,1)}(x)=1.$$

Therefore $\bar{d}_I(E, x_0) = 1$.

We only need to show that

$$\lim_{\substack{x \to x_0 \\ x \in E}} \frac{f(x) - f(x_0)}{x - x_0} = y.$$

Let $\varepsilon > 0$. There exists p_0 such that $1/k_{n_p} < \varepsilon/2$ for $p \ge p_0$. Then, for each $x \in E$ such that $|x - x_0| < h_{n_{p_0}}$, we have

$$x \in \bigcup_{p=p_0}^{\infty} \left[\left(x_0 - h_{n_p}, x_0 - \frac{h_{n_p}}{k_{n_p}} \right) \cup \left(x_0 + \frac{h_{n_p}}{k_{n_p}}, x_0 + h_{n_p} \right) \right].$$

From (3) it follows that there exists $p \geq p_0$ such that

$$\left|\frac{f(x)-f(x_0)}{x-x_0}-A_{n_p}\right| < z_{n_p} = \frac{1}{k_{n_p}} < \frac{\varepsilon}{2}.$$

Since $A_{n_p} \to y$ as $p \to \infty$, there exists p_1 such that, for $p \geq p_1$, we get

 $|A_{n_p} - y| < \frac{\varepsilon}{2}.$

Let $p_2 = max(p_0, p_1)$ and $\delta = h_{n_{p_2}}$. According to the above remarks, for $x \in E$, if $|x - x_0| < \delta$, then we have

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - y \right| < \varepsilon.$$

This completes the proof.

REFERENCES

- T. Filipczak, On some abstract density topologies, Real Analysis Exchange 14 (1988-89), 140-166.
- [2] W. Poreda, E. Wagner-Bojakowska and W Wilczyński, A category analogue of the density topology, Fund. Math. 125 (1985), 167-173.
- [3] L. Zajíček, On essential derived numbers of typical continuous functions, Tatra Mountains Math. Publ. 2 (1993), 123-125.

Grażyna Horbaczewska

UWAGA NA TEMAT PEWNEGO TWIERDZENIA L. ZAÍČKA

Zajíček ([3]) udowodnił, że typowa funkcja rzeczywista ma w każdym punkcie $x \in (0,1)$ istotną liczbę pochodną. W pracy tej dowodzimy, że twierdzenie to pozostaje prawdziwe, jeśli zastąpimy pojęcie istotnej liczby pochodnej przez analogiczne pojęcie dla kategorii Baire'a.

Institute of Mathematics Lódź University ul. Banacha 22, 90 - 238 Lódź, Poland