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T W O  R E M A R K S  A B O U T  S U R F A C E S

It is shown th a t am ong continuous functions defined on th e  un it 
square and non-decreasing w ith respect to each variable separately  
there  is neither a function with the g reatest nor a function w ith the 
sm allest surface area.

We shall introduce the following denotations. Let

=  { /  : [0 , 1] —► [0 , 1] : /  is a continuous,

non-decreasing function,

/ ( 0 ) =  0 and / ( 1) =  1}

= {z : [0 , l ]2 —> [o, 1] : 2 is a continuous function,
2(0 , 0 ) =  0 and 2(1, 1) =  1,

z(x,  y) is non-decreasing as 
a function of one variable!/ 

for each x  6  [0 , 1], 

z ( x , y ) is non-decreasing as 
a function of one variable x 

for each y E [0 , 1] }.



We shall denote by L \ ( f )  the length of a  curve /  6  T \  and by 
L 2(z)  the area of the surface z € T<i. Respectively |A |i will denote 
the m easure of a linear set A  C [0,1], \D\-i the measure of a planar 
set B  C [0,1] x [0,1]. It can be easily shown that T \  w ith the m etric

P ( f i > h ) =  sup |/ i (x )  -  f 2( x )|
*€[0,1]

is a complete space. Also we can prove th a t T 2 w ith the m etric

p ( z i , z 2) =  sup \zi(x,  y) — z2(x,  y)\
(x,y)e[o,i]2

is a  complete space. It is known that

sup L i ( / )  =  2, inf L i ( f )  =  \ /2  
f £ T  1 l

where least upper bound is reached by the most of functions since 
{ /  (E T \  : L \ ( f ) = 2} is a residual set in T \  and greatest lower bound 
is reached for one function f ( x )  = x.

We shall recall some definitions concerning the surface areas. We 
say th a t the continuous function P  : [0, l ]2 —» [0,1] defines a poly­
hedral if there exists a  subdivision of [0 , l ]2 into a finite num ber of 
non-overlapping triangles T i,T 2, ...,T„ such th a t

P ( x , y )  =  ctiX -(- biy +  c,- for (x ,y ) E T i,i  =  1,2, ...,n

where a,i,bi,Ci are constant coefficients for a fixed triangle T*. The 
sum of the areas of the faces in the sense of elem entary geom etry i.e. 
the num ber

r .  + b ] + 1)2 =  

i i

is called an elem entary area. Let F  : [0, l ]2 —> [0,1] be any continu­
ous function defining a surface. By the surface area L 2(F )  we shall 
mean the lower lim it of elem entary areas of polyhedrals uniformly

dxdxy



convergent to F, i.e. the lower bound of all numbers .s such th a t for 
any e >  0 there exists a  polyhedral P  : [0, l ]2 —► [0,1] such th a t for 
any ( x , y )  E [0, l ]2 \P(x,  y) -  F(x ,  y)| <  c and L 2(p) <  .s.

The variation of functions of two real variables in the sense of 
Tonelli is defined in the following way :

Let F  : [0, l ]2 —» [0,1] be any continuous function. For a.ny 
x E [0,1] let i0i(F , x, [0,1]) be the total variation of F(x,  y), 0 <  y <  1 
as a  function of y  only. For any y E [0,1] let w 2(F,y,  [0,1]) be the 
to ta l variation of F(x ,  y ),0  < x  <  1 as a  function of x  only. Because 
of the continuity of F (.r,y ) non-negative functions u>i(jF, x,  [0 , 1]), 
io2(F,y ,  [0,1]) are lower semicontinuous functions of variables x  and 
y respectively. W hen integrals

/  u ;i(F ,x ,[0 , l])<i.T and /  w2(F,  y, [0, l))dy 
Jo  Jo

are finite, function F  is said to be of bounded variation in [0, l ]2 in
the sense of Tonelli (B.V.T.). Hence we have im m ediately th a t any
function of bounded variation of two variables ( x , y )  is a  function
of bounded variation as a function of x  for almost all y, and it is a
function of bounded variation as a function of y for almost all x.

Obviously for z E '2 we have

wi (F , x ,  [0,1]) <  1 for any x E [0,1]

and
w2(F, y, [0,1]) <  1 for any y E [0,1]

thus

I  wi (F , x ,  [0, l])cfo <  1 
Jo

and

/  w2( F , y, [0 , l])dy < 1.
Jo

By Tonelli theorem  (1926) [see Cesari, p. 4] we have th a t if z E T 2 
then

|[0,i ]2|2 < £ 2(z) < | [ 0 , i ]2|2 +  /  « M J W i U D d z
Jo

+ [  w2(F,y,  [0 , l])dy < 3 .
Jo



Hence

T h eo rem  1.

Proof. Let

sup L 2(z) < 3 and inf £ 2(2 ) >  1. 
z e r  2 ze;F2

sup L 2(z) =  3

Zn(x,y)

r ° < X<1 _ 1
for <! n

I10

VI y<1 — 1_n
1r 1 — 1 <X< 1

for I n
I1 0

VI y<X
1r 1 __ 1 <y< 1

for \1 n
1I 0

VI X<y
for any n  G Af  — {1}.

Then the surface area of z n is equal to

L 2 {z n )  — ( 1 — — ) + 2
i + 1 - i  / T

n '

1 +  ^ ’

so
lim L( zn) =  3.

n —>oc

Hence we have immediately supzG^ 2 L2(z)  =  3.

T h eo rem  2. I f  z € T 2 then L 2( z ) < 3.

Proof. Let 2 € T 2. Then obviously

0 <  2(0 , 0 ) <  2(1, 0 ) <  2( 1, 1) =  1.

At least one of the above inequalities m ust be proper. Suppose it 
is the first one. The proof in the other case is analogous. Thus 
we have 0 =  2(0 , 0 ) <  2(1, 0 ). By the property of Darboux of the



function z(x,  0 ) we have easily tha t there is a point x 0 6  [0 , 1] such 
th a t 0 <  z ( x 0, 0) <  1. Then we have for x G [x 0 ,1]

z (xa, 0) <  z (x ,0 ).

Simultanously, as m ( z , x ,  [0,1]) =  z(x,  1) -  z(x,  0) so for x G [x0, 1] 
the inequality

w\(z ,  x,  [0 , 1]) <  1 -  2(xo, 0 ) <  1

holds. Hence

J  «>,(*,*, [o ,1 ])dx =  J  Wi(z , x ,  [0, l]) r fx

+ / wi(z,x,  [0, l])dx
J  X0

< X0 • 1 +  (1 — £0)(1 -  z (x 0, 0)) <  1

which immediately results in the inequality L 2(z) < 3. 

T h e o re m  3.

Proof. Let

Zn(x , y ) =  <

inf ¿ 2(2) =  1. 
z e r 2

0 <  x <  1 

for < 0 <  y <  1

y < 2 - i - x
1 -  1  <  x  < 1 

n x + n y  - \-1 — 2 n  for < "
2 ~ ^ ~ x < y < l

for any n G N  — {1} •

r /  x 1 / 2rc2 +  1
L{Zn) ~  1 "  w  +  V

Hence limn_>oo L ( z n) =  1 so infrg^2 Li{z)  =  1.



T h e o re m  4 . I f  z £ T i  then L^(z)  > 1.

Proof. Suppose th a t L 2(z) =  1. Then (see Saks p. 181, Theorem  8 .1, 
a,b,c) as z G ^2  so

Thus the equalities hold. In particular from

it follows th a t the subintegral function is almost everywhere equal to 
1. Hence

so z ( x , y ) is absolutely continuous in the sense of Tonelli (shortly 
A .C .T.) so for almost all y0 £ [0 ,1], z ( x , y 0) is absolutely continuous 
as a function of the variable y. Let

•Ei =  { (* ,» )  € [0 , l ]2 : =  0 }

Ei = {(*,!/) £ [0, l]2 : ~(x,s,) = o | .

We know th a t ¡ £ | |2 =  1 and \E 2 \2  -  1- Let

Ai  = {y £  [0 , 1] : li-E,)*!, =  1}



where
(E i y  = {a- G [0,1] : x , y )  e  E l }

and
A 2 =  { x G [ 0 , l ] : | ( F 1) I | i = 1 }

where
( E 2 )x =  { y  € [0,1] : (x ,y)  G E 2 j  .

Obviously |̂ 4.i 11 =  1 and 1̂4.2 |i =  1- Let

Bi  = {y G [0,1] : z ( x , y ) is a.c. as a function of x}

B 2 =  {x  G [0,1] : z(x,  y ) is a.c. as a  function of y} .

We know by A.C.T. th a t |Z?i|i =  |B 2|i =  1. Let y £ A\  D B\ .  Then 
z(x,  yQ) is a.c. since y0 G B i and for almost all x Q G [0,1] §f ( x ,y 0) =
0 since y0 G A\ .  Hence

(1) z ( l , y 0) ~  z(0 , y o) =  0 .

Let x 0 G A 2 n  B 2. Then z (x 0, y) is a.c. since x 0 G B 2 and for almost 
all y G [0,1] f f ( x 0,!/) = 0 since x 0 G A 2. Hence

(2 ) z (xo, l ) - z ( x o,Q) = 0 

By (1) we have

(3) z ( x , y 0) =  z(0 ,yo) for all x  G [0,1] 

and by (2) we have

(4) z ( x 0,y)  = z ( l , y )  for all y G [0,1].

Thus by (3) and (4) we have z (0 ,y0) =  z ( x 0 , y0) =  z ( x 0 , 1). Thus 
■2(0 , Vo) — z ( x 0 , 1).

Since \A\ D B \\i = \A2 D B 2\\ =  1 thus A \ fl B \ is dense in [0,1] 
and A i C\Bi is dense in [0,1]. We shall take the sequence {xn }neA^ C 
A 2 fl B 2 and such th a t x n tends to 1 increasingly and the sequence 
{yn }nejV C A\  fl B\  and such th a t y„ tends to 0 decreasingly. We 
have z (0 ,y„) =  z ( x n , 1) for any n G Af. By the continuity of the 
function z ( x , y )  we have z(0 , 0 ) =  z( 1, 1), and this contradicts the 
fact th a t z(0 , 0 ) =  0 and z( 1, 1) =  1.
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D W IE  U W A G I O P O W IE R Z C H N IA C H

Pokazujemy, że wśród funkcji ciągłych określonych na kw adra­
cie jednostkowym i niemalejących ze względu na każdą zmienną nie 
istnieje ani funkcja o największym, ani o najm niejszym  polu 
powierzchni.
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