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TWO REMARKS ABOUT SURFACES

It is shown that among continuous functions defined on the unit
square and non-decreasing with respect to each variable separately
there is neither a function with the greatest nor a function with the
smallest surface area.

We shall introduce the following denotations. Let

= {/:[0,1] —»[0,1] :/ is a continuous,
non-decreasing function,
/(0)=0 and /(1) = 1}

={z :[0,1]2—]0,1] :2 is a continuous function,
2(0,0) = 0 and 2(1,1) = 1,
z(x,y) is non-decreasing as
a function of one variable!/
for each x 6 [0, 1],
z(x,y) is non-decreasing as
a function of one variable x
for each y E [0,1] }.



We shall denote by L\(f) the length of a curve / 6 T\ and by
L2(z) the area of the surface z € T<i. Respectively |Al|i will denote
the measure of a linear set A C [0,1], \D\-i the measure of a planar
set B C [0,1] x [0,1]. It can be easily shown that T\ with the metric

P(fi>h )= *%%31] 1/i(x) - F2(x)|

is a complete space. Also we can prove that T2 with the metric

p(zi,z2)= su

\zi(x, y) —z2(x, y)\
(X,y)6F0,i]2

is a complete space. It is known that

sup Li(/) = 2, inf Li(f) = \/2
fET1 |

where least upper bound is reached by the most of functions since
{/ €T\ :L\(f) = 2} is aresidual setin T\ and greatest lower bound
is reached for one function f(x) = x.

We shall recall some definitions concerning the surface areas. We
say that the continuous function P : [0, 1]2 — [0,1] defines a poly-
hedral if there exists a subdivision of [0,1]2 into a finite number of
non-overlapping triangles Ti,T2,...,T,, such that

P(x,y) = ctiX «-biy + ¢- for (x,y) ETi,i = 1,2, ...,n

where a,i,bi,Ci are constant coefficients for a fixed triangle T*. The
sum of the areas of the faces in the sense of elementary geometry i.e.
the number

r. +b]+ 1)2 = dxdxy
i i
is called an elementary area. Let F :[0,1]2 —[0,1] be any continu-

ous function defining a surface. By the surface area L2(F) we shall
mean the lower limit of elementary areas of polyhedrals uniformly



convergent to F, i.e. the lower bound of all numbers s such that for
any e > 0 there exists a polyhedral P : [0, 1]2 —[0,1] such that for
any (x,y) E[0,1]12\P(x,y) - F(x,y)| < cand L2(p) < s

The variation of functions of two real variables in the sense of
Tonelli is defined in the following way :

Let F : [0,1]2 — [0,1] be any continuous function. For a.ny
x E [0,1] let i0i(F, x, [0,1]) be the total variation of F(x, y),0 <y < 1
as a function of y only. For any y E [0,1] let w2(F,y, [0,1]) be the
total variation of F(x, y),0 <x < 1as a function of x only. Because
of the continuity of F(.r,y) non-negative functions u>i(jF, x, [0, 1]),
i02(F,y, [0,1]) are lower semicontinuous functions of variables x and
y respectively. When integrals

[ u;i(F,x,[0, D<i.T and / w2(F,v, [0, ))dy

Jo Jo
are finite, function F is said to be of bounded variation in [0, 112 in
the sense of Tonelli (B.V.T.). Hence we have immediately that any
function of bounded variation of two variables (x,y) is a function
of bounded variation as a function of x for almost all y, and it is a
function of bounded variation as a function ofy for almost all x.

Obviously for z E 2 we have

wi(F,x, [0,1]) < 1for any x E [0,1]

and
w2(F, vy, [0,1]) < 1for any y E [0,1]
thus
I wi(F,x, [0, 1)cfo < 1
Jo
and

[ w2(F,y, [0,I]dy < 1.
Jo

By Tonelli theorem (1926) [see Cesari, p. 4] we have that ifz E T2
then

10,1212 < £ 2(z) <|[0. 122+ | «MIWiUDdz
0

+ [ w2(F,y, [0,1])dy < 3.
Jo



Hence

sup L2(z) < 3and inf £2(2) > 1
zer 2 ze;F2

Theorem 1.

sup L2(z) =3
Proof. Let
for <Eo < Xq_ %
nog}/ -B
{1—x 1
Zn(x,y) for

for any n GAf —{1}.
Then the surface area of zn is equal to

i+ 1-1 / T
L2{zn) — (1 ——) +2

1+ A7
S0

lim L(zn) = 3.

n—=0C
Hence we have immediately supzGr2L2(z) = 3.
Theorem 2. Ifz € T2 then L2(z) < 3.
Proof. Let 2 € T2. Then obviously

0 < 2(0,0) < 2(1,0) < 2(1,1) = 1.
At least one of the above inequalities must be proper. Suppose it

is the first one. The proof in the other case is analogous. Thus
we have 0 = 2(0,0) < 2(1,0). By the property of Darboux of the



function z(x, 0) we have easily that there is a point x0 6 [0, 1] such
that 0 < z(x0,0) < 1. Then we have for x G [x0,1]

z(xa,0) < z(x,0).

Simultanously, as m(z,x, [0,1]) = z(x, 1) - z(x, 0) so for x G [x0, ]]
the inequality

w\(z, x, [0,1]) < 1- 2(x0,0)< 1
holds. Hence

3 OF*lndk =3 wizx, [0 Drix

+ | wiz.x [0 17)dx

J X0
< X0+1+ (1 —£0)(1 - z(x0,0)) < 1
which immediately results in the inequality L2(z) < 3.

Theorem 3.
inf ¢ 2(2) = 1.
Aol 2(2)

Proof. Let
0<x<1
for< 0<y<1
Zn(x,y) = < y<2-i-xX
1- 1 <xx<l1

2~N~x<y<l|

nx +ny -\-1—2n for <

for any n GN —{1}-

rl x 1 [2rc2+ 1
L{Zn) ~ 1" w + V

Hence limn >0L(zn) = 1so infrg™2Li{z) = 1



Theorem 4. Ifz £ Ti then L"(z) > L

Proof. Suppose that L2(z) = 1. Then (see Saks p. 181, Theorem 8.1,
a,b,c) as z G2 so

Thus the equalities hold. In particular from

it follows that the subintegral function is almost everywhere equal to
1. Hence

so z(x,y) is absolutely continuous in the sense of Tonelli (shortly
A.C.T.) so for almost all yo £ [0,1], z(x,y0) is absolutely continuous
as a function of the variable y. Let

Ei = {(*») £0,1]2:

0}

H- () 02 ~(x.s)

0.

We know that j£(||2= 1and \E2\2 - 1- Let

Ai = {y £ [0, 1] : li-E)*!, = 1}



where
(Eiy = & G[0,1] :x,y) e EI}

and
A2 = {xG[O,I1:|(F1Ii =1}

where
(E2)x = {y € [0,1] : (x,y) GE2j.

Obviously pMill = 1 and $™2|i = 1- Let

Bi = {y G[0,1] :z(x,y) is a.c. as a function of x}
B2= {x G[0,1] : z(x,y) is a.c. as a function of y} .

We know by A.C.T. that |Z?i|i = |B2|i = 1. Let y £ A\ DB\. Then
z(x, yQ is a.c. since yo GBi and for almost all xQG [0,1] §f(x,y0) =
0 since yo G A\. Hence

(1) z(l,y0) ~ z(0,y0) = 0.

Let x0 GA2n B2. Then z(x0,y) is a.c. since x0 GB2 and for almost
all y G [0,1] ff(x0,//) = 0 since x0 G A2. Hence

(2) z(xo,1)-z(x0Q =0

By (1) we have

(3) z(x,y0) = z(0,yo) for all x G [0,1]
and by (2) we have

(4) z(x0,y) = z(l,y) for all y G [0,1].

Thus by (3) and (4) we have z(0,y0) = z(x0,y0) = z(x0,1). Thus
#8(0,Vo) —z(x0,1).

Since \AA\ DB\\i = \A2DB2\\ = 1 thus A\ fl B\ is dense in [0,1]
and Ai C\Bi is dense in [0,1]. We shall take the sequence {xn}neA* C
A2 fl B2 and such that xn tends to 1 increasingly and the sequence
{yn}nejv C A\ fl B\ and such that y, tends to O decreasingly. We
have z(0,y,) = z(xn,1) for any n G Af. By the continuity of the
function z(x,y) we have z(0,0) = z(1,1), and this contradicts the
fact that z(0,0) = 0 and z(1,1) = 1.
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Wiadystaw Wilczynski i Genowefa Rzepecka

DWIE UWAGI O POWIERZCHNIACH

Pokazujemy, ze wsérdéd funkcji ciggtych okre$lonych na kwadra-
cie jednostkowym i niemalejgcych ze wzgledu na kazdg zmienng nie
istnieje ani funkcja o najwiekszym, ani o najmniejszym polu
powierzchni.
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