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OF THE ROC CURVE 

Abstract. The paper presents chosen methods for estimating the ROC (Receiver Operating 
Characteristic) curve, including parametric and nonparametric procedures. Nonparametric 
approach may involve the use of empirical method or kernel method of the ROC curve estimation. 
In the analysis, an attempt to compare empirical and kernel ROC estimators is made, considering 
the impact of sample size, choice of smoothing parameter and kernel function in kernel estimation 
on the results of the estimation. Based on the results of simulation studies some suggestions, useful 
in the procedures of nonparametric ROC curve, are offered.  

Keywords: ROC curve, empirical estimator, kernel method, smoothing parameter, kernel 
function. 

1. INTRODUCTION

The ROC (Receiver Operating Characteristic) curve is a commonly used 
tool in economic analysis when different classification models are compared. 
Examples related to the economic phenomena are the following: enterprises 
division (threatened with collapse and non-threatened), workers division 
(threatened with dismissal and non-threatened), customers division (wishing to 
change the service provider and being loyal) or borrowers granted a consumer 
credit divisions (with defaulted loans and paid off loans). As a method of data 
visualization, the ROC curve comes from the technical diagnostics, especially in 
the electronic and signal theory, where its primary purpose has been connected 
with detection if signal can be treated as true or as noise. But a major research 
area of the ROC curve is the study in diagnostic medicine with assessing the 
accuracy of diagnostic tests in discriminating diseased from healthy patients. In 
these situations the ROC curve is an important decision support method.  

Based on information about a set of objects, a division is made into one of 
two classes 1G  (objects with condition) and 0G  (objects without condition). 

ROC curve is used in the process of assessing the quality of the classification 
rules because this division may mean occurring the errors (the object is assigned  
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to an incorrect class). The procedure of ROC curve allows to summarize 
distribution functions in two classes. 

In assessing the value of prediction of decision rule, some measures are 
used. Let D  be binary variable defining the presence of condition:  

 






absent.isconditionif0

,presentisconditionif1
D  

 
Let T  be the result of the diagnostic test:  
 






result.testnegativefor0

result,testpostivefor1
T  

 
The sensitivity of decision rule, defined as  11  DTPSE , is the 

probability that the test result is positive, given that the condition is present. The 
specificity of the test  00  DTPSP  is the probability that the test result is 

negative, given that the condition is absent. Sensitivity and specificity are used 
in the construction of ROC curve in such a way that the ROC curve is a plot of 
sensitivity associated with the test versus 1-specificity.  

The ROC curve is defined as (cf. Fawcett (2006), Harańczyk (2010), 
Krzanowski, Hand (2009)): 

 

        pFFpROC   11 1
01  for 10  p   (1) 

 
where 0F  and 1F  are the distribution functions of class 0G  and 1G  respectively.  

The distance between the ROC curve and the upper left corner ]1,0[  is used 

in assessing the misclassification rate of the diagnostic test. The properties of the 
ROC curve are widely presented in Krzyśko et al. (2008). 

 
 

2. ESTIMATION OF THE ROC CURVE  
 
One-dimensional absolute continuous random variable X, called the 

diagnostic test variable, is used to asses if the object is classified to group 0G  

and 1G  with the distribution function 0F  and 1F  respectively. In parametric 

approach we assume that the density function of the variable X  is a mixture of 
two normal components. The parametric ROC curve estimator is the following: 
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where 0 , 1  are means, 0 , 1  are standard deviations in mixture of normal 
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The simplest nonparametric estimator of the ROC curve is the empirical 
ROC curve estimator: 

 

      pFFpR EEEmp   1ˆˆ1ˆ 1
01 ,   (3) 

where  
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ˆ  for 1,0j  are empirical distribution function, 

0,01,0 ,..., nXX  and 
1,11,1 ,..., nXX are independent samples from populations with 

0F and 1F , respectively and .10  p  

Empirical ROC curve estimator (3) is a step function on the unit square, and 
its jagged form is treated as its major drawback. Some trials to improve this 
estimator are presented in detail, for example, in Lloyd (2002) or Horová et al. 
(2012). 

Another nonparametric ROC curve estimator is based on kernel method. 
This method was used for the first time in the procedure of density estimation, 

results in kernel density estimator 
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the random sample, )(uK is kernel function and h  is smoothing parameter.  

A commonly used kernel function is Gaussian kernel   
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Choosing the smoothing parameter is a crucial problem in applying kernel 
methods, however there is no “optimal” value of this parameter in kernel 
procedures. Kernel functions and methods of choosing smoothing parameter are 
presented widely in literature. Kernel method is applied successfully in 
estimating distribution function, regression function and in testing hypotheses 
about independence or goodness-of-fit.  

Kernel ROC curve estimator for 10  p  has the form: 

 

      pFFpR KKKer   1ˆˆ1ˆ 1
01 ,  (4) 
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 One of evaluating the classification model methods is the area under the 

ROC curve (denoted by AUC), defined as  
1

0

dppRAUC . It takes the value 

from 0 to 1 while value close to 1 indicates high diagnostic accuracy  
(cf. Chrzanowski 2014; Domański, Pekasiewicz, Baszczyńska, Witaszczyk 
2014; Misztal 2014).  

 
 

3. RESULTS OF SIMULATION STUDY 
 
The objective of the study is to compare chosen estimation methods of the 

ROC curve. An attempt is made to compare the performance of empirical and 
kernel ROC estimators, considering the impact of sample size, choice of 
smoothing parameter and kernel function in kernel estimation on the results of 
the estimation.  

In the simulation study fifteen populations, introduced by Marron and Wand 
(1992), are taken into account. This collection of Gaussian mixture models, 
often used in works concerning the studies of performance of various kernels 
estimators (cf. Ruzgas, Drulyrè 2013), represents a wide range of density 
functions, including symmetric, asymmetric, unimodal and multimodal ones. 
Variety of distributions allows to regard different levels of similarity of 
populations taking into account.  

From populations, samples of different sizes are drawn (n = 10, 50, 100). 
Estimators of ROC curve are calculated, treating samples from two specific 
populations from Marron and Wand’s collection as group 0G  and 1G . In the 

case of kernel estimator, Epanechnikov kernel function and method of maximal 
smoothing parameter are used (cf. Horová et al. 2012). In this way the 
estimators of the ROC curve are used in the process of distinguishing two 
populations. When the density functions of the populations are similar, the 
distance between the estimator and the diagonal line should be small; otherwise 
this distance should be bigger.  
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The chosen results of the first stage of empirical study when the sample size 
is taken into consideration are presented in Figure 1. 0G  is a sample from the 

population with a normal distribution and 1G  is a sample from the symmetric 

but multimodal population (10. population in Marron and Wand collection). 
 
 

Sample size n = 10 n= 50 n = 100 
Empirical 
ROC curve 
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Figure 1. Empirical and kernel ROC curve estimators for different samples sizes when G0 is 
a sample from normal distribution and G1 is a sample from population 10 (symmetric, multimodal) 
 Source: own elaboration. 

 
It can be seen that in the case of both empirical ROC curve estimator and 

kernel one, the closeness of estimators and the diagonal line is small, what can 
indicate that test is not usable for separation of regarded objects (populations are 
similar), though the difference between density functions is easy to notice and in 
fact they are two different populations. The bigger the sample size is, the smaller 
the closeness to diagonal line is.  

In the second stage of study, two populations from the collection are 
specified, for which the estimators are calculated. The chosen results (estimators 
and AUC values) for n = 50 are presented.  

When the asymmetry becomes stronger in populations from which samples 

1G are generated (for example l = 2 and l = 3) the closeness between ROC curve 

estimators and the upper left corner becomes bigger. It can mean that asymmetry 
is such a characteristic of random variable which causes that it is easy to detect 
the difference between populations using empirical or kernel estimators. When 
modality is the main characteristic that differs two populations (for example 
l = 6,…,15) the ROC curve estimators should not be used in detecting the 
differences between populations. It can be noticed that the bigger the number of 
modes is, the smaller the closeness to diagonal line is.  
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Distributions of populations from 
which the samples are generated 
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Figure 2. Empirical and kernel ROC curve estimators and AUC values for G0 – sample from 
normal distribution and G1 – sample from population l (l = 2,3,7,8), n = 50 

 Source: own elaboration. 

 
 

4. CONCLUSIONS 
 
Based on the results of simulation studies it can be stated that both empirical 

and kernel ROC curve estimators behave in similar way. The area under the 
estimator (AUC) is, in most cases, smaller for kernel estimator, what is closely 
connected with jagged form of empirical estimator. The results indicate that 
kernel estimator may be treated as more cautious procedure what is, in fact, an 
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advantage for novice users of statistical procedures. Estimators of ROC curve 
are recommended especially in situations when strong population asymmetry is 
suspected. Regarded nonparametric procedures for estimation the ROC curve are 
easy to implement because of special computation programs and should be used 
instead of parametric approaches. They do not assume the density function, so 
can be useful when the researcher has no additional information about population. In 
further researches the emphasis should be placed on comparing kernel estimators 
with different values of smoothing parameter and kernel functions.  
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EMPIRYCZNY I JĄDROWY ESTYMATOR KRZYWEJ ROC  
 

 Streszczenie. W pracy rozważane są wybrane metody estymacji krzywej ROC (Receiver 
Operating Characteristic), w tym metody parametryczne i nieparametryczne. Podejście 
nieparametryczne może oznaczać zastosowanie empirycznego estymatora krzywej ROC lub 
estymatora jądrowego. Podjęta jest próba porównania estymacji empirycznej oraz jądrowej ze 
szczególnym uwzględnieniem wpływu liczebności próby, jak również metody wyboru parametru 
wygładzania i funkcji jądra na rezultat procedury estymacyjnej. W oparciu o wyniki badania 
symulacyjnego określone są wskazówki użyteczne w procedurach estymacji krzywej ROC.  
 Słowa kluczowe: krzywa ROC, funkcja jądra, parametr wygładzania. 
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