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FIXED POINT INDEX FOR A NEW CLASS OF
NONLINEAR NONCOMPACT OPERATORS

In the present paper a fixed point index for a large class of map-
pings in Banach spaces is defined and its properties are examined.
This class contains all ultimately compact maps [8] and the identity
as well.

1. INTRODUCTION

Most of infinite dimensional generalizations of fixed point
index or degree theories has, as their basis, the Leray-
Schauder theory [3]. Meanwhile the degree of DC-mappings (see [6],
[2], [9]) is closely related to the finite dimensional
degree of Brouwer, but it takes values in the large group
G = et / P, . Unfortunately, the definitions of DC-mappings
and its degree depend on the choice of an increasing sequence of fi-
nite dimensional subspaces, the so-called filtration. Next, one of the
authors [10] noticed then one can enlarged the class of maps and de-
fined a degree for them, independent of the filtration. In this paper
we shall widen again the class of mappings and define their fixed
point index. Its properties are standard for the degree; we are not
able to prove such important results for indices as the commutativity
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and the mod p-property. Our approach is similar to that of R. Nuss-
baum (7] for k-set contractions and B.N. Sadowski [8] for ultimately
compact maps.

2. DEFINITION AND NOTATIONS

Let E be a Banach space. By {E, : t € T'} we denote the set of all
finite dimensional subspaces of E and by ¥ - the set of all sequences
0 = (8n)az; such that s, € T, n = 1,2,..., and E,, C E,,,, for
any n. If 0 € £, we write

(2.1) E, = D A

This means that (E,, )72, forms a filtration in E, (see [2]).
Let © be an open bounded subset of E and f : 2 — E - a contin-
uous mapping. We put inductively:

AWM =@nvf(Q); AT = v (A™NQ), n > 1;
o0
(2.2) A=) A",
n=1
The standard arguments show ([4], p.96), that (A("))‘,’f=1 is a decreas-
ing sequence,
(2.3) f(ANQ)C A,

and that each fixed point of f belongs to A. If f is a k-set contrac-

tion with k < 1 or, more generally, (k, ¢)—contraction, where ¢ is a

measure of noncompactness, then A is a compact set (see [7], [8]).
If 0 = (sn) € &, we shall write

(2.4) A,, =ANE,,, As=ANE,.

Now, we are ready to define a class of mappings for which the fixed
point index will be given.



FIXED POINT INDEX FOR OPERATORS 79

Definition. Let f : @ — E be continuous. We shall say that f
satisfies condition A and write f € A(R) if there exists 0 = (s,) € E
such that

(2.5) U@, n@)=4,n0
n=1
and
(2.6) lim sup d(f(z),Es,)=0
n—=0 zeA,, NQ

(d(y, A) is the distance between the point y and the set A).

Remark. If ANQ = 0, both conditions are satisfied trivially. When
£ has fixed points, AN # 0. In this case one can find many o € &
for which 2.5 holds and the only problem is that 2.6 take place.

3. EXAMPLES

(a) Let A : (0 — R be continuous and let I stands for the identity
mapping on Q. Then A\ € A(f), since linear subspaces are invariant
under Al

(b) All ultimately compact maps f:Q — E,ie. mappings for which
A is compact, satisfy condition A. 3

In fact, let f be ultimately compact. If AN$ # 0, take a countable
dense subset {yx : k € N} in ANQ. Then put E, = lin{yx : k < n},
n=12..,0=(Mn)€EXL and 2.5 is satisfied. Let € > 0. Choose a
finite e—net of f(A N Q) contained in {yx : k € N}. This set - say
{Ykys .- Yk, } —is included in Ej, and, for any z € AN Q,

d(f(z), Ex,) < lfgjgp |f(z) — yr:ll < e

It follows that condition 2.6 holds.
In particular, any k—set contraction or k—ball contraction with
k < 1 satisfies condition A.
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(c) Let (En)p%, be a filtration in E, i.e. 0 = (n) € £ and E, = E.
If f:Q — E is a DC-mapping, i.e.

lim sup d(f(z),E,)=0,

=0 2 eQNE,

and the limit range A satisfies 2.5 with respect to o, then f € A(£2).

4. FIXED POINT INDEX

In our consideration we shall need the following

Lemma 4.1. Let A be a closed subset of § and let 0 = (s,) € ¥ be
such that

(e o]

(4.1) UJAnE,) =4

n=1
If f: A — E has the property

(4.2) lim sup d(f(z),E,,) =0,

n—oo IEE.n
then there exists a mapping f* : QN E, — E being an extension of

f, taking values in convf(A) and satisfying condition 4.2. Similarly,
if H:(0,1) x A — E has the property

lim sup d(H(t,z),E,,) =0,

n—04e(0,1),z€E,,

then there exists its extension H* : (0,1) x (2N E,) — E taking
values in convH((0,1) x A) and having the same property.

Proof. Proof is based on the Michael Selection Theorem. It is suffi-
cient to show only the second part. Let ng be the smallest positive
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integer such that AN E,, # 0. Let us put

¢ {H(t,2)}, (t,z) € (0,1)
XA,
WH((O, 1) X (A N Eano)), (t,.’l:) R (0’ 1)
X(Eano \ 4),
®(t,z) = < convH((0,1) x (AN E,,)), (t,2) € (0,1)
X(Es,\
(AUE,,_,)),
\ Upe, convH((0,1) x (AN E,,)) other cases.

It is easily seen that, for all (t,z) € (0,1) x (2N E, ), the set &(t, z)
is nonempty, closed and convex. Moreover, the multivalued mapping
® is lower semicontinuous.

In fact, let C be an arbitrary closed subset of E. We have to show
that the set ®~1(C) = {(t,z) : ®(t,z) C C} is closed. There are
three possible cases.

(i) ¢ n H((0,1) x A) # 0 and convH((0,1) x (AN E,. )N
(E\ C) # 0. Then the set ®~'(C) = H~(C) and, from the
continuity of H, is closed.

(ii) There exists n > ng such that convH((0,1) x (AN E,,)) C
C and convH((0,1) X (AN E,,,,))N(E\C) # 0. Then
3-1(C) = ((0,1) x (2N B, )) UH-1(C).

(iii) For each n, convH ((0,1) X (AN E,,)) C C. Then ®~1(C) =

(0,1) x (2N E,).

We have thus obtained that ®~1(C) is always closed. From the
Michael Selection Theorem [5] it follows that there exists a continuous
mapping H* : (0,1) x (2N E,) — E such that H*(t,z) € ®(t,z) for
each (t,z). Obviously, H* has all needed properties.

Now, we are in a position to define the fixed point index for f €
A(R). Let f : Q — E satisfy condition A and let

dist(A, 89) > 0
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where dist(B, C') stands for the distance between the sets B and C
(if A = 0, we set distA, N = 00). In particular, this means that f
has no fixed points on 9. If ANQ = (), we put

(4.3) Ind(f,Q) = {0}

where 0 is the neutral element of the group

G=1]z/

IfANQ # 0, fix ¢ = (sp) € L such as in the definition of the
class A(2). By Lemma 4.1, for f|A, N ), there exists an extension
f*: QN E, — E taking values in A and being a DC-mapping with
respect to the filtration (E,, )% ,. As 9g, (2N E,) C 002N E, where

Op, denotes the boundary in E,, we have the inequality for z €
Or,(ANE,):

00
Z.
1

n=

[|f*(z) — z|| > dist(A, 09Q) > 0.

Hence the degree of the DC-mapping I — f* on 2N E, at the point
0 is defined and we put

(4.4) ind,(f,Q) = Deg(I — f*,QN E,,0) € G.

For the definition of degree of DC-mappings, we use [2] as a reference.
We mention only that it is based on the possibility of the uniform
approximation of DC-mappings by operators which map Q N E,,
into E, for sufficiently large n. For these operators, one can define
a sequence of Brouwer’s degrees on QN E,, and take its equivalence
class in the group G as Deg.

Denote by J(f) the set of all 0 € ¥ satisfying 2.5 and 2.6. We
define the fixed point index of f on the set by the formula:

(4.5) Ind(f,Q) = {ind,(f,Q) : o € J(f)}.

The index is, in general, multivalued and takes values in G but, as
will be shown later, has most of standard properties.
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First, we have to show that the index is independent of the choice
of the extension f*. Let AN # @ and let 0 = (s,) € £ be such
as in the definition of the class A(Q2). Take two extensions f§ and f}
being DC-mappings from QN E, into A. Due to the convexity of A,
H :(0,1) x (2N E,) — E defined by the formula

H(t,z) = (1 -t)fg(z) + tfi(2)

takes values in A and, therefore, (t,2) — 2 —H(t,z) is a DC-mapping
with respect to the filtration ((0,1) x E, )%, such that

te<0,111)1,t;:ean [la — H(t,z)|| > 0.

So, by the homotopy invariance of the degree of DC-mappings (see

[2]),
Deg(I yii fng n EU’O) &3 Deg(I_ f;vﬂ N E,,O).

By means of the above index, one can define a degree. Let f :
0 — E belong to A(Q2) and let

dist(A + {y},00) > 0

where y is a point of E. Then the map f + § (§ - the constant
mapping into y) has property A and its limit range A = A + {y}, so
dist(A, 99) > 0. We define the degree of I — f on  at the point y
by the formula

(4.6) D(I - £,9,y) = Ind(f + 7, Q).

This degree generalizes the definition given in [10].

5. PROPERTIES OF THE INDEX
We shall need the following

Lemma 5.1. Let f: Q — E. Assume that B is a closed convex set
containing A such that

dist(B,0Q >0, f(BNQ)C B
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and g = f|B N satisfies 2.5 and 2.6 for a certain o € 3, where A
is replaced by B. If f* and g* are extensions of f|A, N Q and g|E,,
respectively (as in Lemma 4.1), then

(5.1)  Deg(I — f*,9N E,,0) = Deg(I — ¢*, 2N E,,0).

Proof. As A C B and dist(B,99Q) > 0, both degrees in the assertion
are defined. The mapping h : (t,z) > z — (1 — t)f*(z) — tg*(z) is a
DC-homotopy and [|h(t, z)|| > dist(B,dQ) > 0 for « € 9N, t € (0,1)
since (1 —t)f*(z) + tg*(z) € B. Hence 5.1 is a consequence of the
homotopy invariance property for DC-mappings.

Now, we prove a form of the homotopy invariance theorem for
maps belonging to A(2). Let fo, fi : @ — E be two mappings sat-
isfying condition A and J(fy) = J(f1). Let H : (0,1) x @ — E.

constuct, similarly as in Section 2,

r® = wavH((0,1) x Q),

(5.2) I+ — @eavH((0,1) x I N Q), n>1,
o0
=],
n=1

We shall say that H satisfies condition A if there exists o = (5,) € &
such that 2.5 holds for I instead of A, and

(5.3) lim sup d(H(t,z),E,s,)=0.
B0 tEin,1),,
z€l',,, NQ

By J(H) we denote the set of such o's. A mapping H is called a
homotopy between fo and f; if it satisfies condition A, H(0,-) = fo,
H(1,:) = fi, dist(T',00) > 0 and J(H) = J(fo) = J(f1).

Theorem 5.1. If there exists a homotopy H between f, and fi,
then the fixed point indices for fy and f, are defined and

(5.4) Ind(fo, Q) = Ind(f1, Q).
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Proof. Let 0 = (sp) € J(H) = J(fo) = J(f1). Since H satisfies
condition A, we can apply the second part of Lemma 4.1 to obtain
a DC-mapping H* : (0,1) x Q N E, — E taking values in I'. As
dist(T", 92) > 0 we get

Deg(I — H*(0,-),Q N E,,0) = Deg(I — H*(1,-), Q2 N E,,0).

Lemma 5.1 applied to B =T" and fy (resp. fi) ends the proof.

Remark. In the definition of homotopy we claim that J(H)=J(f,)=
J(f1). Without this assumption a filtration good for T, need not
satisfy even 2.5 for the limit ranges of fo and f;.

The next result is usually called the excision property.

Theorem 5.2. Let K be a closed subset of Q and let f : Q) — E.
Suupose that dist(A, K U 0Q) > 0 and both f and f|)\ K satisfy
condition A with that J(f) = J(f|2\ K). Then

(5.5) Ind(f,§) = Ind(f, 0\ K).

Proof. Assume that ¢ = (sp) € J(f) = J(f|2 \ K) and denote by
A’ the limit range of f|©2\ K. Obviously, A’ C A, so we can apply
Lemma 5.1 for B = A and two extensions: f* with values in A’ and
g* with values in A.

Remark. In our case the additivity property does not give anything
more. Indeed, if (V) and Q(?) are disjoint open subsets of €, in order
to obtain this result, we have to assume that

dist(A, 2\ (2P u Q@) >0

and this implie A € 21 or A € Q®3), s0 one of the indices vanishes.

Notice that the index of any constant map  : O — E equals {0} if
y = g(Q) ¢ Q or {1} if y € Q, where 1 is an element of G represented
by the constant sequence of 1 € Z.

Theorem 5.3. Let f : Q — E have the index Ind(f, Q) # {0}. Then

(5.6) inf [le = f()]| =0.
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Proof. Let us take o0 = (s,) € J(f) such that, for the extension
PONE, = A,

(5.7) Deg(I — f*,QN E,,0) # 0.

Due to Theorem 2.1, [2] already mentioned in Section 4, for an arbi-
trary € > 0, there exists f; : QNE, — E such that f*(QNE,, ) C 2 T
(for large n) and

(5.8) If*(z) = fe(@)ll < e

for any . Therefore, from the definition of degree of DC-mappings
and 5.7 we have a positive integer n, such that

deg((I - f2)IQNE,, ,2n E,, ,0)#0€Z

where deg stands for the Brouwer degree. The standard property of
this last degree implies the existence of z. such that

(5.9) fe(ze) = .

Since z. € A, N Q and f* equals f on this set, from 5.8 and 5.9 we
get

llze — fze)ll < el

The last theorem gives only the existence of e—fixed points. In
order to obtain that a fixed point exists, one can additionally assume
that I — f is closed or § is weakly compact and I — f is demiclosed
(see [1], [2]). All properties of Ind can be carried over to the case of
degree D.

Now, we shall compare the new fixed point index Ind and the
classical one v for ultimately compact maps. The theory of the index
7 can be found in [8].

Theorem 5.4. Let f : Q) — E be an ultimately compact map such
that ANOQ = 0. Then both indices Ind(f, Q) and v(f, Q) are defined

and

(5.10) [(m)] € Ind(f,Q)
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where [(m)] is the equivalence class in G of the constant sequence of
integers m = y(f,2).

Proof. Since A is compact, dist(A,08) > 0 and, thereby, f has no
fixed points on 9€. Hence both indices exist. Take o € ¥ such as in
Section 3 (b). Then f*: QN E; — A is a compact mapping and, by
applying Theorem 4.6, [2], we get

ind,(f,Q) = Deg(I — f*,QN E,;,0)
= [(degLS(I o f*’ an EU,O))]

where deg; ¢ denotes the Leray-Schauder degree.
But 4(f, Q) = degrs(I — f*, 2N E;,0) by definition.

The theorem can be applied, in particular, to k—set contractions
which gives 5.10 where m is Nussbaum’s fixed point index. ;
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Bogdan Przeradzki 1 Stawomir Wereriski

INDEKS PUNKTU STALEGO DLA NOWEJ
KLASY OPERATOROW NIELINIOWYCH
NIEZWARTYCH

W pracy zdefiniowany jest indeks punktu stalego dla szerokiej
klasy odwzorowari zawierajacej miedzy innymi odwzorowania gra-
nicznie zwarte i DC-odwzorowania. Jest to indeks wielowartosciowy
w grupie asymptotycznych ciagéw liczb catkowitych i ma wigkszosé
standardowych wlasnodci z wyjatkiem komutatywnosci i mod p-
wlasnosci.
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