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T he paper deals with the convergence of a transfin ite  sequence of 
functions, w ith respect to OT-ideal I. I t is assum ed th a t all functions 
are S-m easurable, w here S  is a iDt-algebra. T he m ain resu lt says th a t 
such a sequence converges with respect to I if and  only if its  upper 
and lower lim its (also w ith respect to / ) .  coincide. T he role of S- 
inea-surability of functions is discussed. T he resu lts are sim ilar to 
th a t of E. W agner [7] for ordinary  sequences.

The notion of upper and lower limits in measure of a  sequence of 
m easurable functions were studied by C. Goffman and D. W aterm an 
in [1],

Similar results for category analogues i.e. upper and lower lim its 
in category of a sequence of functions having the Baire property  were 
obtained by E. W agner in [7] and further generalized in [8] for se­
quences of 5 -measurable functions, where 5  is any a-field of subsets 
of a  set X .  The only assum ption on S  is th a t quotient algebra S / I  
fulfils countable chain condition; I  C S  is here a proper <r-ideal. The 
equivalence of three different definitions of upper and lower lim its 
w ith respect to the cr-ideal i.e. in the sense of Menchoff, in the sense 
of Goffman and W aterm an and in the sense of W agner was shown by 
W. Wilczyński in [9].



The aim of the paper is to examine similar problems as in [7] 
replacing usual sequences by transfinite ones.

In [10] one can find four equivalent definitions of convergence with 
respect to the ideal I  (S / I  is assumed to satisfy countable chain 
condition here) for usual sequences of S-m easurable functions. Two 
of them  are due to E. W agner and next two to T. Świątkowski. We 
choose one of those given by E. W agner to reform ulate it to the case 
of transfinite sequences.

Let X  be an arb itrary  non-empty set, S  -  a fixed m-field of subsets 
of X  and I  C S  - a proper m-ideal in S. Identifying the sets A , B e
S  if and only if A A B  £ I  we obtain a quotient Boolean algebra 
5 / 1. The class including a set A  will be denoted by [A], For classes 
[/I], [B] E S / I  the denotation [A] C [B] means th a t A\  \  B\  E l  for 
every A\  E [̂ 4] and B\  E [B]. We assume here additionaly th a t S / I  
satisfies m-chain condition.

A real function defined on X  is a  null function if and only if it is 
equal to zero I -a.e., two functions /  and g which are 5 -m easurable are 
called equivalent if and only if f - g  is a null function. For equivalence 
classes [/] and \g) the denotation [/] <  [<7] means th a t f \ ( x )  < gi (x)  
I - a.e. on X  where f x £  [/] and gi £ [<7].

For m-sequence of reals {xa }a<m we use denotation: 
lim 0 sup x a for inf0<m sup^>0 xp 

and lima inf x a for supa<m i n f ^ a  xp.

L em m a 1. The Boolean algebra S / I  is a complete lattice i f  and only 
i f  the fam ily o f equivalence classes o f S  measurable real functions 
on X  is a complete lattice.

Proof. One can follow exactly the proof of Lemma 1 in [7].

L em m a 2. S / I  is a complete lattice.

Proof. As S  is m-complete we have S / I  to be m-complete by Theorem  
21.1 in [5]. S / I  satisfies also the m-chain condition hence by Theorem  
20.5 from [5] it is a complete lattice.

C orollary  1 . 971 is a complete lattice.

D efin ition  1. We shall say th a t the sequence { f a }a<m of S-m easu- 
rable functions defined on X  converges with respect to I  (in the sense



of W agner) to  the 5-m easurable function /  defined on X  if and only 
if bo th  of the following conditions are fulfilled:

1) for every subsequence {/a„}„<m of { f a }a<m, for every set 
A  £ S \ I  and for every natural num ber k there exists a  subse­
quence }7<m of { f av }„<m such th a t lim 7 s u p /a ^  (x)  <  
f ( x )  + j: on the set A'  C A  such th a t A' £ S \  I.

2 ) for every subsequence {/<*„}„<m of { f a }n<m, for every set 
A  £ S \ I  and for every natural num ber k there exists a subse­
quence {f aVy }7<m of { /a(,}„<m such th a t lim7 inf f Qv (x) > 
f ( x )  — £ on the set A ” C A  such th a t A " £ 5  \  I.

If functions { f a }Q<m in the above definition are not 5-m easurable 
we say th a t the sequence { f a }a <m of functions defined on X  converges 
in general with respect to I  to the function /  defined on X .

We shall now define an equivalence relation for m-sequences of 5- 
m easurable functions. Let {/o}o<m be equivalent to
{i)a}o<m if and only if { fa -  ga}a<m converges with respect to  I  
to zero. Let { f a }a<m be a sequence of 5-m easurable functions and 
let T  be the equivalence class including { /Q}a <m-

D efin ition  2. We shall say th a t U E Wl (L E ffl)  is upper (lower) 
lim it of a  sequence {/«}«<m wit respect to I  (in the sense of W agner) 
if and only if

U =  inf[lim sup <7a : {ya }a<m E F]
at J

(L =  supflim inf ga : {<7Q}a<m € F \)
a

The existence of U, L  follows from Corollary 1 and from the fact 
th a t for every sequence {ya }a <m of 5-m easurable functions the func­
tions lim a sup ga and limQ inf ga are also 5-m easurable (proof of the 
fact is sim ilar to proof of Theorem 10.2vi in [6]).

L em m a 3. I f  U and L  are upper and lower lim its with respect to I  
o f a sequence { f a }a<m, then L < U .

Proof. Suppose th a t for some u £ U and I E L we have u(x)  <  l(x ) 
on a  set B  £  I.  There exists a sequence {ha }a<m £ T  such tha t



lim a sup ha(x)  <  l(x) on the set C I  and there exists a sequence 
{i/o}<*<m € T  such th a t lim0 sup ha(x)  < lima inf ga(x)  on the set 
D £ I.  We have

D =  I J {a: : lim su p ha(x)  +  u> <  lim inf «/«(z)}a a
tug W 
w >  0

where W  is the set of all rational num bers, and so there exists 
a  num ber wo >  0 such tha t the set {.-r : lima sup ha (x)  +• uj0 < 
lim a inf gat(x)} does not belong to I.

Obviously

{x : lim su p ha(x)  +  w0 < lim inf
a  a

=  {x : inf sup hg(x)  +  w0 <  sup inf(x)}
f3>a 7<m^^7

=  U  U  : SUP M * )  +  < inf gs(x)}
a<m7<m /»>«

=  M  {x : sup hff(x) +  ioQ <  inf gs(x)}
P>i 6>i£<m

=  M  {x : sup h?{x) + w0 < inf ga(x)},

hence there exists ordinal num ber a 0 such th a t the set

E  = {x : sup hp(x)  +  w0 <  inf gp(x)}
/3>ao 0>“o

does not belong to I.  Hence for every x  G E  and for every cv >  a 0 
we have ga(x) — ha ( x ) > wo >  0 and so a sequence {<7a }a<m is not 
equivalent to {hQ}a<m -  a contradiction.

T h e o re m  1 . Let f  and { /a }o<m> be S-measurable functions. A  
sequence { f a }a<m converges with respect to I  to a function f  i f  and  
only i fU  = L, and then f  — U — L.

Proof. Suppose th a t { f a }a<m converges to /  with respect to I.  Then 
a sequence { /0 }a<m is equivalent to a sequence where



Qa — /  for cv <  m. Hence U <  / ,  because lima sup ga = f .  
Similarly one can prove that, L > f .  So /  <  L < U < f  and U = L.

Suppose now th a t U =  L. W ithout loss of generality we can 
suppose that, U = 0. Assume th a t { /o}a <m does not converge to 
zero w ith respect to I  and the first condition of Definition 1 is not 
fulfilled (in the rem aining case the proof is similar).

Let {ga }a<m be a sequence equivalent to { /a }a<m- Then ga =  
f a +  /* „ ,« <  m, where {ha }a <m is a sequence of S  -m easurable func­
tions converging to zero with respect to I.  A subsequence { /0j9 }p<m, 
set Ao £ S  — I  and natural num ber k0 are such th a t for every sub­
sequence { f a^ } - t <m of {/«„}/*<// we have lim7 s u p /a^ (a ;)  >  i  
(7-a.e. on Ao )•

For the subsequence {hap }/j<m of {ha }a<m, set .4o £ S \  I  and n a t­
ural num ber lo > ho there exists a subsequence 

° f  such thafc lim7 inf ha0y (x)  > on the set A! C A 0 
such th a t A'  £ S  \  I.

Let x £ A' ,  Then

lim su p ga(x)  >  lim su p ga/)i(x) = lim sup ( f api (x)  +  ha^ { x ) )

> lim sup ( fa fijy (x)  +  lim inf ha^  (x))

=  lim sup f a ^  (x) + lim inf ha^  (x)

From the arbitrarines of {ga }a<m and from the definition of U we 
have U{x) > 7-a.e. on A !. This contradiction ends the proof.

Let (X , t )  be a  topological space with N  a family of nowhere dense 
sets. Let fto = min{/3 : (Ja<p P<* =  0  € r ,P a £ N } . We choose a 
No <  ¡3 < Po and say th a t a set A  is of the /3-first category if it is the 
union of family of cardinality /? of sets from N . The family of sets 
of the /3-first category is a /3-ideal. We denote it by Ip. We shall say 
th a t a set A  has the property of /?-Ba.ire (is a 0  -Baire or Bp  set) if it 
can be represented in the form A  — G A P , where G £ r  and P  £ Ip.



L e m m a  4. A set A  has the property o f /3-Daire i f  and only i f  it can 
be represented in the form A = T A Q ,  where T  is closed and Q is o f  
/3-first category.

I f  A  has the property o f /3-Daire, then so does it complement.
The class o f sets having the property o f /3-Daire is a /3-algebra. 

It is /3-algebra generated by the open sets together with the sets o f  
(3-first category.

A  set has the property o f (3-Daire i f  and only i f  it can be represented  
as a G& set plus a set o f /3-first category (or as an J-% set m inus a set 
o f f3-first category).

A n y  set having the property o f /3-Daire can be represented in the 
form A  =  G A P ,  where G is a regular open set and P  is o f ¡3-first 
category. This representation is unique.

Proof. One can follow exactly the proofs of Theorems 4.1-4.4 and 4.6 
in [4].

From  Lemma 4 as /3 < /3q we have

L e m m a  5. The quotient Doolean algebra Dp/ Ip  is isomorphic to 
the algebra R O ( X , T ) o f  regular open subsets o f X .

Proof. One can follow exactly proof of Theorem 4 [2].

C o ro lla ry  2. B p / I p  is a complete algebra.

Remark. If we assume additionaly th a t Suslin’s num ber of 
(X , r )  is ¡3 then algebra B p / I p  fulfils /?-chain condition.

Remark. For any N <  a , ¡3 < /3q we have algebras B a/ I a and B p / I p  
to  be isomorphic.

E x a m p le . Let £ - be infinite cardinal number. Let us say after [3] 
(p. 47) for x,  y C 6, cardx  =  E, cardy  =  tha t x  and y are almost 
disjoint if card(x D y) <  6. A family A  C 2f is called almost disjoint if 
any two elements of A  are almost disjoint. An almost disjoint family 
A  C 2C is called maximal if no element of 2E \  A  is alm ost disjoint 
w ith every m ember of A.  In the sequel we shall need the following 
theorem  from [3] (p. 48)



fa (y ) =

Let t > u) be a regular cardinal number.
a) i f  A  C 2f is almost disjoint family and card(A) =  t then A  is 

not maximal.
b) there is a m axim al almost disjoint fam ily D C 2f o f power 

> t+ .
Let X  — {a : a  <  u>\}. We have card X  =  Mi.

The m axim al almost disjoint family P  C 2A is now of cardinality
>  Mi. Let Y  be arb itrary  set ca rd (y ) =  card(P ).

Then there is an one-to-one and onto function tp : P  — ► Y .  The 
family S  =  2Y is an Mi-algebra of sets and I  — {A  C Y  : card(A) <  
Mi} is a proper Mi-ideal. We define now the Mi-sequence { f a }Q<u>l, 
f a : Y  — + { 0 , 1 }  as follows

0 for a  ^  (P ~ i (y)

1 for a  G (p~1(y)

We have both tp~1(y) an(i ^  ~  lP~1(y) to be cofinal w ith X  for 
every y € Y  and therefore { f a } is not convergent at any y so it is not 
I - a.e. convergent on Y .

On the other side let { /Q/3}/3<Wl be arb itrary  subsequence of 
The family P  is maximal so there is p0 £ P  such th a t 

Po n  {oip}p<uj 1 is cofinal with wj. For {otp}p<iJx we define subse­
quence }7<w1 =  Po H {a/jcwj }. We have lim7_ Wl f a^  (y) =  1 for 
yo = <fi(Po) and lim7—Wl fop-, (y) =  0 f°r y ̂  yo as p0 and p  =  y ~ x(y) 
are almost disjoint. The sequence { /Q}«<Wl is therefore convergent 
with respect to u \  -ideal I  to function equal zero on Y.

Let us consider three families of sets r* =  {A  C Y  : c a rd (F  -  A)  < 
Ui) < u>} U 0, i =  0 ,1 ,2 . Each family is the topology on Y .  The ideal 
of nowhere dense sets is here of the form A — {A  C Y  : card A  < Ui}.  
For any i the family {A C Y  : A  =  U 7< w ^ 7 ’ ^ 7  £ ^ i}  is precisely 
the ideal / Wl of ^ - f i r s t  category sets. The sequence { f a }Q<UJl given 
above is now convergent in general with respect to I Ul bu t not JWl -a.e. 
convergent (to  function equal to zero on F  ).
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G R A N IC E  G Ó R N E  I D O L N E  
W Z G L Ę D E M  ID E A Ł U  m -A D D Y T Y W N E G O

W  pracy rozważamy pozaskończone ciągi funkcji mierzalnych 
względem 9H-addytywnego ciała zbiorów. Określamy zbieżność ta ­
kich ciągów oraz granice górną i dolną względem 9Jf-ideału zbiorów i 
pokazujemy, że ciąg jest zbieżny wtedy i tylko wtedy, gdy te granice 
sa równe. Badam y istotność założenia o mierzalności funkcji. O trzy­
m ane wyniki są przeniesieniem twierdzeń E. W agner ([7]) na  przy­
padek ciągów pozaskończonych.
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