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HOLOMORFIC SOLUTION OF NONLINEAR
GENERALIZED DIFFERENTIAL EQUATION

In this paper we study the problem of existence and uniqueness
of holomorphic solution of the equation Df(z)(h(z)) = F(z, f(2))
for z € B" with the condition f(0) = 0 and the assumption that 0
is a singular point (i.e. h(0) = 0).

Let C" denote the space of n complex variables z = (zy,...,2,)
with Euclidean inner product < z,w >= E;=1 zjwj and norm ||z|| =
V< 7,z >. The ball {z; |zl < r} is denoted by B". The class of
holomorphic mappings from an open set {2 into C" is denoted by
H(Q,C"). The letter I represent the identity map on C". Let
h € H(B",C"),F € H(B} x B},C"),h(0) = 0 and F(0,0) = 0.
The considerations concerning existence and uniqueness mapping f €
H(B? ,C") satisfying nonlinear generalized differential equation of

o
the form

Df(z)(Mz)) = F(z, f(2)) for z € By,
(compare [6], [7]) are presented bellow. Let

M, = {h € H(B},C"); h(0) = 0, Dh(0)
=Q,re < h(z),2 >> 0 for z € B} \ {0}}.
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Theorem 1. Let h € H(B;,C"),F € H(B} x B},C"),h(0) =
0,Dh(0) = 3, F(0,y) = 0 for y € B}. Let ry,ry,C,L be positive

constants such that

(1) D<m<r, Dy €p,

(if) IF(z,)l <C for (z,y) € B x B,
|1 F(2z,y1) = F(z,y2)ll < Lllyr — w2

(ii) for 2z € By, ,th, 4 € BT,

(iv) heM,,.

Then for any rq such that

2 L2
0<r0<min(r1+£— rlC+Cz,r1+—— r1L+—
27‘2 4r

the differential equation
(1) Df(z)(h(z)) = F(z, f(z)) for z € By,
with the condition f(0) = 0 has exactly one solution f € H(B}, B}").

Proof. We first observe that by Theorem 2.1 from [5] and by h € M,,
the differential equation

) o (2,) = ~h(olz,)

has exactly one solution v = v(z,t) defined for (z,t) € B} x [0, 00).
From theorems concerning dependence of solution of differential equa-
tion upon initial conditions (compare e.g. [1]) it follows that v is con-
tinuous on By x [0,00) and, for any t € [0,00),v(-,t) € H(B} ,C").

Next, let 'H8°denote the space of all holomorphic bounbed map-
pings f from Blinto C", such that f(0) = 0, with the sup norm and
a closed ball, in H§°, with radius r and centre 0 will be denoted by
s

Consider the mapping T' defined on K, in the following way

[e o]

Tlfz) = /F(v(z,t),f(v(z,t)))dt for z€ Bp

0
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where f € K,, and v is the solution of (2).

We next prove that such definition 7' is correct and T'(K,,) C K,,.
Let us first observe that for any y € B!, the mapping F(-,y) satisfies
the assumptions of the Schwarz Lemma (see (4], Theorem 7.19, p.56).
Hence

®  IFelscll o Gyesn <y,

By Lemma 2.2 from [5] we get immediately

rirget

A for () € B], x [0,00)

(4) [o(z, DIl < (
Consequently, from (3) and (4) and by definition of 7y we obtain
P00, S0l O < e
for (z,t) € By, x [0,00).
By the above, it follows that the definition of T' is correct and

T(K,,) C K,,. We now show that the mapping T is contractive.
Using the Schwarz Lemma and our assumptions about F' we have

L
NT(f1)(z) = T(f2)(2)|l £ ;:||z||||y1 — ya|
for 2 € By ,n,Y2 € By,.

(5)
Let fi, f2 € K,,, then from (4) and (5) it follows that

IT(F)(z) - Nh@m<g/( A1)
i f2(v(z,t )”dt

for z € By, . Hence

IT(R) = TU € —22 i = foll for fu, fa € K,
(Tl To)
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and in consequence T is contractive.

The Banach contraction principle (see e.g. [2], Theorem 1.1) yields
that there exists exactly one the mapping fy € K,, which is a fixed
point of T'. Now we show that f; is a solution of (1). By the definition
of fo we have

fo(z) = /ooo F(v(z,t), fo(v(z,t)))dt for ze€ . o

Since v(v(z,t),s) = v(z,t+s) for s,t € [0,00) and z € B} we conclude
that

(6) folv(z9) = | " Pz, 1), fo(o(z 1))t

for s € [0,00) and z € By,. Differentiating both sides of equality (6)
with respect to the parameter s we obtain for s = 0D fo(2)(—h(z)) =
—F(z, fo(z)) for z € B

Hence, the mapping f, : B}, — B is a holomorphic solution
of equation (1) satisfying condition fo(0) = 0. The next theorem
also gives a sufficient condition for the existence and uniqueness of
solution of equation (1).

Theorem 2. Let h € H(B*,C"),F € H(B; x B},C") be such that
h(0) = 0, Dh(0) = 3, F(0,y) = y and D\F(0,y) =0 fory € B} Let
r1,72,C, L be positive constans such that

(a) O<ri<r, 0<ry<op,
(b) I#(z,y) -yl SC for (z,y) € B}, x BE,

(c) ||F(Z, v1) — F(z,y2) —y1 + yz” < L”yl i yzll
for ZEB:I,yl’y2EB:-‘2-

Then for any ry such that 0 < ro < min(ry, a, 8,7) where

a:%(2r1+\/_—\/4r1\/f+L’,
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__1_ r1 4r1 2
ﬂ—z (27‘14'7,2 ( )

1 i 1
= =12 o 2 ety 2
2 ( S to \/(21', A to) 4r1) y

- + \/1‘% +4Cry
2C :

to =

the differential equation
Df(z)(h(2)) = F(z, f(z)) for z€ By,
with the coditions f(0) = 0,Df(0) = S has exactly one solution

f € H(By,, Br,)-

Proof. Let, as in the proof of theorem 1,v = v(z,t), for (z,t) €
B! x [0,00), be a solution of equation (2). By Theorem 2 from (3]
the function ¢ defined by equality

g(z) = tl_i_’xgo(e‘v(z,t)) for 2 € B}

belongs to H(B? ,C"). Let Hg® be defined as in the proof of the
previous theorem and let K(yg, ‘r) denote a closed ball, in H§°, with
radius 7 and centre g. Assume that 0. < 7 < rz — Wi_‘rﬁ’ Next,
consider the integral operator T' of the form

T(f)(z) = g(2)+ /et[F(U(Z’t)v f(v(z,1))) — f(v(z,1))dt

0

for z € Bl and f € K (g,7). Observe that by Theorem 7.19 from [4]
F sl CI_Iil_E " n
(7) IF(z,y) -yl £ C=5- for (2y) € By, x By,.
1

Consequently, from (7) and (4) we have

rde—2t

’I‘o)4

(8) IF(v(2,), f(v(2,1))) = flu(z,D))]] < C(
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for (z,t) € By, x [0,00). By the definition of ¢ and by (4) we get
™ To
< — e
ol € = for s B
From the above inequality, the definition ry and by inequality (8)
it follows that the mapping 7' is correctly defined and maps K(g,7)
into K(g,7). Now we show that T is contractive. Using the Schwarz

Lemma and our assumptions about F we obtain
2
£
I1#Giw1) = Fz,0) 31 + 1l < Ll = o 2L
1

for z € B} and y;,y, € B . From this and (4) we have

1
=3

*®  rle
@ TG -TEEN<L [~ =200 0)
= fa(v(z,1))||dt
for z € B" and fy, f, € K(g,7). Since (%)7 < 1, therefore from

0
(9) it follows immediately that the mapping T is contractive. Hence,
by the Banach contraction principle, there exists exactly one fo €
K(g,7) being a fixed point of the mapping T. Next, we prove that

fois a solution of (1).By the definition of fy we have

(1) fo() = g() + [ " F(u(z, ), ool 1)) — fololz, £))]dt

for z € By,. Since v(v(z,t),8) = v(z,t + s) for s,t € [0,00) and
z € By therefore from (10) it follows that

folv(5)) = o(s, ) [ T e (u(2,), folo(2, ) fo vz, 1))]dt

8

for s € [0,00) and z € By, . Differentiating both sides of this equality
with respect to the parameter s we obtain for s = 0

Dfo(z)(=h(z)) = Dg(z)(=h(z))
g / e [F(v(z,2), fo(v(2,1))) — fo(v(z,t)))dt

—F(z, fo(2)) + fo(2)
for z € B} . As Dg(z)(h(z)) = g(z) for z € B (compare [3], Theo-
rem 4), the above equality and (10) gives that fo is a solution of (1).
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Tadeusz Poreda

O HOLOMORFICZNYCH ROZWIAZANIACH
UOGOLNIONYCH ROWNAN
ROZNICZKOWYCH

W tej pracy badane jest istnienie i jednoznacznosé holomorficznego
rozwiazania réwnania Df(z)(h(z)) = F(z,f(2)) dla z € B}, przy
warunku f(0) = 0 i przy za/lozeniu, ze 0 jest punktem osobliwym
(tzn. h(0) = 0).
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