ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 7, 1995

Tadeusz Poreda

HOLOMORFIC SOLUTION OF NONLINEAR GENERALIZED DIFFERENTIAL EQUATION

In this paper we study the problem of existence and uniqueness of holomorphic solution of the equation Df(z)(h(z)) = F(z, f(z))for $z \in B_r^n$ with the condition f(0) = 0 and the assumption that 0 is a singular point (i.e. h(0) = 0).

Let \mathbb{C}^n denote the space of n complex variables $z = (z_1, \ldots, z_n)$ with Euclidean inner product $\langle z, w \rangle = \sum_{j=1}^n z_j w_j$ and norm $||z|| = \sqrt{\langle z, z \rangle}$. The ball $\{z; ||z|| < r\}$ is denoted by B_r^n . The class of holomorphic mappings from an open set Ω into \mathbb{C}^n is denoted by $\mathcal{H}(\Omega, \mathbb{C}^n)$. The letter \Im represent the identity map on \mathbb{C}^n . Let $h \in \mathcal{H}(B_r^n, \mathbb{C}^n), F \in \mathcal{H}(B_r^n \times B_\rho^n, \mathbb{C}^n), h(0) = 0$ and F(0,0) = 0. The considerations concerning existence and uniqueness mapping $f \in$ $\mathcal{H}(B_{r_0}^n, \mathbb{C}^n)$ satisfying nonlinear generalized differential equation of the form

Df(z)(h(z)) = F(z, f(z)) for $z \in B^n_{r_o}$

(compare [6], [7]) are presented bellow. Let

$$\mathcal{M}_r = \{h \in \mathcal{H}(B_r^n, \mathbb{C}^n); h(0) = 0, Dh(0) \\ = \Im, r e < h(z), z >> 0 \text{ for } z \in B_r^n \setminus \{0\} \}.$$

Theorem 1. Let $h \in \mathcal{H}(B_r^n, \mathbb{C}^n), F \in \mathcal{H}(B_r^n \times B_\rho^n, \mathbb{C}^n), h(0) = 0, Dh(0) = \Im, F(0, y) = 0$ for $y \in B_\rho^n$. Let r_1, r_2, C, L be positive constants such that

(i)
$$0 < r_1 < r, \quad 0 < r_2 < \rho,$$

(ii)
$$||F(z,y)|| \leq C \quad \text{for} \quad (z,y) \in B^n_{r_1} \times B^n_{r_2},$$

$$||F(z, y_1) - F(z, y_2)|| \le L||y_1 - y_2||$$

(iii) for
$$z \in B_{r_1}^n, y_1, y_2 \in B_{r_2}^n$$
,

(iv)
$$h \in \mathcal{M}_{r_1}$$
.

Then for any r_0 such that

$$0 < r_0 < \min(r_1 + \frac{C}{2r_2} - \sqrt{\frac{r_1C}{r_2} + \frac{C^2}{4r_2^2}}, r_1 + \frac{L}{2} - \sqrt{r_1L + \frac{L^2}{4}}$$

the differential equation

(1)
$$Df(z)(h(z)) = F(z, f(z)) \text{ for } z \in B_{r_0}^n$$

with the condition f(0) = 0 has exactly one solution $f \in \mathcal{H}(B^n_{r_0}, B^n_{r_2})$. *Proof.* We first observe that by Theorem 2.1 from [5] and by $h \in \mathcal{M}_{r_1}$ the differential equation

(2)
$$\frac{\partial v}{\partial t}(z,t) = -h(v(z,t))$$

has exactly one solution v = v(z,t) defined for $(z,t) \in B_{r_1}^n \times [0,\infty)$. From theorems concerning dependence of solution of differential equation upon initial conditions (compare e.g. [1]) it follows that v is continuous on $B_{r_1}^n \times [0,\infty)$ and, for any $t \in [0,\infty), v(\cdot,t) \in \mathcal{H}(B_{r_1}^n,\mathbb{C}^n)$.

Next, let \mathcal{H}_0^{∞} denote the space of all holomorphic bounded mappings f from B_r^n into \mathbb{C}^n , such that f(0) = 0, with the sup norm and a closed ball, in \mathcal{H}_0^{∞} , with radius r and centre 0 will be denoted by K_r .

Consider the mapping T defined on K_{r_2} in the following way

$$T(f)(z) = \int_{0}^{\infty} F(v(z,t), f(v(z,t)))dt \quad \text{for} \quad z \in B_{r_0}^n$$

where $f \in K_{r_2}$ and v is the solution of (2).

We next prove that such definition T is correct and $T(K_{r_2}) \subset K_{r_2}$. Let us first observe that for any $y \in B_{r_2}^n$ the mapping $F(\cdot, y)$ satisfies the assumptions of the Schwarz Lemma (see [4], Theorem 7.19, p.56). Hence

(3)
$$||F(z,y)|| \le C \frac{||z||}{r_1}$$
 for $(z,y) \in B_{r_1}^n \times B_{r_2}^n$.

By Lemma 2.2 from [5] we get immediately

(4)
$$||v(z,t)|| \le \frac{r_1 r_0 e^{-t}}{(r_1 - r_0)^2}$$
 for $(z,t) \in B_{r_0}^n \times [0,\infty).$

Consequently, from (3) and (4) and by definition of r_0 we obtain

$$\|F(v(z,t), f(v(z,t)))\| \le \frac{Cr_0}{(r_1 - r_0)^2} e^{-t}$$

for $(z,t) \in B^n_{r_0} \times [0,\infty)$

By the above, it follows that the definition of T is correct and $T(K_{r_2}) \subset K_{r_2}$. We now show that the mapping T is contractive. Using the Schwarz Lemma and our assumptions about F we have

(5)
$$\|T(f_1)(z) - T(f_2)(z)\| \leq \frac{L}{r_1} \|z\| \|y_1 - y_2\|$$
for $z \in B_{r_1}^n, y_1, y_2 \in B_{r_2}^n.$

Let $f_1, f_2 \in K_{r_2}$, then from (4) and (5) it follows that

$$\|T(f_1)(z) - T(f_2)(z)\| \le L \int_0^\infty \frac{r_0 e^{-t}}{(r_1 - r_0)^2} \|f_1(v(z, t)) - f_2(v(z, t))\| dt$$

for $z \in B_{r_1}^n$. Hence

$$||T(f_1) - T(f_2)|| \le \frac{Lr_0}{(r_1 - r_0)^2} ||f_1 - f_2|| \text{ for } f_1, f_2 \in K_{r_2}$$

and in consequence T is contractive.

The Banach contraction principle (see e.g. [2], Theorem 1.1) yields that there exists exactly one the mapping $f_0 \in K_{r_2}$ which is a fixed point of T. Now we show that f_0 is a solution of (1). By the definition of f_0 we have

$$f_0(z) = \int_0^\infty F(v(z,t), f_0(v(z,t))) dt$$
 for $z \in B_{r_0}^n$.

Since v(v(z,t),s) = v(z,t+s) for $s,t \in [0,\infty)$ and $z \in B^n_{r_0}$ we conclude that

(6)
$$f_o(v(z,s)) = \int_s^\infty F(v(z,t), f_o(v(z,t))) dt$$

for $s \in [0, \infty)$ and $z \in B_{r_0}^n$. Differentiating both sides of equality (6) with respect to the parameter s we obtain for $s = 0Df_0(z)(-h(z)) = -F(z, f_0(z))$ for $z \in B_{r_0}^n$.

Hence, the mapping $f_0 : B_{r_0}^n \longrightarrow B_{r_2}^n$ is a holomorphic solution of equation (1) satisfying condition $f_0(0) = 0$. The next theorem also gives a sufficient condition for the existence and uniqueness of solution of equation (1).

Theorem 2. Let $h \in \mathcal{H}(B_r^n, \mathbb{C}^n), F \in \mathcal{H}(B_r^n \times B_\rho^n, \mathbb{C}^n)$ be such that $h(0) = 0, Dh(0) = \Im, F(0, y) = y$ and $D_1F(0, y) = 0$ for $y \in B_\rho^n$. Let r_1, r_2, C, L be positive constants such that

(a) $0 < r_1 < r, \quad 0 < r_2 < \rho,$

(b)
$$||F(z,y) - y|| \le C \text{ for } (z,y) \in B^n_{r_1} \times B^n_{r_2},$$

(c)
$$||F(z, y_1) - F(z, y_2) - y_1 + y_2|| \le L ||y_1 - y_2||$$

for $z \in B_{r_1}^n, y_1, y_2 \in B_{r_2}^n$

Then for any r_0 such that $0 < r_0 < \min(r_1, \alpha, \beta, \gamma)$ where

$$\alpha = \frac{1}{2} \left(2r_1 + \sqrt{L} - \sqrt{4r_1\sqrt{L} + L} \right),$$

$$\beta = \frac{1}{2} \left(2r_1 + \frac{r_1}{r_2} - \sqrt{\frac{4r_1^2}{r_2}} + (\frac{r_1}{r_2})^2 \right)$$
$$\gamma = \frac{1}{2} \left(2r_1 + \frac{1}{t_0} - \sqrt{(2r_1 + \frac{1}{t_0})^2 - 4r_1^2} \right)$$
$$t_0 = \frac{-r_1 + \sqrt{r_1^2 + 4Cr_2}}{2C},$$

the differential equation

$$Df(z)(h(z)) = F(z, f(z))$$
 for $z \in B_{r_0}^n$

with the coditions $f(0) = 0, Df(0) = \Im$ has exactly one solution $f \in \mathcal{H}(B^n_{r_0}, B^n_{r_2}).$

Proof. Let, as in the proof of theorem 1, v = v(z,t), for $(z,t) \in B_{r_1}^n \times [0,\infty)$, be a solution of equation (2). By Theorem 2 from [3] the function g defined by equality

$$g(z) = \lim_{t \to \infty} (e^t v(z, t)) \text{ for } z \in B_r^n$$

belongs to $\mathcal{H}(B_{r_1}^n, \mathbb{C}^n)$. Let \mathcal{H}_0^∞ be defined as in the proof of the previous theorem and let $K(g, \tau)$ denote a closed ball, in \mathcal{H}_0^∞ , with radius τ and centre g. Assume that $0 < \tau < r_2 - \frac{r_1 r_0}{(r_1 - r_0)^2}$. Next, consider the integral operator T of the form

$$T(f)(z) = g(z) + \int_{0}^{\infty} e^{t} [F(v(z,t), f(v(z,t))) - f(v(z,t))] dt$$

for $z \in B_{r_0}^n$ and $f \in K(g, \tau)$. Observe that by Theorem 7.19 from [4]

(7)
$$||F(z,y) - y|| \le C \frac{||z||^2}{r_1^2}$$
 for $(z,y) \in B_{r_1}^n \times B_{r_2}^n$.

Consequently, from (7) and (4) we have

(8)
$$||F(v(z,t), f(v(z,t))) - f(v(z,t))|| \le C \frac{r_0^2 e^{-2t}}{(r_1 - r_0)^4}$$

for $(z,t) \in B_{r_0}^n \times [0,\infty)$. By the definition of g and by (4) we get

$$||g(z)|| \le \frac{r_1 r_0}{(r_1 - r_0)^2}$$
 for $z \in B_{r_0}^n$.

From the above inequality, the definition r_0 and by inequality (8) it follows that the mapping T is correctly defined and maps $K(g,\tau)$ into $K(g,\tau)$. Now we show that T is contractive. Using the Schwarz Lemma and our assumptions about F we obtain

$$||F(z, y_1) - F(z, y_2) - y_1 + y_2|| \le L ||y_1 - y_2|| \frac{||z||^2}{r_1^2}$$

for $z \in B_{r_1}^n$ and $y_1, y_2 \in B_{r_2}^n$. From this and (4) we have

(9)
$$\|T(f_1)(z) - T(f_2)(z)\| \le L \int_0^\infty \frac{r_0^2 e^{-t}}{(r_1 - r_0)^4} \|f_1(v(z, t)) - f_2(v(z, t))\| dt$$

for $z \in B_{r_0}^n$ and $f_1, f_2 \in K(g, \tau)$. Since $\frac{Lr_0^2}{(r_1-r_0)^4} < 1$, therefore from (9) it follows immediately that the mapping T is contractive. Hence, by the Banach contraction principle, there exists exactly one $f_0 \in K(g, \tau)$ being a fixed point of the mapping T. Next, we prove that f_0 is a solution of (1).By the definition of f_0 we have

(10)
$$f_0(z) = g(z) + \int_0^\infty e^t [F(v(z,t), f_0(v(z,t))) - f_0(v(z,t))] dt$$

for $z \in B_{r_0}^n$. Since v(v(z,t),s) = v(z,t+s) for $s,t \in [0,\infty)$ and $z \in B_{r_0}^n$ therefore from (10) it follows that

$$f_0(v(z,s)) = g(v(z,s)) + \int_s^\infty e^{t-s} [F(v(z,t), f_0(v(z,t))) - f_0(v(z,t))] dt$$

for $s \in [0, \infty)$ and $z \in B_{r_0}^n$. Differentiating both sides of this equality with respect to the parameter s we obtain for s = 0

$$Df_0(z)(-h(z)) = Dg(z)(-h(z))$$

- $\int_0^\infty e^t [F(v(z,t), f_0(v(z,t))) - f_0(v(z,t))] dt$
- $F(z, f_0(z)) + f_0(z)$

for $z \in B_{r_0}^n$. As Dg(z)(h(z)) = g(z) for $z \in B_{r_0}^n$ (compare [3], Theorem 4), the above equality and (10) gives that f_0 is a solution of (1).

HOLOMORFIC SOLUTION OF DIFFERENTIAL EQUATION

REFERENCES

- [1] J. Dieudonne, Foundations of Modern Analysis, Russian transl.:Mir, Moscow 1964, Academic Press, New York, 1960.
- [2] J. Dugundji and A. Granas, Fixed Point Theory, PWN, Warszawa, 1982.
- [3] E. Kubicka and T. Poreda, On the parametric representation of starlike maps of the unit ball in \mathbb{C}^n into \mathbb{C}^n , Demonstratio Math. 21(2) (1988), 345-355.
- [4] J. Mujica, Complex Analysis in Banach Spaces, North-Holland, Amsterdam, 1986.
- [5] J.A. Pfaltzgraff, Subordination chains and univalence of holomorphic mappings on \mathbb{C}^n , Math.Ann. **210** (1974), 55-68.
- [6] T. Poreda, Generalized differential equations for maps of Banach space into Banach space, Comment.Math. 30.1 (1990), 13-18.
- [7] _____, On generalized differential equations in Banach space, Dissertationes Math. **310** (1991).

Tadeusz Poreda

O HOLOMORFICZNYCH ROZWIĄZANIACH UOGÓLNIONYCH RÓWNAŃ RÓŻNICZKOWYCH

W tej pracy badane jest istnienie i jednoznaczność holomorficznego rozwiązania równania Df(z)(h(z)) = F(z, f(z)) dla $z \in B_n^r$ przy warunku f(0) = 0 i przy za/lożeniu, że 0 jest punktem osobliwym (tzn. h(0) = 0).

> Institute of Mathematics Lódź Technical University al. Politechniki 11, I-2 90-924 Lódź, Poland