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ON DENSITY TOPOLOGIES GENERATED
BY IDEALS

We discuss some properties of the density topology, generated by
a given ideal I, in connection with the countable chain condition.
Namely, we prove that for every finite family of invariant c-algebras
with invariant o-ideals, satisfying the countable chain condition,
there exists an element of the density topology, which is not mea-
surable with respect to all of these o-algebras. In particular, we
obtain a generalization of one result given in [5].

Let R be the real line equipped with the standard Euclidean topol-
ogy. Denote by ! the usual Lebesgue measure on R. Let X be an
arbitrary Lebesgue measurable subset of R and let = be an arbitrary
point of R. Take any h > 0 and consider the real number

Cd(X,z,h) =X N[z - h,z + h])/2h.

Suppose that
limp_o d(X,z,h)

there exists and denote this limit by d(X, z). The real number d(X, )
is called a density of the set X at the point z. If the equality
d(X,zr) = 1 holds, then the point z is called a Lebesgue density
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point of X. The classical Lebesgue theorem states that almost all
points of the set X are its density points. We may put

®i(X)={z€eR:dX,z) =1}
and we may consider the following class of sets:
Ta={X € dom(l): X C ®,4(X)}.

It is well-known that the class Ty is a topology on the set R, extending
the Euclidean topology of R. The topology Ty is called the density
topology of R. It is worth remarking here that the density topology
was intensively investigated by many authors (see, for example, [1]
where some interesting properties of this topology are considered; see
also [2] where some additional properties of the density topology are
discussed as well).

It is easy to check that the zero—point 0 is a density point of a
Lebesgue measurable set X C R if and only if the relation

holds. Obviously, this relation is equivalent to the equality
limpnoo l(nX N [-1, 1]) =2,

where nX denotes the set {nz : ¢ € X}. The last equality means
that the sequence of characteristic functions

{Xnxn[-1,1] : 7 € N}

converges in measure to the characteristic function of the unit seg-
ment [—1, 1]. Now, applying the well-known Riesz theorem from the
classical measure theory, we can describe the convergence in measure
in terms of the convergence almost everywhere. This simple (but
important) observation is due to W.Wilczynski who introduced in
1985 the concept of a density point with respect to category (see [3]
and [4]).

Let T' be a topology on R satisfying the following three conditions:
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(1) the unit segment [—1, 1] has the Baire property with respect
to 1"

(2) for every natural number n and for every set X having the Baire
property with respect to T, the set nX has also the Baire property
with respect to T

(3) for every translation g of R and for every set X having the
Baire property with respect to T, the set g(X) has also the Baire
property with respect to T'.

Note that these conditions are sufficient to introduce the concept
of a density point in the category sense.

Let B(R,T') denote the o-algebra of all sets having the Baire prop-
erty with respect to the topology T' and let K(R,T') denote the o-
ideal of all first category sets with respect to T. Furthermore, let
X be an arbitrary set from the o-algebra B(R,T). We say that the
zero-point 0 is a K(R,T)-density point of the set X if the sequence
of characteristic functions

{fa:n €N} ={xnxn[-11]: N E N}

is convergent to the characteristic function x[-11) with respect to
the o—ideal K(R,T). The last sentence means that 0 is a K(R,T')-
density point of the set X if and only if for each infinite subset Ny of
N there exists an infinite subset Ny of Ny such that the corresponding
partial sequence of functions {f, : n € N3} is convergent pointwise
to X[—1,1] on the complement of a member of K(R,T).

Now, let  be an arbitrary point of R and let X be an arbitrary
set from the o—algebra B(R,T). We say that  is a K(R, T')-density
point of the set X if 0 is a K(R,T)-density point of the translated
set

X—-z={y—z:ye X}

Futhermore, for any set X having the Baire property with respect
to the topology T, let us put

$7(X) = the set of all K(R,T)-density points of X.

Hence, we obtain the following family of sets:

T* = {X € BR,T) : X C®&r(X)}.
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If the family T* forms a topology on the basic set R, then 7* is called
the Wilczynski topology on R, associated with the original topology
T (note that T* is also called the K(R,T)-density topology on R).

Thus, we have the concept of a density topology on R in the sense
of category. Of course, an analogous definition can be formulated
for an arbitrary group G equipped with a topology T satisfying the
conditions similar to conditions (1) — (3).

Example 1. Let us consider a particular case of the above con-
struction. Namely, let us take as T' the standard Euclidean topology
on R. In this case it can be shown that T* is a topology on R called
the I-density topology (see [3], [4], and [5]). The I-density topol-
ogy has a number of interesting properties and it was investigated
by many authors. Among various works devoted to this topology
we mention especially the book [5] where the class of all continuous
functions with respect to the I-density topology is studied in details.

Example 2. Let us consider another particular case of the Wil-
czynski construction. Namely, let us put T' = Ty, where Ty is the
density topology on R. Obviously, T satisfies conditions (1) — (3). It
is easy to check that the equality

Or(X) = @a(X)

holds for each subset X of the real line having the Baire property
with respect to T'. Thus, we see that

T =T =14,
L.e. the density topology Ty can be considered as a particular case of
the Wilezynski topology.

The next example is a generalization of Example 2.

Example 3. Let g be an arbitrary measure on the real line,
satisfying the following relations:

1) p is a complete measure;
2) p is an extension of the Lebesgue measure [ on R.
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Furthermore, let X be a p~measurable subset of R and let z be a
point of R. We say that @ is a p-density point of the set X if the
equality

limpaoo n WX N[z —=1/n,z +1/n]) =2

holds. It is clear that if 4 = I, then this definition gives us the classical
definition of a Lebesgue density point.

For each set X € dom(y), let us put

®,(X) = the set of all y~density points of X.

Now we may consider the family of sets

T, = {X € dom(p) : X C ®,(X)}.

It can easily be shown that the family T}, is a topology on the basic set
R. Moreover, in [6] is established, using the classical Vitali covering
theorem, that for any set X € T, there always exist subsets L, Y and
Z of R such that

L € dom(l), p(Y)=w(Z) =0, X = (LUY)\ Z.

We see also that the topology T, extends the usual density topology
T, and, if p = 1, then T}, coincides with Tj.

Suppose now that our measure p satisfies relations 1), 2) and the
following two relations:

3) u is invariant under the group of all translations of R;
4) for every natural number n and for every py-measurable set
X, the set nX is p-measurable, too, and

p(nX) = n - p(X).

Then it is easy to see that the notion of a pu-density point can be
formulated in terms of the o—ideal of all y—measure zero sets (by the
general scheme of Wilczyniski considered above). Thus, we conclude
that if relations 1)—4) hold for the given measure y, then the topology
T, can be obtained by the scheme of Wilezyriski.

Note that the Wilczynski construction can be applied in a more
general case (see, e.g., [5]). Namely, let I be a fixed ideal of subsets
of the real line R. Let {f, : n € N} be a sequence of functions
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acting from R into R. We say that this sequence converges (I) tb a
function f : R — R if for every infinite subset Ny of N there exists an
infinite subset Ny of Ny such that the partial sequence of functions
{fn : n € N3} converges pointwise to f on the complement of a
member from the ideal I.

We say that a point z € R is an I-density point of a given set
X C R if the sequence of characteristic functions

{Xn(X-2)n[-1,) : n €N}

converges (I) to the characteristic function y_,,y).
Denote by the symbol ®;(X) the set of all I-density points of the
set X.

Now let us put
Tr={XCR : X C&/(X)}.

It is not difficult to check that the family 77 is a topology on the set
R. We say that T7 is the topology on R generated by the given ideal
e

Some general properties of the topology Ty are discussed in [5]. In
connection with these properties a certain set A C R is constructed
in [5], satisfying the following relations:

1) A is a Lebesgue non-measurable subset of R;

2) A does not have the Baire property with respect to the Eu-
clidean topology of R;

3) for each point a € A the equality

limn—vooXn(A——a)n[—l,l] = X[-1,1]

holds; in particular, A € T} for every ideal I of subsets of R.

The construction of the set A mentioned above explores essentially
in [5] the existence of a Hamel basis of R being also a Bernstein subset
of R.

In this paper we shall show that a much stronger result can be
obtained. For this purpose we need some auxiliary notions.

Let S be a o-algebra of subsets of the real line R, let J be a
o-ideal of subsets of R and let J C S. Recall that the pair (J,S)
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satisfies the countable chain condition if, for any uncountable family
{Xe : € < w1} of pairwise disjoint sets from S, there exists a set
X¢ belonging to the o-ideal J (from this definition it follows also
that all sets X¢, except a countable number of them, belong to the
o-ideal J).

We say that a o-algebra S (respectively, a o-ideal J) is invariant
under the group of all translations of R if for every set X from S (re-
spectively, from J) and for every translation g of R, the set g(X)
belongs to S (respectively, to J).

Now, let us consider the real line R as a vector space E over the
field @ of all rational numbers. According to a well-known theorem
of the theory of vector spaces, there exists a basis B of E (this basis
is called a Hamel basis of E). For any element ¢ € E we have the
unique representation

= q1bl + @by + ... + gmbm,

where m = m(e) is a natural number, ¢, ¢z, ..., ¢m are rational
numbers and by, by, ..., by are pairwise distinct elements of B.
Let us put

llell = lar| + laz2| + ... + |gm]-

Obviously, the functional || || is a norm on E with the values contained
in Q. Moreover, it is easy to see that (E,| ||) is a nonseparable

normed vector space.
Let us take an arbitrary sequence

T1y T2 we 5 Thy' oo (K€ N, k> 0)
of strictly positive irrational numbers such that
limp—oo 'y = 00.
Consider the family of sets {Ax : k € N, k > 0}, where
Ar={e€ E : |e|]| < r}.

Obviously, each set Ay is an open ball in the space E and, since ry,
is an irrational number, the set E \ A; is open in E, too. These
properties of the set Ay immediately give us the following
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Lemma 1. For the set Ay and for each point a of Ay we have the
equality
limp—eco Xn(Ax—a)n[-1,1] = X[-1,1]-
An analogous equality holds for the set E'\ Ay and for each point a
of E \ Ak.
In particular, for every ideal I of subsets of E = R we have

Ar €Ty, E\ Ay €T}.

A more detailed proof of this Lemma see in [5].
We need also the following

Lemma 2. For each set A, there exists an uncountable family
{ee + € < w1} of elements of E (certainly, depending on Ay ) such
that the family

{Ax + e : £ <w}

consists of pairwise disjoint sets.

The proof of this Lemma see in [7] where a more general result
is established. Namely, in [7] is proved that if V is an arbitrary
nonseparable normed vector space and Z is a countable union of
balls in V whose radii are equal to a fixed number r > 0, then there
exists an uncountable family {v¢ : € < w;} of elements of V' such
that the family

{Z +ve : E<wn}

consists of pairwise disjoint sets. From this fact it follows also that
the set Z is absolutely negligible in the space V' (about the last notion
see [6] or [7]).

Lemma 3. Let {J;, Ji,..., Jp} be a finite family of o-ideals of
subsets of R, let {S, Sa,..., Sp} be a finite family of o-algebras of
subsets of R, and suppose that the following relations hold:

TITIE By, 03 € 9.0, Iy C Sp;

2) all pairs (J1,51), (J2,52),..., (Jp,Sp) satisfy the countable
chain condition;

3) all classes of sets

le J2,'-~a Jpa Sl» 52’"-’ Sp
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are invariant under translations of R.
Then there exists a set Ay such that

Ak¢51U52U...USp.

Proof. Suppose that, for any natural number k > 0, we have
A € JIUJQU...UJP.

Denote by m(k) a natural number from [1, p| such that Ax € Jppy.
In this way we obtain a sequence

m(1), m(2); ..., mk), ..

of natural numbers belonging to the segment [1,p]. Hence, there
exists an infinite strictly increasing sequence

1y kaikyy i
of natural numbers such that
m(ky) = m(ke) =m(ks) = ... = m € [1,p)].
Therefore, the relations
A, € Iy Ak, € Iy Aikg € Iimyoe
are fulfilled. Since we have
lmg—iss Th 2 '00;
and J,, is a o-ideal of sets, we get
R = A, UAg, UAg, U... € Jm,

which is impossible. Hence, we can conclude that there exists at least
one natural number k£ > 0 such that

AygTe WU S F
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Now, it is easy to show that for this number k we also have
A ¢51USQU...USP.

Indeed, suppose that Ay € S,, where m € [1,p|, and consider an
uncountable family {e¢ : € < w;} of elements of E = R described in
Lemma 2. Since Ay € Sy, \ Jm and the classes J,, and S,, are invari-
ant under translations of R, we deduce that all sets of the disjoint
family

{Ar + e 1 E<wi}

belong to Sy, \ Jm, too. So, we see that the pair (J, Sy ) does not
satisfy the countable chain condition, which contradicts relation 2).
Thus, the proof of Lemma 3 is complete.

Taking into account Lemmas 1, 2 and 3 we can formulate the
following

Proposition. Let I be an arbitrary ideal of subsets of the real line
R. Let {Jy, J2, ..., Jp} be a finite family of o—ideals of subsets of R
and let {Sy, Sa, ..., Sp} be a finite family of o-algebras of subsets of
R. Suppose also that relations 1), 2) and 3) of Lemma 3 are fulfilled
for

o R e R RN B

Then there exists a subset A of R such that
(1) AeT;,R\ A€ Ty;
(2)A¢g S USU...US,.

The proof of this Proposition can be deduced from the preceding
lemmas without any difficulties. Indeed, we may put A = Ay for a
suitable natural number k > 0.

Example 4. Consider a particular case of the situation described
above. Namely, let p = 2 and let

J1 = the o-ideal of all Lebesgue measure zero subsets of R;

S1 = the o-algebra of all Lebesgue measurable subsets of R;

Jy = the o—-ideal of all first category subsets of R;
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S, = the o-algebra of all subsets of R having the Baire property
in R.

Obviously, we have
J1 C 51, J2 C Sy,

the pairs (Jy,S1) and (J2,S2) satisfy the countable chain condition
and the classes of sets

Jls J27 Sl, 52

are invariant under the group of all translations of the real line. Fur-
thermore, let I be an arbitrary ideal of subsets of the real line. Then,
by our proposition, there exists a subset A of R such that

(1) AeT, R\AeTy
(2) A€ S US,.

Thus, we obtain the result from [5] mentioned above.
We see also that the topology T does not satisfy the countable
chain condition.
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Jacek Hegduk 1 Aleksander Kharazishvili

O ABSTRAKCYJNYCH TOPOLOGIACH
GESTOSCI

W pracy rozwaza si¢ pewne wlasnosci abstrakeyjnych topologii
gestosci przy zalozeniu warunku przeliczalnego lancucha. Udowod-
niono, ze dla dowolnej skoriczonej rodziny niezmienniczych o—ciat i
o-idealéw speliajacych warunek przeliczalnego laricucha istnieje ele-
ment abstrakcyjnej topologii gestoéci, ktéry nie jest mierzalny wzgle-
dem kazdego o—ciala tej rodziny. W szczegélnosci uzyskano uogélnie-
nie rezultatu pracy [5].
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