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O N  D E N S IT Y  T O P O L O G IE S  G E N E R A T E D  

B Y  ID E A L S

We discuss some properties of the  density  topology, generated  by 
a given ideal I ,  in connection with the  countable chain  condition. 
Namely, we prove th a t for every fin ite family of invariant cr-algebras 
w ith  invariant er-ideals, satisfying the  countable  chain  condition, 
there  exists an element of the  density  topology, which is not m ea-
surable w ith respect to  all of these <r-algebras. In p articular, we 
o bta in  a generalization of one result given in [5].

Let K be the real line equipped with the standard  Euclidean topol-
ogy. Denote by I the usual Lebesgue measure on K. Let X  be an 
arb itra ry  Lebesgue measurable subset of R and let x  be an arb itrary  
poin t of R. Take any h > 0 and consider the real num ber

d (X , x, h) — l(X  n  [x — h, x  + h])/2 h.

Suppose th a t
limh-+ o d (X , x ,  h )

there exists and denote this limit by d ( X , x).  The real num ber d(X,  x)  
is called a  density of the set X  a t the point x.  If the equality 
d ( X , x )  — 1 holds, then the point x is called a Lebesgue density



point of X . The classical Lebesgue theorem states th a t alm ost all 
points of the set X  are its density points. We may put

$ d(X ) =  { x € R : d ( j r , z )  =  l}

and we may consider the following class of sets:

Td =  { X  6  dom(l)  : X  C $ d(X)}.

It is well-known th at the class Td is a topology 011 the set, R , extending 
the Euclidean topology of R. The topology Td is called the density 
topology of R. It is worth remarking here tha t the density topology 
was intensively investigated by many authors (see, for example, [1] 
where some interesting properties of this topology are considered; see 
also [2] where some additional properties of the density topology are 
discussed as well).

It is easy to check th at the zero-point 0 is a  density poin t of a 
Lebesgue m easurable set X  C R if and only if the relation

lim.n-.oo n ■ l(X  fl [ -1  /n ,  1 /n ]) =  2

holds. Obviously, this relation is equivalent to the equality

l im n->oo l (n X  fl [ -1 , 1]) =  2,

where n X  denotes the set {nx : x  (E X }. The last equality means 
th at the sequence of characteristic functions

{XnXn[—1,1] : n  € N}

converges in measure to the characteristic function of the unit, seg-
m ent [—1, 1], Now, applying the well-known Riesz theorem  from the 
classical measure theory, we can describe the convergence in measure 
in term s of the convergence almost everywhere. This simple (but 
im portan t) observation is due to W.Wilczyński who in troduced in 
1985 the concept of a density point with respect to category (see [3] 
and [4]).

Let T  be a topology on R satisfying the following three conditions:



(1) the unit segment [ -1 , 1] has the Baire property w ith respect 
to T;

(2) for every natural number n and for every set X  having the Baire 
property w ith respect to T, the set n X  has also the Baire property 
w ith respect to T;

(3) for every translation g of R and for every set X  having the 
Baire property w ith respect to T , the set g ( X ) has also the Baire 
property  w ith respect to T .

Note th a t these conditions are sufficient to introduce the concept 
of a density point in the category sense.

Let B(R,  T ) denote the a-algebra of all sets having the Baire prop-
erty  w ith respect to the topology T  and let A '(R ,T ) denote the a -  
ideal of all first category sets with respect to T. Furtherm ore, let 
X  be an arb itrary  set from the <r-algebra B ( R , T ) .  We say th a t the 
zero-point 0 is a K (R ,  T )-density point of the set X  if the sequence 
of characteristic functions

{/„  : n G N} =  {x „xn[-i,i] : « G N}

is convergent to the characteristic function X[-i,i] w ith respect to  
the (7-ideal A”(R ,T ) . The last sentence means th at 0 is a  K ( R , T ) ~  
density point of the set X if and only if for each infinite subset N\ of 
N there exists an infinite subset N 2 of N x such th at the corresponding 
partia l sequence of functions { /„  : n £ N 2) is convergent pointwise 
to X[-i,i] on complement of a member of A '(R ,T ).

Now, let x  be an arb itrary  point of R and let X  be an arb itra ry  
set from the <r-algebra B ( R , T ) .  We say th at x is a I \ (R,  T )-density  
poin t of the set X  if 0 is a Ar (R, T)-density  point of the translated  
set

X  -  x = { y - x  : y  £ X } .

Futherm ore, for any set X  having the Baire property  w ith respect 
to  the topology T, let us put

$ T(X ) =  the set of all A'(R, T )-density  points of X .
Hence, we obtain the following family of sets:

T* = { X  e  B ( R , T )  : X  C $ r (X)}.



If t,he family T* forms a topology on the basic set R, then T* is called 
the Wilczyński topology on R, associated w ith the original topology 
T  (note th a t T* is also called the 7 \(R ,T )--density topology on R).

Thus, we have the concept of a density topology on R in the sense 
of category. Of course, an analogous definition can be form ulated 
for an arb itrary  group G equipped with a topology T  satisfying the 
conditions similar to conditions (1) — (3).

E x a m p le  1 . Let us consider a particular case of the above con-
struction. Namely, let us take as T  the standard  Euclidean topology 
on R. In this case it can be shown that T* is a topology on R called 
the I -dens ity  topology (see [3], [4], and [5]). The / - density topol-
ogy has a  num ber of interesting properties and it was investigated 
by m any authors. Among various works devoted to th is topology 
we m ention especially the book [5] where the class of all continuous 
functions w ith respect to the I -density topology is studied in details.

E x a m p le  2. Let us consider another particu lar case of the W il-
czyński construction. Namely, let us put T  =  T j, where Td is the 
density topology on R. Obviously, T  satisfies conditions (1) — (3). It 
is easy to check th at the equality

* T (X )  = * d(X )

holds for each subset X  of the real line having the Baire property  
w ith respect to T. Thus, we see that

T* = T  = Td,

i.e. the density topology Td can be considered as a particular case of 
the Wilczyński topology.

The next example is a generalization of Example 2.

E x a m p le  3. Let ^  be an arb itrary  measure on the real line, 
satisfying the following relations:

1) fi is a complete measure;
2) fi is an extension of the Lebesgue measure / on R.



Furtherm ore, let X  be a //-m easurable subset of R and let x be a 
point of R. We say th a t x is a / /-density point of the set X  if the 
equality

n ■ //(X  n  [x -  1/n ,  x +  1/n ]) =  2

holds. It is clear th a t if // =  /, then this definition gives us the classical 
definition of a Lebesgue density point.

For each set X  E dom(fi),  let us put 
^ ( X )  =  the set of all //-density  points of X .
Now we may consider the family of sets

Tft =  {X  E dom(n) : X  C $ M(X )}.

It can easily be shown th a t the family T,, is a topology on the basic set 
R. Moreover, in [6] is established, using the classical Vitali covering 
theorem , th a t for any set X  E there always exist subsets L, Y  and 
Z  of R such that

L E dom(l ),  n (Y )  =  n (Z )  =  0, X  = (L  U V) \  Z.

We see also th a t the topology extends the usual density topology 
Td and, if n  =  /, then T^ coincides with Td.

Suppose now th at our measure fi satisfies relations 1), 2) and  the 
following two relations:

3) /i is invariant under the group of all translations of R;
4 ) for every natural number n  and for every /¿-m easurable set 

X , the set n X  is //-m easurable, too, and

n (n X )  =  n • //(X).

T hen it is easy to see th a t the notion of a //-density  point can be 
form ulated in term s of the cr-ideal of all //-m easure zero sets (by the 
general scheme of Wilczyński considered above). Thus, we conclude 
th a t if relations l ) - 4 )  hold for the given measure //, then the topology 

can be obtained by the scheme of Wilczyński.
Note th a t the Wilczyński construction can be applied in a more 

general case (see, e.g., [5]). Namely, let I  be a fixed ideal of subsets 
of the real line R. Let { / „  : n E N} be a  sequence of functions



acting from R into R. We say th at this sequence converges ( / )  tb a 
function /  : R —> R if for every infinite subset N[ of N there exists an 
infinite subset N 2 of N i such that the partia l sequence of functions 
i fn  ■ n e  N 2} converges pointwise to /  on the complement of a 
mem ber from the ideal I.

We say th a t a point x  6  R is an /-d en s ity  point of a given set 
X  C R if the sequence of characteristic functions

{Xn(X—r )n[—1,1] : n G N}

converges ( / )  to the characteristic function X[-i,i]-
Denote by the symbol <£/(X) the set of all /-d en s ity  points of the 

set X .
Now let us put

T/ =  { X  C R  : ! C $ ; ( i ) } .

It is not difficult to check tha t the family Tj  is a topology on the set 
R. We say tha t T/ is the topology on R generated by the given ideal 
/ .

Some general properties of the topology T/ are discussed in [5]. In 
connection w ith these properties a certain set A  C R is constructed 
in [5], satisfying the following relations:

1) A  is a Lebesgue non-m easurable subset of R;
2) A  does not have the Baire property with respect to the Eu-

clidean topology of R;
3) for each point a 6 A  the equality

*ooXn(A — a)n[—1,1] =  X[ —1,1]

holds; in particu lar, A  G Tj for every ideal /  of subsets of R.
The construction of the set A  mentioned above explores essentially 

in [5] the existence of a Hamel basis of R being also a Bernstein subset 
of R.

In this paper we shall show th at a much stronger result can be 
obtained. For this purpose we need some auxiliary notions.

Let S  be a er-algebra of subsets of the real line R, let J  be a 
cr-ideal of subsets of R and let J  c  S.  Recall tha t the pair (J,-S')



satisfies the countable chain condition if, for any uncountable family 
{X^ : £ <  U i} of pairwise disjoint sets from 5 , there exists a set 

belonging to the <r-ideal J  (from this definition it follows also 
th a t all sets X ( ,  except a countable num ber of them , belong to the 
cr-ideal J ) .

We say th a t a  <r-algebra S  (respectively, a <7-ideal J )  is invariant 
under the group of all translations of R if for every set X  from S  (re-
spectively, from J )  and for every translation g of R , the set g ( X )  
belongs to S  (respectively, to J ).

Now, let us consider the real line R as a vector space E  over the 
field <Q> of all ra tional numbers. According to a well-known theorem  
of the theory of vector spaces, there exists a basis B  of E  (this basis 
is called a Hamel basis of E ). For any element e € E  we have the 
unique representation

e =  qi bi +  q2b2 +  ••• +  Qrn bm i

where m  — m (e ) is a natural number, q \, q2, ..., qm are rational 
num bers and bu  b2, •••, bm are pairwise distinct elements of B .

Let us put
IMI =  | i l |  +  1̂ 21 +  ... +  \qm \-

Obviously, the functional || || is a norm on E  with the values contained 
in Q. Moreover, it is easy to see th at (E ,  || ||) is a nonseparable 
normed vector space.

Let us take an arb itrary  sequence

r i ,  r 2, ... , rk , ... (k e  N, k > 0)

of strictly positive irrational numbers such that

Zzm/t—oo rk =  oo.

Consider the family of sets {A k : k £ N, k > 0}, where

A k = {e e  E  : ||e|| <  rk }.

Obviously, each set A k is an open ball in the space E  and, since rk 
is an irrational number, the set E  \  A k is open in E , too. These 
properties of the set A k immediately give us the following



L e m m a  1. For the set A k and for each point a o f A k we have the  
equality

Hmn—*oo Xn(Ak — a)n[ — 1,1] X[—1,1]*

A n analogous equality holds for the set E  \  A k and for each point a 
o f E \ A k .

In particular, for every ideal I  o f subsets o f E  = M. we have

A k € 7 7 , E  \  A k E T¡.

A more detailed proof of this Lemma see in [5].
We need also the following

L e m m a  2 . For each set A k there exists an uncountable family  
{e^ : £ <  cji} o f elements o f E  (certainly, depending on A k) such  
that the family

{A k +  : £ <  u>i)

consists o f pairwise disjoint sets.

The proof of this Lemma see in [7] where a more general result 
is established. Namely, in [7] is proved tha t if V  is an arb itrary  
nonseparable normed vector space and Z  is a countable union of 
balls in V  whose radii are equal to a fixed num ber r >  0, then  there 
exists an uncountable family : £ < u?i} of elem ents of V  such 
th a t the family

{ Z  +  v( : £ <  u>i}

consists of pairwise disjoint sets. From this fact it follows also th a t 
the set Z  is absolutely negligible in the space V  (about the last notion 
see [6] or [7]).

L e m m a  3. Let { Ji, J¿, ■■■, Jpj be a finite fam ily o f a-ideals o f  
subsets o f R , let {S i, 52 ,.--, 5 P} be a finite family o f cr-algebras o f  
subsets o f R , and suppose that the following relations hold:

V  J i  C S i ,  J 2 C S 2 , . . . ,  J P C S p ;
2) all pairs { J i , S  i), (J2, S2), •••, (JP, S P) sa tisfy the countable 

chain condition;
3) all classes o f sets

J\i J21 •••! Jpi S 1, S2, ... , Sp



are invariant under translations o f  R.
Then there exists a set A k  such that

A k $  S i  U S 2 U ... U S p .

Proof. Suppose that, for any natural num ber k > 0, we have

A k G J \  U J2 U ... U J p .

Denote by m(k)  a natural number from [l,p] such th a t Ak  € J m(k)- 
In this way we obtain a  sequence

m ( l ) ,  m ( 2 ) ,  ... , m(k),  ...

of natu ral num bers belonging to the segment [1, p]. Hence, there 
exists an infinite strictly  increasing sequence

ki,  k2, fc3, ...

of na tura l numbers such that

m(k i )  = m( k 2) — m {k3) = ... =  in £ [l,p].

Therefore, the relations

•Afcj £ Jmi Akz €E Jmt Ak 3  £ Jmi •••

are fulfilled. Since we have

lin ik ->oo r k — oo,

and J m is a cr-ideal of sets, we get

R = A k x U A k 2 U A k 3 U ... € J m ,

which is impossible. Hence, we can conclude that there exists at least 
one na tu ral num ber k > 0 such that

Ak J\ U J 2  U ... U Jp.



Now, it is easy to show tha t for this number k we also have

A k £  Si U S2 U ... U S p.

Indeed, suppose th a t Ak G Sm, where m  € [l,p], and consider an 
uncountable family {e¿ : £ <  ui\) of elements of E  = R described in 
Lemma 2 . Since Ak  G S m \  Jm and the classes J m and S m are invari-
ant under translations of R, we deduce tha t all sets of the disjoint 
family

{Ak +e$ : £ <  u>i}

belong to  S m \  J m, too. So, we see th at the pair ( Jm , S m ) does not 
satisfy the countable chain condition, which contradicts relation 2 ). 
T hus, the proof of Lemma 3 is complete.

Taking in to account Lemmas 1, 2 and 3 we can form ulate the 
following

P ro p o s it io n .  Let I  be an arbitrary ideal o f subsets o f the real line  
R. Let {J \ ,  J 2, ... , Jp} be a finite family o f a-ideals o f subsets  o f R 
and let {Si, S2, , S p} be a finite family o f a-algebras o f subsets o f  
R. Suppose also that relations 1), 2) and  3) of Lemma 3 are fulfilled  
for

5 J2 1 • • • > Zp 1 S 1 , S2 5 • • • , Sp.

Then there exists a subset A o f  R such that
(1) A  G T /, R \  A  G Ti;
(2) A  £  S i U S2 U ... U S p.

The proof of this Proposition can be deduced from the preceding 
lemmas w ithout any difficulties. Indeed, we may put A  = Ak for a 
su itable natural num ber k > 0 .

E x a m p le  4. Consider a particu lar case of the situation  described 
above. Namely, let p  =  2 and let

J\ — the cr-ideal of all Lebesgue measure zero subsets of R;

Si =  the cr-algebra of all Lebesgue measurable subsets of R;

J i — the (7-ideal of all first category subsets of R;



5 2 =  the er- algebra of all subsets of R having the Baire property  
in R.

Obviously, we have

Ji C S u  J 2 C S 2 ,

the pairs ( J i ,S i )  and ( h i S i )  satisfy the countable chain condition 
and the classes of sets

J ił J21 S 1, 52

are invariant under the group of all translations of the real line. Fur-
therm ore, let I  be an arb itrary  ideal of subsets of the real line. Then, 
by our proposition, there exists a subset A  of R such tha t

(1) A  E T j , R \ A  6  Ti]

(2) A  (£ S X U S 2.

Thus, we obtain  the result from [5] mentioned above.
We see also tha t the topology Tj  does not satisfy the countable 

chain condition.
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O A B S T R A K C Y JN Y C H  T O P O L O G IA C H  
G Ę S T O Ś C I

W pracy rozważa się pewne własności abstrakcyjnych topologii 
gęstości przy założeniu warunku przeliczalnego łańcucha. Udowod-
niono, że dla dowolnej skończonej rodziny niezmienniczych a -cia ł i 
cr-ideałów spełniających warunek przeliczalnego łańcucha istnieje ele-
m ent abstrakcyjnej topologii gęstości, który nie jest mierzalny wzglę-
dem każdego cr-ciała tej rodziny. W szczególności uzyskano uogólnie-
nie rezultatu  pracy [5].
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