ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 7, 1995

Marek Balcerzak and Stanisław Wroński

ON σ-IDEALS WITHOUT MAXIMAL EXTENSIONS

We characterize those σ -ideals in a Boolean σ -algebra which have no maximal extensions in this algebra. We show some applications.

It is well known that every ideal of a Boolean algebra is included in some maximal ideal of that algebra. It seems interesting to verify if the above fact has its analogue for σ -ideals.

Let us observe first that, if Δ is a maximal σ -ideal in the class of all σ -ideals of a given σ -algebra, then it is also maximal in the class of all ideals of that σ -algebra.

Really, if Δ is not maximal in the class of all ideals, then there exists a maximal ideal Δ' such that $\Delta \subsetneq \Delta'$. Let a be an element of our σ -algebra such that $a \in \Delta' \setminus \Delta$. Then the σ -ideal generated by Δ and a, being a proper extension of the σ -ideal Δ , cannot be a proper ideal. This yields that there exist elements a_1, a_2, \ldots of the σ -ideal Δ such that $1: = a \vee \sup a_i$. Now we conclude that $-a \leq \sup a_i \in \Delta$ and $-a \in \Delta \subseteq \Delta'$. Thus we obtain that $a \in \Delta'$ and $-a \in \Delta'$. It is impossible.

Now we introduce the notion of an essential ideal. We shall say that a proper σ -ideal Δ of a given σ -algebra is *essential* if and only if for each maximal ideal Δ' including Δ there exists a sequence $(a_i)_{i=1}^{\infty}$ of elements of that σ -algebra fulfilling the conditions:

- (1) $a_i \notin \Delta'$ for $i = 1, 2, 3 \dots$,
- (2) $\inf a_i \in \Delta$.

Theorem 1. A proper σ -ideal of some σ -algebra is essential if and only if it is not included in any maximal σ -ideal of this σ -algebra.

Proof. \Rightarrow Suppose that an essential σ -ideal Δ of a σ -algebra \mathcal{A} is included in some maximal σ -ideal Δ' which is also a maximal ideal of \mathcal{A} as we have noticed above. According to the definition of an essential ideal there exists a sequence $(a_i)_{i=1}^{\infty}$ fulfilling both conditions (1) and (2). Since $a_i \notin \Delta'$, therefore the σ -ideal Δ'_{a_i} generated by Δ' and a_i is essentially larger then Δ' . Thus $\mathbf{1}: \in \Delta'_{a_i}$ for every i because Δ' is a maximal σ -ideal. It enables us to conclude that for every i there exists $b_i \in \Delta'$ such that $\mathbf{1}: = a_i \vee b_i$. As a result of taking (2) into account we obtain $\mathbf{1}: = \inf(a_i \vee b_i) \leq (\inf a_i) \vee (\sup b_i) \in \Delta'$. It is impossible since Δ' is proper as a maximal ideal.

 \Leftarrow Assume that a proper σ -ideal Δ is not included in any maximal σ -ideal. Let Δ' denote a maximal ideal containing Δ . Since the σ -ideal generated by Δ' is not proper, there exists a sequence $(a_i)_{i=1}^{\infty}$ of elements of Δ' such that $\sup a_i =: 1$. This enables us to conclude that $-a_i \notin \Delta'$ for each i, and that $\inf(-a_i) =: 1: -(\sup a_i) =: 1: -: 1 = 0: \in \Delta$. It means that Δ is an essential σ -ideal.

Theorem 2. For each σ -algebra \mathcal{A} of subsets of [0,1] containing all Borel sets, a σ -ideal \mathcal{I} of \mathcal{A} is a maximal σ -ideal in \mathcal{A} if and only if it is of the form

$$(x) = \{E \subset \mathcal{A} : x \notin E\}$$

for some $x \in [0,1]$.

Proof. ⇒ Consider two cases:

1° \mathcal{I} contains all singletons $\{x\}$, $x \in [0,1]$. Then \mathcal{I} is an essential σ -ideal. Indeed, let Δ be an arbitrary maximal ideal Δ of \mathcal{A} . We define a descending sequence of intervals as follows. Since Δ is a maximal ideal, therefore either $\left[0,\frac{1}{2}\right) \notin \Delta$ or $\left[\frac{1}{2},1\right] \notin \Delta$. Put $A_1 = \left[0,\frac{1}{2}\right]$ in the first case and $A_1 = \left[\frac{1}{2},1\right]$ in the other case. Suppose that

we have defined $A_n = \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \notin \Delta$ where $k \in \{0, 1, \dots, 2^n - 1\}$. Consider the pair of intervals $\left[\frac{k}{2^n}, \frac{2k+1}{2^{n+1}}\right)$ and $\left[\frac{2k+1}{2^{n+1}}, \frac{k+1}{2^n}\right]$. At least one of these intervals does not belong to Δ . We choose A_{n+1} as that interval. Then the set $\bigcap_{n=1}^{\infty} A_n$ is a singleton, hence it belongs to \mathcal{I} . This shows that \mathcal{I} is an essential σ -ideal. So it cannot be maximal, by Theorem 1. Thus the case 1° is impossible.

2° There exists $\{x\} \notin \mathcal{I}$. If there exists $y \neq x$ such that $\{y\} \notin \mathcal{I}$ then \mathcal{I} is not maximal since the σ -ideal $\mathcal{I}_{\{y\}}$ generated by \mathcal{I} and $\{y\}$ is proper and larger than \mathcal{I} . So $\{x\}$ is a unique singleton which is not in \mathcal{I} and thus $\mathcal{I} = (x)$ since (x) is the biggest proper σ -ideal which does not contain x.

← Obvious.

Corollary. Each of the following σ -ideals:

- the σ -ideal \mathcal{L}_0 of Lebesgue null sets in the σ -algebra of \mathcal{L} of measurable subsets of [0,1].
- the σ -ideal \mathcal{B}_0 of the first category sets in the σ -algebra \mathcal{B} of subsets of [0,1] with the Baire property,

is not maximal (in fact, it is an essential σ -ideal).

Remark. Note that \mathcal{L}_0 and \mathcal{B}_0 can be maximal σ -ideals in some non-trivial subfamilies of the family of all ideals of \mathcal{L} and \mathcal{B} , respectively. Namely, consider the family \mathcal{F} of all σ -ideals Δ in \mathcal{L} such that

$$(\forall A \in \Delta) (\forall B \subset A) (B \in \mathcal{L})$$

Then \mathcal{L}_0 is the greatest σ -ideal in \mathcal{F} . Indeed, let $\Delta \in \mathcal{F}$ and suppose that $A \in \Delta \setminus \mathcal{L}_0$. It is known that A contains a nonmeasurable set B (see [1]). Hence (*) is false, which contradicts $\Delta \in \mathcal{F}$. Consequently $\Delta \subset \mathcal{L}_0$. The category case is analogous.

REFERENCES

[1] J.C. Oxtoby, Measure and Category, Springer Verlag, New York, 1971.

Marek Balcerzak i Stanisław Wroński

O σ-IDEAŁACH BEZ MAKSYMALNYCH ROZSZERZEŃ

Scharakteryzowano σ -ideały w dowolnej σ -algebrze Boole'a, których nie da się rozszerzyć do σ -ideału maksymalnego w tej algebrze. Podano kilka zastosowań.

Institute of Mathematics
Lódź Technical University
al. Politechniki 11, I-2
90-924 Lódź, Poland