ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 8, 1996

Włodzimierz Waliszewski

REGULARITY AND COREGULARITY IN

A CATEGORY WITH LOCALIZATION

To Professor Lech Włodarski on His 80th birthday

A category C together with a covariant functor T from C to the category Top of all topological spaces allows us to construct a category CT_0 of pairs (M, A) as objects, where A is a set of points of the set of all points of T(M). Next, a covariant functor L from a subcategory of CT_0 to C is considered. In a category C equipped with covariant functors T and L satisfying some natural axioms of localization the concepts of regularity, weak regularity, coregularity and weak coregularity of morphisms of C is introduced and some categorial features of these concepts are established.

1. CATEGORY WITH LOCALIZATION

Any topological space X will be identified with its topology. X will be treated as a set of sets fulfilling two conditions: 1) $\bigcup Y \in X$ for $Y \subset X$, 2) $A \cap B \in X$ for $A, B \in X$. The set $\bigcup X$ of all points of X will be denoted by \underline{X} . For any $S \subset \underline{X}$ we adopt X|S = $\{A \cap S; A \in X\}$. Then we have a subspace X|S of X with $\underline{X}|S = S$. We consider the category Top of all topological spaces together with all the morphisms

 $(1.0) (X,\varphi,Y)$

where φ is a continuous function from X to Y. For any morphism t of form (1.0) and any $x \in \underline{X}$ the value $\varphi(x)$ will be also denoted by tx. For any $A \subset X$ the φ -image of A will be denoted by tA. If $tA \subset B \subset \underline{Y}$, then we have a morphism $(X|A, A \ni x \mapsto tx, Y|B)$, which will be denoted by t_A^B .

Let C be any category and T be a covariant functor from C to Top. For any object M of C we set $\underline{M} = \underline{T(M)}$. Then \underline{M} is an object of the category Set. For any morphism \overline{f} of C, i.e.

$$(1.1) f: M \to N$$

and for any $x \in \underline{M}$ we set fx = T(f)x. Then we have a morphism $T_0(f)$ of Set of the form

$$(\underline{M}, \underline{M} \ni x \mapsto fx, \underline{N}),$$

where

$$T(f) = (T(M), \underline{M} \ni x \mapsto fx, T(N)).$$

Setting $T_0(M) = \underline{M}$ we get the functor T_0 from C to Set. For any $A \subset \underline{M}$ the set of all f_x , where $x \in A$, will be denoted by f_A .

We consider a category CT_0 meant as follows. All pairs (M, A), where $A \subset \underline{M}$, will be treated as objects of CT_0 , while all the triplets

$$(1.2) (A,f,B),$$

where $A \subset \underline{M}$, for morphism (1.1) with $fA \subset B \subset \underline{N}$, will be treated as a morphism of CT_0 .

A morphism (B_1, g, E) will be treated as composable with (1.2) iff $B = B_1$ and $N = N_1$, where $g : N_1 \to P$. Then

$$(B,g,E) \cdot (A,f,B) = (A,g \cdot f,E).$$

We get in such a way a category CT_0 . The functor T will be assumed to satisfy the following two conditions

(i) for any morphism (1.1) and any $g : M \to N$ the equality T(f) = T(g) yields f = g;

(ii) for any objects M_1 and M_2 in C there exists their product (M, π) , where $\pi = (\pi_1, \pi_2)$, in category C such that $T(M) = T(M_1) \times T(M_2)$ and

$$T(\pi_j): T(M_1) \times T(M_2) \to T(M_j),$$

are the natural projections of the Cartesian product $T(M_1) \times T(M_2)$ onto $T(M_j)$ in category Top, j = 1, 2.

The above conditions (i) and (ii) yield that for any objects M_1 and M_2 of C we have the only product (M, π) . We will set

$$M_1 \times M_2 = M$$
, $\operatorname{pr}_{iM_1M_2} = \pi_j$, $j = 1, 2$.

The full subcategory of CT_0 with the class of all objects of the form (M, A), where $A \in T(M)$ will be denoted by CT. Thus we have

$$(A, f, B) : (M, A) \to (N, B)$$

in the category CT iff (1.1), $A \in T(M)$, $B \in T(N)$ and $fA \subset B$.

Let us consider a covariant functor L from a subcategory CTL of CT_0 to the category C. We will assume that CT is a subcategory of CTL. For any object (M, A) and any morphism (1.2) of CTL we set

$$M_A = L(M, A)$$
 and $f_A^B = L(A, f, B).$

The functor L from CTL to C will be called a localization functor of T iff the following conditions (iii)–(vi) are satisfied.

(iii) for any morphism (1.2) of CTL we have

$$T(f_A^B): T(M)|A \to T(N)|B$$
 and $T(f_A^B) = T(f)_A^B;$

(iv) for any morphism (1.2) of CTL, where (1.1) and any sets A', B' such that $(A', f_A^B B')$ is a morphism of CTL we have

 $(f_A^B)_{A'}^{B'}, \qquad M_{\underline{M}} = M \qquad \text{and} \qquad f_{\underline{M}}^{\underline{N}} = f;$

(v) for any objects (M_1, A_1) and (M_2, A_2) of CTL we have

$$M_{1\ A_1} \times M_{2\ A_2} = (M_1 \times M_2)_A$$

and

$$\operatorname{pr}_{j \ M_1 \ A_1 M_2 \ A_2} = (\operatorname{pr}_{j \ M_1 \ M_2})_A^{A_j}, \qquad j = 1, 2,$$

where $A = A_1 \times A_2$, and for any $a_1 \in A_1$ and $a_2 \in A_2$ there are morphisms

$$i_k: M_k A_k \to M_1 A_1 \times M_2 A_2$$

such that $i_1x = (x, a_2)$ for $x \in A_1$ and $i_2x = (a_1, x)$ for $x \in A_2$;

(vi) if (M, A) and (M, A') are objects of CTL and $A' \subset A$, then (A', id_M, A) is an object of CTL, where $\mathrm{id}_M : M \to M$ is the identity morphism of the object M in C.

Remark 1. If CTL is a full subscategory of CT_0 , then (vi) follows from the previous ones.

Remark 2. By (iii) we have, for any object (M, A) of CTL,

$$T(M_A) = T(M)|A.$$

A category C together with a covariant functor T from C to Top satisfying (i) and (ii), and with a localization functor L of T will be called a category with localization (c.l.).

2. EXAMPLES

We start with a trivial example

2.0. $C = \text{Top}, T(X) = X, T(t) = t, L(A, t, B) = t_A^B$ for any object X, any morphism $t : X \to Y$ and any $A \subset \underline{X}$ and $B \subset \underline{Y}$ with $tA \subset B$.

2.1. Let k be any natural number or $k = \infty$. Let C be the category of all differential manifolds of class C^k together with all the C^k -mappings of differential manifolds as morphisms. For any C^k -mapping (1.1) we have the continuous mapping $T(f) = (T(M), \underline{M} \ni x \mapsto fx, T(N))$, where T(M) and T(N) denote the topology of the manifold M and N, respectively. For any $A \in T(M)$, $B \in T(N)$ and

CATEGORY WITH LOCALIZATION

(1.1) with $fA \subset B$ let L(M, A) and L(A, f, B) be the open submanifold M_A of M and the smooth mapping $f_A^B : M_A \to N_B$ from M_A into N_B induced by f. Similarly, for the category C of all analytical real (or complex) manifolds together with all the analytical mappings between them as well as for the category C of all differential Banach manifolds [4] together with all smooth mappings we define a functor T. We have the same situation in the case of so-called Aronszajn's subcartesian spaces [1] (see also [2]) as well as in the case of Banachian differentiable spaces [3] (see also [6]).

2.2. Let *C* be the category of all differential manifolds of class C^{∞} together with all smooth mappings as morphisms. All the pairs (M, A) such that there exists an object *P* of *C* with the following conditions: 1) *A* is the set of all points of *P*, 2) the topology of *P* coincides with the one induced by the topology of *M* to the set *A*, 3) the identity mapping id : $P \to M$ is regular, i.e. the tangent mapping T_p id : $T_pP \to T_pM$ is a monomorphism. There is the only differential manifold *P* satisfying 1)–3). We denote this manifold by M_A . For any such pairs (M, A) and (N, B) and any smooth mapping (1.1) with $fA \subset B$ we have the induced mapping $f_A^B : M_A \to N_B$. Taking as T(M) the topology of *M* and for any $(1.1) T(f) = (T(M), T(M) \ni x \mapsto fx, T(N))$, and $L(A, f, B) = f_A^B$ we get a (c.l.).

2.3. Let *C* be the category of all R. Sikorski's differential spaces [5] together with all the smooth mappings of differential spaces. All pairs *M* of the smooth mappings of differential spaces. All pairs *M* of the form (M, F(M)), where \underline{M} is a set and F(M) is a set of real functions defined on \underline{M} such that: 1) for any $a_0, \ldots, a_m \in F(M)$, where $m \in N$, and any C^{∞} -smooth function $C : \mathbb{R}^m \to \mathbb{R}$ the function $c(a_1(i), \ldots, a_m(i)) \in F(M), 2)$ every function $b : \underline{M} \to \mathbb{R}$ such that for any $p \in \underline{M}$ there exists $U \in \text{top } M, p \in U$ (here top *M* stands for the smallest of all topologies on \underline{M} with continuous all the functions belonging to F(M), and $\omega \in F(M)$ with b|U = a|U, belongs to F(M), are treated as objects of *C*.

Morphisms in this category are all the triplets (M, φ, N) , where

 φ is a function with the domain \underline{M} and the set of values in \underline{N} such that for any $b \in F(N)$ we have $b \circ \varphi \in F(M)$. For any $A \subset \underline{M}$ let $F(M)_A$ be the set of all $b : A \to \mathbb{R}$ such that for any $p \in A$ there exists $U \in \text{top } M$, $p \in U$, and $a \in F(M)$ with $b|A \cap U = a|A \cap U$. Setting $M_A = (A, F(M)_A)$ we get an R. Sikorski's differential space. We have top $M_A = (\text{top } M)|A$. Taking

(2.1)
$$T(M) = \operatorname{top} M$$
 and $T(f) = (T(M), \varphi, T(N))$

we get a covariant functor from C to Top.

Next, setting

(2.2)
$$L(M, A) = M_A$$
 and $L(f) = (M_A, \varphi | A, N_B)$

we get a localization functor of T such that $T = T_0$ and $CTL = CT_0$.

2.4. Let $K = \mathbb{R}$ or $K = \mathbb{C}$. For any set M of functions with values in K let $\underline{M} = \bigcup_{a \in M} D_a$, where D_a stands for the domain of the function a. Let top M be the smallest topology on \underline{M} containing the set

$$\{a^{-1}B; a \in M \text{ and } B \text{ is open in } \mathbb{R}\}.$$

For any $A \subset \underline{M}$ let M_A denote the set of all functions b with values in K such that for $p \in D_b$ there exist $U \in \text{top } M$ and $a \in M$ with $p \in A \cap U \subset D_b$, $U \subset D_a$ and $b|A \cap U = a|A \cap U$. The set of all the functions $c(a_0, \ldots, a_m)$, where $a_0, \ldots, a_m \in M$, c is any function with values in K analytical on an open set D_c in K^m , $m \in \mathbb{N}$, is denoted by an M. Here

$$D_{c(a_0,\ldots,a_m)} = \{p; \ p \in D_{a_0} \cap \ldots \cap D_{a_m} \quad \text{and} \quad (a_0(p),\ldots,a_m(p)) \in D_c\}$$

and

$$c(a_0,\ldots,a_m)(p) = c(a_0(p),\ldots,a_m(p))$$
 for $p \in D_{c(a_0,\ldots,a_m)}$

A set M of functions with values in K satisfying the equalities: $M = M_M = \operatorname{an} M$ is said to be a general differential space (g.d.s) [8] and [7].

CATEGORY WITH LOCALIZATION

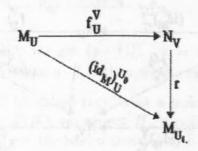
All g.d.s. we treat as objects of a category C. All triplets (M, φ, N) , where φ is a function with the domain \underline{M} and values in \underline{N} and such that $b \circ \varphi \in M$ for $b \in N$ are treated as morphisms of C. Here $D_{b\circ\varphi} = \varphi^{-1}D_b$. The composition of morphisms is defined in the usual way. Setting (2.1) we get a covariant functor from C to Top. Defining L on the same formal way as in Example 2.3 by formulae (2.2) we get a localization functor of T. Here $T = T_0$ and $CTL = CT_0$.

3. WEAK REGULARITY, REGULARITY, WEAK COREGULARITY AND COREGULARITY

Let C, T, L be a c.l. A morphism (1.1) of C will be called weak regular at the point $p \in \underline{M}$ iff there exist $U, U_0 \in T(M), V \in T(N)$ and a morphism

$$r: N_V \to M_{U_0}$$

such that $p \in U \subset U_0$, $fU \subset V$ and we have commutative diagram



Morphism (1.1) of C will be called weak coregular at the point $p \in \underline{M}$ iff there exist $U \in T(M), V, V_0 \in T(N), V_0 \subset V$ and a morphism $s: N_{V_0} \to M_U$ such that $p \in U, fU \subset V, fp \in V, sfp = p$ and $f_U^V \cdot s = (\mathrm{id}_N)_{V_0}^V$.

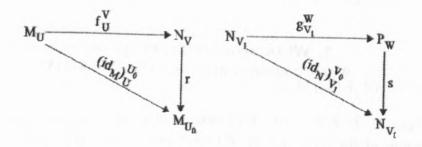
Morphism (1.1) weak regular (weak coregular) (cf. [9]) at every point $p \in \underline{M}$ is said to be weak regular (weak coregular).

3.1. Proposition. If (1.1) and

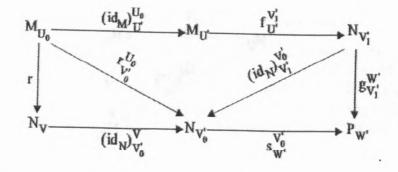
 $(3.1) g: N \to P$

are weak regular (weak coregular), then $g \cdot f : M \to P$ is.

Proof. Let $p \in \underline{M}$. Weak regularity of (1.1) at p as well as of (3.1) at fp yield the existence of $U, U_0 \in T(M), V, V_0, V_1 \in T(N), W \in T(P)$ and morphisms r and s such that $p \in U \subset U_0, fU \subset V, fp \in V_1 \subset V_0, gV_1 \subset V_0$ and the diagrams

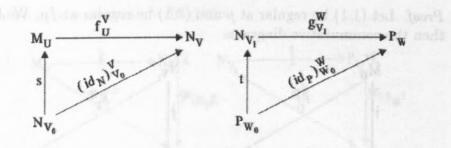


are commutative. Setting $V'_0 = V_0 \cap V$ and $U' = f^{-1}V$ (= the set of all $x \in \underline{M}$ with $fx \in V$) we get the commutative diagram



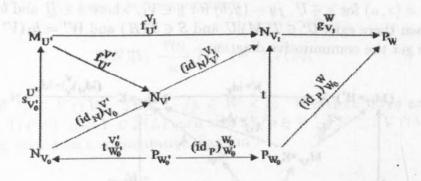
Taking $t = r_{V'_0}^{U_0} \cdot s_{W'}^{V'_0}$ we get $t \cdot (g \cdot f)_{U'}^{W'} = r_{V_0}^{U_0} \cdot s_{W'}^{V'_0} \cdot g_{V'_1}^{W'} \cdot f_{U'}^{V'_1} = r_{V_0}^{U_0} \cdot (s \cdot g_{V_1}^W)_{V'_1}^{V'_0} = r_{V'_0}^{U_0} \cdot (\mathrm{id}_N)_{U'}^{V'_0} = r_{V'_1}^{U_0} \cdot f_{U'}^{V'_1} = (r \cdot f_U^V)_{U'}^{U_0} = (\mathrm{id}_M)_{U'}^{U_0}$ and, of course, $p \in U$. Thus $g \cdot f$ is regular at p.

Similarly, weak coregularity of morphisms (1.1) and (3.1) at any $p \in \underline{M}$ and at fp, respectively, yields the existence of $U \in T(M)$, $V_0, V, V_1 \in T(N), W_0, W \in T(P)$ and morphisms s and t such that $p \in U$, $fp \in V_0$, sq = p, $q = fp \in V_1$, $gq \in W_0$, tgq = q, $V_0 \subset V$, $fU \subset V$, $gV_1 \subset W$ and the diagrams



are commutative.

Assuming $V' = V_1 \cap V$, $U' = f^{-1}V'$, $V'_0 = s^{-1}U'$, $W'_0 = f^{-1}V_0$ we get the commutative diagram



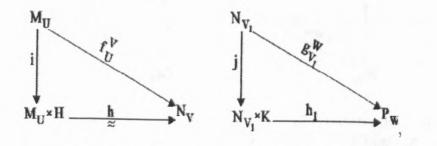
Setting $z = s_{V'_0}^{u'} \cdot t_{W'_0}^{V'_0}$ we get $(g \cdot f)_{U'}^W \cdot z = (\mathrm{id}_p)_{W'}^W$, $p \in W'_0$, $z \cdot g \cdot fp = p$. The morphism $g \cdot f$ is then weak coregular at p.

Morphism (1.1) will be called regular at a point $p \in \underline{M}$ iff there exist $U \in T(M)$, $V \in T(N)$, an object H, a point $a \in \underline{H}$, an isomorphism $h: M_U \times H \to N_V$ and a morphism $i: M_U \to M_U \times H$ such that $p \in U$, ix = (x, a) for $x \in U$, $fU \subset V$ and $h \cdot i = f_U^V$. The morphism being regular at each point will be called regular.

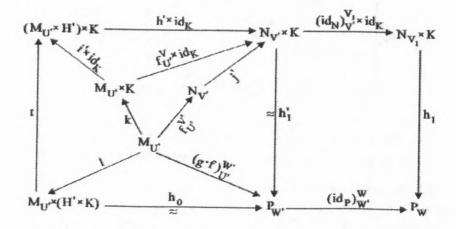
Morphism (1.1) will be called coregular at a point p iff there exist $U \in T(M), V \in T(N)$, an object K and an isomorphism $k : M_U \to N_V \times K$ such that $p \in U, fU \subset V$ and $\operatorname{pr}_{1 \ N_V K} \cdot k = f_U^V, \operatorname{pr}_{1 \ N_V K} : N_V \times K \to N_V$. The morphism coregular at every point is said to be coregular.

3.2. Proposition. Every regular (coregular) morphism at a point is weak regular (weak coregular) at this point. The composition of regular (coregular) morphisms is regular (coregular).

Proof. Let (1.1) be regular at p and (3.1) be regular at fp. We have then the commutative diagrams



where $p \in U \in T(M)$, $fU \subset V$, $fp \in V_1 \in T(N)$, $gV_1 \subset W$, ix = (x, a) for $x \in U$, jy = (y, b) for $y \in V_1$, where $a \in \underline{H}$ and $b \in \underline{K}$. Then there exist $U' \in T(M)|U$ and $S \in T(H)$ and $W' = h_1(V' \times \underline{K})$ we get the commutative diagram



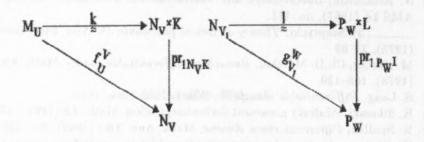
where $i' = i_{U'}^{U' \times S}$, $h' = h_{U' \times S}^{V'}$, $h_1 = h_1^{W'}$, $j' = j_{V'}^{V' \times \underline{K}}$,

 $t: M_{U'} \times (H' \times K) \xrightarrow{\approx} (M_{U'} \times H') \times K$

is the canonical isomorphism of Cartesian products in the category C, $l: M_U \to M_{U'} \times (H' \times K)$ and $k: M_{U'} \to M_{U'} \times K$, lx = (x, (a, b))and kx = (x, b) for $x \in U'$. In particular, $(g \cdot f)_{U'}^{W'} = h_0 \cdot l$. The morphism $g \cdot f: M \to P$ is then regular at p.

To prove coregularity of the composition of coregular morphisms let us assume that (1.1) is regular at p and (3.1) is coregular at fp.

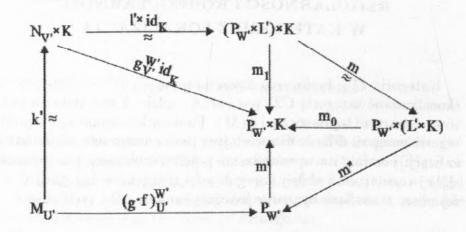
Then we have commutative diagrams



where $p \in U \in T(M)$, $fU \subset V \in T(N)$, $fp \in V_1 \in T(N)$, $gV_1 \subset W \in T(P)$. We have a homeomorphism

$$T(N)|V_1 \xrightarrow{T(t)}{\approx} T(P)|W \times T(L),$$

where $fp \in V \cap V_1$. Then $l \cdot fp \in W \times \underline{L}$. Therefore there exist $W' \in T(P)|W$ and $Y \in T(L)$ such that $l \cdot fp \in W' \times Y \subset l(V \cap V_1)$. Hence we obtain a commutative diagram



where $V' = l^{-1}(W' \times Y)$, $L' = L_Y$, $U' = k^{-1}(V' \times \underline{K})$, $m : (P_{W'} \times L') \times K \to P_{W'} \times (L' \times K)$ is the canonical isomorphism of Cartesian products, $m_1 = \operatorname{pr}_{1 P_{W'}L'} \times \operatorname{id}_{K'}$, $m' = \operatorname{pr}_{1 P_{W'}K}$ and $m'' = \operatorname{pr}_{1 P_{W'}(L' \times K)}$.

References

- N. Aronszajn, Subcartesian and subriemannian structures, Notices of the AMS 14 (1967), no. 111.
- [2] _____, P. Szeptycki, Theory of Bessel potentials, IV Ann. Inst. Fourier 25 (1975), 27-69.
- [3] M. Breuer, Ch.D. Marshal, Banachian differentiable spaces, Math. Ann. 237 (1978), 105-120.
- [4] S. Lang, Differentiable manifolds, Wiley, New York, 1973.
- [5] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), 251-272.
- [6] K. Spallek, Differenzierbare Räume, Math. Ann. 180 (1969), 269–296.
- [7] W. Waliszewski, Complex premanifolds and foliations, Deformations of Mathematical Structures (J. Lawrynowicz ed.), 65-78, Kluwer Acad. Publ. 1989.
- [8] _____, Inducing and coinducing in general differentiable spaces, Demonstratio Mathematica 24 (1991), no. 3-4, 657-664.
- [9] _____, Regular and coregular mappings of differentiable spaces, Ann. Polon. Math. 30 (1975), 263-281.

Włodzimierz Waliszewski

REGULARNOŚĆ I KOREGULARNOŚĆ W KATEGORII Z LOKALIZACJĄ

Kategoria C z funktorem kowariantnym $T : C \to \text{Top pozwala}$ skonstruować kategorię CT_0 par (M, A), gdzie A jest zbiorem punktów przestrzeni topologicznej T(M). Funktor kowariantny L z podkategorii kategorii CT_0 do C spełniający pewne naturalne aksjomaty lokalizacji pozwala na wprowadzenie pojęć: regularości, koregularości, słabej regularości i słabej koregularości morfizmów kategorii C. W tej pracy omówione są pewne kategoryjne własności tych pojęć.

> Institute of Mathematics Lódź University ul. S. Banacha 22, 90–238 Lódź, Poland