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Let & : X — Y be a linear family of Lipschitz function. We
assume that the family ® satisfies additional conditions. Under these
assumptions we show the following result:

Let ¢ € ® be such that for all z,y € X

li$=(y) = ¢=(2)] = [f(v) = F(@)lly < K(dx(z,y))~.

Then ¢, is uniquely determined up to a constant and it satis-
fies Holder condition with exponent o — 1 with respect to 2 in the
Lipschitz norm ||.||L,.

Since optimization in metric spaces, the convex analysis over met-
ric spaces was developed (see [2]-[7]). In this paper we shall extend
on a metric space the following classical theorem.

Theorem 1. Let (X, ||-||x), (Y,]-|ly), be Banach spaces. Let F(x)
be a differentiable mapping of an open set U C X into Y. The
differential OF|, as a function of z satisfies a Holder condition with
an exponent 0 < o < 1 and with constant X > 0 if and only if for
eachz,y € U

(1) I[F(y) - F(z)] = 0F:(y — )lly < K|ly — ||
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The our extension concern the case when (X, dx ) is a metric space
and (Y, | - |ly) as before is a Banach space. Let ® be a a family of
mappings of an open set U C X into Y. Let F(z) be a mapping of the
openset U C X into Y. We say that a mapping ¢ € ® is a ®-gradient
at a point z of F(z) if for each ¢ > 0 there is a neighbourhood V of
z such that for all y € V

(2) I1#(y) = F()] = é(y) - d(2)|ly < edx(y,2).

We say that a mapping F'(z) mapping of the open set U C X into
Y is ®@-differentiable at a point x if for each = there is a ®-gradient
¢s of the F(z) at the point z. Observe that under such general
formulation this ®-gradient need not to be unique.

When we want to extend Theorem 1, we need to determine some-
thing which play a role of a norm of operator. Observe that in the
case of linear operators the norms in nothing else as the Lipschitz
constant.

Let (X, dx) be a metric space. Let (Y, || - ||y) be a Banach space.
Let @ be a linear class of Lipschitzian mapping of X with values in
Y. We define on ® a quasinorm

(3) ”¢”L = sup |p(x1) — $(z2)| :

T1,22€X, z1#x, dx(:L'l,l‘Q)

Observe that if ||¢; — @2/ = 0, then the difference of ¢; and ¢,
is a constant function, i.e. ¢1(z) = @a(x) + ¢, where ¢ € Y. Thus we
consider the quotient space ® = ®/R. The quasinorm ||4||; induces

the norm in the space ¢. Since it will not lead to misunderstanding
this norm we shall denote also ||¢|| 1.

Theorem 2. Let (X,dx) be a metric space and let (Y, Il - |ly) be a
Banach space. Let ® denote a linear class of Lipschitzian functions
defined on X with values in Y, such that for each ¢ € &, z € B -
0, 6 >0, € >0 there isy € X such that

(4) ldx (z,y) —t| < 6t
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and

|||¢($) — o)y
dX(msy)

Let F(z) : X — Y be a ®-differentiable function. Let ¢, be a
®-gradient of the function f(x) at a point x. Suppose that for all
T,y € X

— ¢l <e.

(5)

(6) [6:(y) = ¢u()] = [f(y) = f(2)lly <v(dx(z,y)),

where the real valued function y(t) defined for 0 < t is independent on

z. Let @ tends to 0 as t tends to 0. Then ¢, is uniquely determined
up to the constant and

(7) 6z — dyllr < wldx(z,y)),

where w(t) = ‘Y_(-"M

Proof. Let zy be a fixed point in X. Let ¢,, be a ®-gradient of the
function f(z) at zo. Now we shall use the fact that the class ® is
linear. Let f(z) = f(z)— ¢azo(2). Observe that 1) € & is a ®-gradient
of the function f~('v) at zo if and only if 1 + ¢,, is a ®-gradient of the
function f(z) at zg. Thus we can assume without loss of generality
that 0 is a ®-gradient of the function f(z) at 2y and

(8) 1f(z) = f(@o)lly < v(dx(z,20)).

Now we shall show that 0 is a unique up to a constant ®-gradient

of the function f(z) at z,.
Indeed, let ¢ € ® be an arbitrary ®-gradient of the function f(z)

at zg. Since @ tends to 0 as ¢ tends to 0, by (8) for each ¢ > 0
there is a t > 0 such that dx(z,z¢) <t implies

(9) ¢(z) — d(zo)lly < edx(z,20).

Thus by (5) and (9)
¢l < 2.
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The arbitrariness of ¢ implies that ||$|| = 0. It show the uniqueness
up to a constant of the ®-gradient.

Let z¢ be an arbitrary point in X. Now we shall show (7). Sim-
ilarly as before, without loss of generality we may assume that 0 is
the ®-gradient of the function f(z) at zy. Let x be another arbi-
trary point in X. We denote dx(z,z¢) by t, t = dx(z,z9). Let ¢,
denote the ®-gradient of the function f(z) at the point z. By our
assumptions (4) for each § > 0, £ > 0 there is y € X such that

(4) ldx(z,y) —t| < 6
and
6:(2) = ety _
(5) | Flz 1) lpz]lL] < e.
Thus by (6) we have
1f(z) = f(ylly v(dx(z,y))
Itwy) < Tayy e

Therefore

1) = F@)lly . Adx(z,p))
Ipelis e T e

IOl . 1F@lly | vdx(z,)

RS i ey od e i

e

(10)

Recalling (4), we have
(11) dx(z,70) — 6§ < dx(z,y) < dx(x,20)+ 6.
Thus
(12) dx(zo,y) < dx(z,z0) + dx(z,y) < 2dx(z,20) + 6.

Since 0 is a ®-gradient of the function f(z) at the point zq, we
obtain by (4) that

If@)lly < (dx(z,20))
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and
IfWlly < v(2dx(z,20) + 6)

Combining this estimation with (10) we obtain

Y(2dx(z,20) +6)  v(dx(z,20)) , v(dx(z,y))

192112 < dx(z,z9) — 6 s dx(z,z9) — 6 dx(z,y)
V(2dx(w,20) +6) y(dx(z,20) + )

S T e e R = i

+ €

=g,

The arbitrariness of § and ¢ finish the proof.
As an obvious consequence we obtain

Theorem 3. Let (X,dx) be a metric space and let (Y, || - ||y) be a
Banach space. Let ® denote a linear class of Lipschitzian functions
defined on X with values in Y, such that for each ¢ € ®, z € X,
t>0,0>0,e>0 there is y € X such that

(4) ldx(z,y) —t| < 6t
and
® o)~ ey,

Let f(z) : X — Y be a ®-differentiable function. Let ¢, be a
®-gradient of the function f(z) at a point . Suppose that for all
z,y e X

(14)  l¢<(y) — ¢=(2)] — [f(y) — f(@)]lly < K(dx(z,y))*,

where the constant K > 0 and the exponent a, 1 < a < 2, are
independent on z.

Then ¢, is uniquely determined up to a constant and it satisfies
Hélder condition with exponent a — 1 with respect to x in the norm
I.ll~.. In particular case when a = 2, ¢, as a function of z satisfies
Lipschitz condition in the Lipschitz norm.

We say that a metric space (X, dx) is K-convex space (see [8]),
K > 1, if for each z,y € X and each a > 0, there are elements
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T = To,T1,...,Zp = y such that dx(zi,zi—1) < a, 1 = 1,2,...,n
and

(15) de(:vi,mi—l) < Kdx(z,y).

i=1

For K = 1, K-convex sets was firstly investigated by Menger [1]
in 1928. The investigations are intensively developed till today (see
for example [9]).

Let a metric space (X,dyx) be given. By a curve in X we shall
understand a homeomorphic image L of the interval [0,1], i.e. the
function z(t), 0 <t < 1 defined on interval [0, 1] with values in X such
that z(t) = z(#') implies ¢ = #'. The point z(0) is called the beginning
of the curve, the point z(1) is called the end of the curve. By the
length of a curve L we mean I(L) = sup{}_i, dx(z(t:), z(ti-1)) :
0=ty <tHh <2<ty =1}

We say that a metric space (X, dyx) is arc connected if for arbitrary
zg,y € X there is a function z(t), 0 < ¢t < 1 defined on interval (0,1]
with values in X such that 2(0) = 29, (1) = y and the length of
the line L = {z(t)}, 0 <t < 1 can be estimated as follows I(L) <
Kdx(zo,y).

If a metric space (X,dx ) is arc connected with a constant J > 0,
then it is K'-convex. The converse is not true. For example the set
@ of all rational numbers with the standard metric is K-convex, but
it is not arc connected with any constant K > 1. In the example
the space X is not connected. However it is possible to construct a
complete K-convex metric space (X, dx ), which is not arc connected
with any constant K’ > 1. We want to mention, that a complete 1-
convex metric space (X, dx) is always arc connected with a constant
L

As a consequence of Theorems 2 and 3 and the notion of arc con-
nected spaces we obtain

Corollary 4. Let (X,dx) be an arc connected with a constant K
metric space and let (Y,|| - ||y) be a Banach space. Let ® denote a
linear class of Lipschitzian functions defined on X with values in ¥
such that for each ¢ € ®, 2z € X, ¢ >0,6>0, >0 thereisy € X
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such that
(4) ldx(z,y) — | < &t
and
l¢(z) = dW)lly
) axy) Ml <e

Let f(z) : X — Y be a ®-differentiable function. Let ¢, be a
®-gradient of the function f(z) at a point x. Suppose that for all
z,y € X

(6) [62(y) = ¢=(2)] = [f(y) — f(@)]lly <(dx(z,y)),

where the real valued function ~(t) defined for 0 < t is independent
on . Let 17(;1 tends to 0. Then f(z) = ¢(z) + ¢, where ¢ € & and
c € R.

Proof. Since lt(,L) tends to 0, wy(t) = ﬂ);ﬂg tends to 0, too. Thus
for each n > 0 there is & > 0 such that ¢ < a implies that w,(t) < .
Therefore w(t) < nt.

Since X is arc connected with a constant K| it is K -convex. Thus
there are elements z = zy,z1,...,2, = y such that dxlzi, Ziei) <00
RN o AR

(15) de(:ci,x,'_l) < Kdx(z,y).
=1
By formula (7)
(16) ¢z — 2yl < w(dx(2i,zi-1)) < ndx(zi, zi-1),

for 2 =1,2,... n. Thus by the triangle inequality and by (15)

162 = blle = 1620 = ealle < D l162s = baics
(17) 4 156
<ny_dx(zi,zi-1) < Kndx(z,y).

=1
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The arbitrariness of 7 implies that

(18) ”¢r "¢.v”L =0

for arbitrary z,y € X. Thus ¢ = ¢, is a ®-gradient of the function
f(z) at each point z. Take arbitrary #,y € X. Since the space
X is arc connected with a constant K, there is a curve L with the
beginning at & and end at y such that the length of L is not greater
then Kdx(&,y). Take arbitrary ¢ > 0 and arbitrary ¢ = z(t) € L.
Then there is §; such that for z such that dx(z,z) < &,

(19) [6(2) — ()] = [f(2) = f(@)lly < edx(z,z).
Using the fact that L is compact we obtain that there are points
& = Zg,Z1,. .. ,Tn = y such that
(20) Y dx(zi,zi-1) < Kdx(&,y)
1=1

and

(21)  |l[#(z:) = d(zi-1)] = [f(zi) = f(zi=1))|ly < edx(zi,ziy),

for 2 =1,2,...,n. Thus by the triangle inequality and by (20)

(22) I[6(2) = (y)] — [£(2) — fW]lly <edx(%,y),

The arbitrariness of ¢ implies that

(23) [6(2) — ¢(v)] — [f(2) — f(y)]

and the arbitrariness of &,y implies that f(z) = ¢(z) + c.

Observe that in particular case when v(t) = t%, if « > 2 Corollary
4 holds.

We do not know is Corollary 4 true without assumption that the
metric space X is not arc connected with constant IK?
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Stefan Rolewicz

O APROKSYMACIJI FUNKCIJI
W PRZESTRZENIACH METRYCZNYCH

Niech @ : X — Y bedzie liniowa rodzina funkcji Lipschitzowskich.
Zalézmy, ze rodzina ® spelnia pewne dodatkowe warunki. Pod tymi
zalozeniami pokazujemy nastepujace twierdzenie:

Twierdzenie. Niech ¢, € ® bedzie takie, ze dla wszystkich x,y € X

[82(y) — ¢=(2)] = [f(y) — f@)lly < K(dx(z,y))".

Wtedy ¢, jest jednoznacznie okreslona z dokladnoscig do statej i
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spetnia warunek Héldera z wykiadnikiem o — 1 ze wzgledu na x w
normie Lipschitzowskiej ||.|| .
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