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We introduce sequential matrix methods, called shortly SM-me-
thods, and show that they are equivalent to the wcll-known methods
defined by iteration products of matrix transformations, being rather
more complicated for investigations than SM-methods. Our main
goal is to present result on the b-perfectness and the perfectness
of regular SM-methods which can frequently be reformulated for
iteration products of matrix transformations.
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0. PRELIMINARIES

This paper is meant as a summary based mainly on doctoral thesis
[7] and takes into account some modifications and supplements. We
first introduce sequential matrix methods, called shortly SM-methods
and consider these methods and those defined by the iteration prod-
ucts of matrix transformations [8], called IPM-methods as well. It
turns out that the latter ones are equivalent to some SM-methods,
and vice versa (Section 1.1). This implies that both the kinds of
methods have global properties in common, that is, properties de-
pending only on limit functionals. In general, the investigation of
[PM-methods is rather more complicated than that of SM-methods.
Therefore, many global properties of IPM-methods can be drawn
from those of SM-methods.
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We pay attention to the assignment which sends every IPM-me-
thod O[A] to the equivalent SM-method O#A. This assignment al-
lows us to transfer the global properties of IPM-methods formulated
in terms of their defining matrices to those of SM-methods formu-
lated in terms of their defining (1,2)-indexed matrices. In particular,
this concerns the regularity and the almost regularity (Sections 1.2
and 1.3). Moreover, in this way one can describe the topology in the
full convergence field of an IPM-method (Section 3.1).

Our main goal is to present results on the b-perfectness and the
perfectness of regular SM-methods (Chapters 2 and 3). These re-
sults can be reformulated for IPM-methods because the classes of
IPM-methods and SM-methods are equivalent. From the viewpoint
of global properties, the class M? of regular SM-methods can be re-
garded as that containing the class M of regular matrix methods.
In the case of the b-perfectness, we obtain the result stating that
for any A € M? the following conditions are equivalent: A is b-
perfect in M2, A is b-perfect in M, and A is b-equivalent to a matrix
method (Propositions 2.1.3 and 2.5.1), which implies that every ma-
trix method is b-perfect in M?%. In the case of the perfectness, we
can distinguish the class M2 of regular reducible SM-methods which
has properties similar to those of regular SM-methods relative to the
b-perfectness (Corollary 3.4.4). In general, the perfectness for an SM-
method can be investigated by using the corresponding topology in
the full convergence field of such a method (Section 3.1). This topol-
ogy generalizes that for a matrix method (see [9]). By applying it we
get the following characterization: a regular SM-method A is perfect
in M? if and only if the set T, is dense in the full convergence field of
A (Theorem 3.2.2). In particular, any matrix method perfect in M
is perfect in M?2. The above-mentioned results on the b-perfectness
and the perfectness are chosen as most characteristic among other
ones.

In this paper we accept the following conventions unless otherwise
stated:

Matrices and sequences are infinite and complex;

Linear spaces and linear maps between them are over the field C;

All indezes i, k,1,n,m ranges over natural numbers 1,2, ... ;

If x is a sequence, we denote by z" its n-th element, i.e. z = (a™).
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Moreover, if x is convergent, we adopt 2 = lim z = lim,, z™;

We shall shortly write £; instead of £52,. For ezample, the nota-
tion Lix; (resp. Lix') means the infinite sum S, a; (resp. L2, at);

By 1 will be denoted the sequence (1,1,...);

For any sets A and B the notation A C B means that A is a proper
subset of B. Moreover, we adopt that AC B if AC B or A= B.

We introduce the following notations:

T - the set of all sequences;

Ty - the set of all bounded sequences;

T. - the set of all convergent sequences;

T.o - the set of all sequences converging to zero.

The set T' will be regarded as a linear space under the coordinate-
wise operations. Clearly, the sets T}, T, and T, are linear subspaces
of T.

In general, by a method we shall mean an object A together with a
linear functional (the limit functional of A), denoted by A(-), which is
determined by this method, i.e. the object A, and defined on a linear
subspace D(A) of T (the full convergence field of A). If 2 € D(A),
then by A(z) will be denoted the value of A(-) on z. Moreover, if
A(z) = a, we say that A limits = (to a) or that z is A-it limitable (to
a). Following [6] we introduce:

Dy(A) = {z € D(A) : A(z) = 0};

Db(A) = D(A)NTy- the bounded convergence field of A;

Dj(A) = {z € D*(A) : A(z) = 0}.

For any method A we define the b-limit functional of A to be the
functional A%(-) = A(-)|D(A).

The general notion of a method is very useful as the basis for
a common language for all special kinds of methods considered in
the paper. In particular, this concerns the classical matrix methods,
methods defined by iteration products of matrix transformations and
SM-methods introduced here.

If A and B are methods such that D(A4) C D(B) (D(A) C D¥(B)),
we say that B is a D-majorant (D°-majorant) of A or that A is a D-
minorant (D*-minorant) of B. For any classes K and £ of methods
we introduce the following notations:

K=(£)={Ae€eK : 3Be L, D(A) C D(B)};

K=bCL)={AeK : 3B € L, D*(A) C D*(B)};
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K~[L]={A€eK : VBe L, D(B) C D(A)};

KL ={A €K : VBe L, D'(B) CD)A)}.

Methods A and B are said to be consistent (b-consistent) over a
set S C T if SC D(A)ND(B)(SC D'A)NDYB)) and A(+)|S =
B(+)|S. Accept that if S = D(A)ND(B) (S = D*(A)ND*(B)), we can
omit the indication of S in this definition. If D(A) C D(B) (D'(A) C
DY(B)) and the methods A and B are consistent (b-consistent), we
write A C B (A C, B). In this case we say that B is a majorant
(b-magjorant) of A or that A is a minorant (b-minorant) of B. Clearly,
the relation C (Cj) between methods is reflexive and transitive, which
means that it defines a quasi order, called the quasi order (quasi b-
order) for methods. If K and £ are classes of methods, we introduce
the following notations:

K=[L]={AeKk : VBe L, AC B},

Kebf]={AeK :YVBeL, ACyB};

K=[L]={AeK : VBe L, B C A};

K='L]={AeK :VBeL, BC A}

Methods A and B are said to be equivalent (b-equivalent) if A C B
and B C A (A Cy B and B C A). For such methods we write A ~ B
(A ~ B) and say that B is a representation (b-representation) of A,
and conversely. In this case if B belongs to a class K of methods,
we also say that B is a K-representation (ICb-repre.sentatz'on) of A.
Clearly, the relation ~ (2~2;) is an equivalence relation between meth-
ods and we have A ~ B (A ~; B) if and only if A(-) = B(.) (Ab(') e
BY -)). It is seen that the quasi order C (quasi b-order C;) induces a
partial order for the equivalence (b-equivalence) classes of methods,
that is, the relation C (C,;) is antisymmetric up to equivalence (b-
equivalence) of methods. For any methods A and B we shall write
ACB(Acy, B)if AC B (A G, B) and A is not equivalent (b-
equivalent) to B.

If K and £ are classes of methods, we set

K~[£] = K<[L]n KZ[K<[L]);

KLl =Ko K2R AL

It is seen that K~[£] (K~*[L]) denotes the class of all greatest
minorants (b-minorants) of £ in K which may be empty in general.
More precisely, K~[£] (K~*[£]) consists of all methods A € K satis-
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fying the following conditions:
(i) AC B (A Cy B) for each B € L;
(ii) if A" e Kand A' C B(A' Cy B)foreach B € L, then A'C A
(A’ Cy A).
It is seen that for any A € K~[L] (A € K~*[£]) we have

K-[f]={A'"eK: A ~ A}
(KPL]) = {A' € K : A’ ~; A}),

which means that a greatest minorant (b-minorant) of £ in K is de-
fined up to equivalence (b-equivalence) of methods from K.
A sequence x € T is called almost convergent to x* if

L P pntk-1

lim ="

k k
uniformly in n, and write Lim 2 = Lim, z" = z*. It is known
that every almost convergent sequence is bounded (Lorentz). We
introduce the following notations:

Tac- the set of all almost convergent sequences;

Tuco- the set of all sequences almost converging to zero.

A method A is called convergence zero-preserving (preserving) if
Teo € D(A) (T. € D(A)). Moreover, such A is called zero-regular
(regular) if A(z) = 0 for © € Ty (A(z) = lima for « € T;). Analo-
gously we define an almost convergence zero-preserving (preserving)
method. By a strongly zero-regular (regular) method we shall mean
an almost convergence zero-preserving (preserving) method A such
that A(z) =0 for € Tyeo (A(z) = Limz for z € Tye).

A method A is said to be Tg,-continuous (T,-continuous) if it is
convergence zero-preserving (preserving) and the limit functional A(-)
restricted to Ty (7,) is continuous in the uniform topology. If 4 is a
Teo-continuous method, we conclude that

A(x) = EiA,'.’ti for z € Ty,

where (A;) is a complex sequence uniquely defined by A such that
Yi|Ai| < co. Moreover, if in addition A is convergence preserving or
equivalently 1 € D(A), then it is T,-continuous and we have

A(z) = S;Ai(z* —z' )+ 2 A1) for z €T..
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Clearly, if A is zero-regular, then 4; = 0 (i = 1,2,...). For
any T.-continuous method A we define the characteristic of A to be
the complex number x(A) = A(1) — £;A4;. In this case we have
A(z) = x(A)z" + LAz’ for ¢ € T.. For example, note that every
convergence zero-preserving (preserving) matrix method A = (Al)
1s Teo-continuous (T,.-continuous). Moreover, we have A; = lim,, Al
(: =1,2,..), and A(1) = limp, ;A\ provided that 1 € D(A).

In this paper by R will be denoted the class of all regular methods.
If K is an arbitrary class of regular methods, then for any 4 € R—(K)
(A e RY(K)) we define the perfect part of the full (bounded) con-
vergence field of A relative to K to be the set

DP(A;K) = {z € D(A) : VB € KT[4], B(z) = A(z)}
(D"(4;K) = {z € D'(A) : VB € K™"[4], B(z) = A(z)})

where K~ [A] = K~[L] (K~Y[A] = K~([L]) for £ = {A}. Note that
T. C Dr(A;K) C DP(A;K) and both DP(A;K) and DPY(A;K) are
linear subspaces of 7.

A method A € R—(K) (A € R7(K)) is said to be perfect (b-per
fect) in K if DP(A;K) = D(A) (DP*(A;K) = D*(A)). By a perfectly
(b-perfectly) inconsistent method in K we shall mean a method A €
R~(K) (A € R%K)) such that DP(4;K) = T, (pr(A;)C) =l
It follows that for any A,B € R—(K) (A4,B € R=Y(K)) such that
A C B (A Gy B) we have D’(4;K) C DP(B;K) (DP(A;K) C
Dré(B; K)). In particular, if B is perfectly (b-perfectly) inconsistent,
then so is A.

Throughout this paper by M will be denoted the class of all reg-
ular matrix methods. In case K = M we shall frequently omit the
indication of M in the above definitions. In particular, we accept
DP(A) = DP(A; M) (DPY(A) = Dr(A; M)) and shortly say that a
method is perfect (b-perfect) or perfectly (b-perfectly) inconsistent if it
is such in M.

Let M. denote the class of all zero-regular convergence preserving
matrix methods and let

Mo ={A e M.: x(A) =0}
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For any method 4 € R—(M) (A € R~%M)) we introduce the

following notations:
DP(A) = {z € D(A) : VB € M[4], B(z) = x(B)A(z)};
(D (A) = {x € D(A) : VB € M*[A], B(z) = x(B)A(z)});
DI(A) = {z € D(A) : VB € M;’[4], B(z) = 0};
(D5'(A) = {z € D(4) : VB € Mj"[4], B(z) = 0})

where M.[A] = M.[L] (M.[A] = M.[L]) and My[A] = M,|[L]
(Mo[A] = Mo[[]) for [: — {A}

It is easy to show

0.1. Lemma. If A € R~ (M) (A € R™YM)), then
DP(A) = DP(A) C Dh(4) (DP(A) = DP(4) C D'(4)).

Let now K be an arbitrary class of methods. By a sequential K-
method or shortly an S(K)-method we shall mean an infinite sequence
A = (A") of methods from K where A™ denotes the n-th element of
A. If A is an S(K)-method, we define the full (bounded) convergence
pseudofield of A to be the set

DYAYe oAy (A =10

which is obviously a linear subspace of T' (T}). For such A we de-
note by A~(-) the linear transformation from D~(A) to T given by
A~(z) = (A™(z)). If S and S’ are subsets of T', we say that A trans-
forms S into S’ provided that § C D~(A) and A~(S) C S'. The set
D(A) = A~~1(T,) is alinear subspace of T called the full convergence
field of A. The limit functional A(-) is defined by A(z) = lim, A™(z)
for + € D(A). Thus, an S(K)-method is a method in the general
sense. By an S-method we shall mean an S(K)-method where K is
the class of all methods.

For example, if A = (A™) is a matrix method, then every row
A™ = (A", A\P*,...) € T can be regarded as a method with the limit
functional A™(-) defined by

A™(z) = 5;2Tz* for z € D(A™),
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where D(A™) is the set of all # € T such that the series £;A"z! is
convergent. It is seen that A can be identified with the S(T)-method
(A™). In particular, we have the pseudofield D~(A) and the linear
transformation A~(-) : D¥(A) = T.

Let M denote the class of all usual matrix methods. By SM we
shall denote the class of all S(M)-methods which are the main objects
under consideration, called SM-methods for short. Especially, we are
interested in the class M? of all regular SM-methods.

Every SM-method A determines a sequence (A") of matrix meth-
ods such that A = (A"™). This means that A is represented by a
unique complex infinite (1,2)-indexed matrix (a?*) such that A" =
(a™) (n = 1,2,...), which implies

A(z) = lim A™(z) = limli,xana?k:ci for = € D(A).

Let us put
A= (A = (aP¥) (n=12,...; k=1,2,..)

and note that A"¥(z) = ;al*z! for x € D(A"¥). We define the
inner pseudofield of A to be the set

oo 00
ﬂ D (A™) = ﬂ ﬂ D (A™).

Let T2 = CN*N denote the set of all 2-1ndexed sequences. If
z € T?, then by z"* will be denoted its nk-th element, i.e. z = (z"F).
For any (1,2)-indexed matrix A = (a*), we define the linear trans-
formation A% (-) : D®(A) — T? by A® (z) = (A" (2)). ESCT
and S’ C T?, we say that A transforms S into S’ provided that
S CD¥(A)and A¥(S) C §'.

It is easy to prove (compare [5], Theorem 1.3.2)
0.2. Proposition. Let A be an S-method. If A is convergence zero-
preserving (preserving) and each A" is T,-continuous (T¢-continuo-
us), then so is A. Moreover, A is consistent with some matrix method
over T,,. If in addition A is convergence preserving and lim,, y(A") =
0, then A is consistent with some matrix method over T..

From this proposition and since every convergence zero-preserving
(preserving) matrix method is T¢,-continuous (7¢-continuous), we get
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0.3. Corollary. If A is a convergence zero-preserving (preserving)
SM-method, then A is Teo-cntinuous (T.-continuous).

Let A = (A\") be a matrix method. It is seen that A is equiv-
alent to the SM-method Al = (a"*) defined by a* = A™ (k =
1,2...). Moreover, one can see that A is equivalent to the SM-method
(A) defined by (A)* = A (n = 1,2,...). On the other hand, for
global (b-global) properties of methods one can identify equivalent
(b-equivalent) methods. Thus, we can regard that M C SM via
the identification A - AT (A ~ AT) or A  (A) (A ~ (A)). In
this paper we prefer the first identification unless otherwise stated
because D¥(AT) = D~ (A1) = D~ (A) but D¥((A)) = D~ (A) and
D~ ((A)) = D(A),i.e. A Al preserves the pseudofields of methods
but A +— (A) does not. In particular, we can regard that M C M2,
This implies that for any method A € R=(M) (A € R*(M)) we
have

DP(A; M?) C DP(A) (DPY(A; M%) C DP(A)).

Let A = (AI") and © = (6%,) be matrices. Recall that the iteration
product O[A] of matriz transformations, that is, the composition of
the matrix transformations A and © is defined by

(*) 2= NI Bl a1 %)

for z € D~(O[A]), the convergence pseudofield of O[A] consisting
of all x € T such that the series are convergent. This means that
O[A]~ : D~(O[A]) — T is a linear map given by (*), where z =
O[A](z). The convergence field of O[A] is defined to be the set
D(O[A]) = O[A]~~Y(T.). Finally, the limit functional ©[A](+) is given
by ©[A](z) = imO[A]~(z) for = € D(O[A]). The method defined
above will be called the IPM-method ©[A].

Let A = (AI") and © = (#7,) be matrices. Following Agnew [1] the
composition product of A and © is defined to be the matrix OA = (c?)
where

&f = Bmln Al (e 2=l e

provided that all series are convergent. It is known that if the IPM-
method O[A] is convergence zero-preserving (see [8], Theorem I.1),
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then the composition product ©A exists. It turns out that in general
the methods ©®A and ©[A] need not be equivalent (b-equivalent), even
if both © and A are regular.

1. BASIC PROPERTIES

1.1. Equivalence between IPM-methods and SM-methods.

Let A = (A") and © = (6%,) be matrices. Define the (1,2)-indexed
matrix O#A = (c*) as follows:

ik Ly

{/\? forn = 1 2k 1
SELemAr  forn=1,2,...; k=23,...

This matrix determines a unique SM-method, denoted also by O#A,
such that O#A = (C™) where C" = (c*) for each n. One can show

1.1.1. Lemma. For any matrices A and © the IPM-method ©[A] is
equivalent to the SM-method O#A.

Let now C' = (cf'*) be a (1,2)-indexed matrix. Let us take a one-
to-one map 7 from N? onto N such that 7(n,k) < 7(n, k + 1) for all

n,k € N. For example, such a function can be given by 7(n,k) =
2"k — 2", Define matrices A = (A]*) and © = (67) as follows:

(1.1a)
M for ‘=t L) =1 5N
A =1 etk — c?’k—l for m="Tn Kl N = 1 2
=28 )
(1.18)
o Q¢ 3t £ (e, k), Jorweseh "R T
WY Hme {1k )-tor satae’ B ="1 2.1

By an easy verification we get
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1.1.2. Lemma. If C = (c!*) is a (1,2)-indexed matrix and if ma-

trices A = (A*) and © = (07,) are defined by formulas (1.1a) and
(1.183), then the method C' is equivalent to the IPM-method ©[A].

Clearly, Lemmas 1.1.1 and 1.1.2 imply

1.1.3. Proposition. Every IPM-method is equivalent to an SM-
method, and conversely.

Let A = (A") and © = (82) be matrices. As we know from
Chapter 0 the composition product ©A exists provided that the IPM-
method O[A] is convergence zero-preserving. Additionally, one can
see that if A () has finite columns (rows), then OA exists too. It is
easy to prove the following propositions.

1.1.4. Proposition. If A = (A"") and © = (") are matrices such
that the composition product ©A exists and if the following condition
holds:

liinZI f:ko;;, ARI=0 (W=1,%..)

1 m=

then the methods ©A and O[A] are b-equivalent.

1.1.5. Proposition. If A = (A\™) and © = (67') are matrices and if
O has finite rows, then the methods © A and O[A] are equivalent.

1.2. Regularity and limitation of bounded sequences.

For any matrix A = (A") we shall adopt the following conditions:

(1.2A) there exist limits lim,, AT = \i(i = 1,2,...);
(1.20) sup,, 37, |A"*] < oo;
(1.2T') there exists a limit limp, Y, A™ = A.

The following lemma is well known.
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1.2.1. Lemma. A matrix method A = (A") is convergence zero-
preserving (preserving) if and only if it satisfies conditions (1.2A)-
(1.20) ((1.2A)-(1.21')). Moreover, the following statements hold:
(1) lim,, ;A" 2t = 32, \ia* for each x € T¢, provided that A
i$ convergence zero-preserving;
(2) limp S, A28 = (A=, M) @ + 3; Aia’ for each z € T,

provided that A is convergence preserving.

Let now A = (a’) be a (1,2)-indexed matrix. Adopt the following
conditions:

(1.2a) there exist limits lim, limg af* = a; (i = 1,2,...);
(1.2b) sup; ¥, |aPF| < 00 (n=1,2,...);
(1.2¢) there exist limits limg a?* = a? (n = 1,2,...; i = 1,2,...)

and sup,, 3, |a}'| < oo;
(1.2d) there exist a limit lim, limg )_; af’* = a.
We introduce the following notations:
(1.2¢) A° = (a?* —q;) and A = (af - a;) provided that condition

(1.2a) holds;
(1.2f) A = (a}) and A" = (al* —a?) (n=1,2,... provided that

1

condition (1.2¢) holds.

Note that if A satisfies conditions (1.2b) and (1.2¢) ((1.2a) and
(1.2¢)), then each matrix method A" (A’) is convergence zero-preser-
ving. Clearly, in this case the methods A" and A are zero-regular.
Moreover, if in addition A satisfies condition (1.2d), then each A" is

convergence preserving.
Applying Lemma 1.2.1 one can prove

1.2.2. Theorem. An SM-method A = (a?*) is convergence zero-
preserving (preserving) if and only if it satisfies conditions (1.2a)-
(1.2¢) ((1.2a)-(1.2d)). Moreover, the following statements hold:
(1) limg lim; ¥, aPF2® = Y, a; x* for each z € T,y provided
that A is convergence zero-preserving;
(2) limplim 3, affai=(a— 3 ; @) z+3; ai ¢! for each x €
T. provided that A is convergence preserving.

This theorem implies the following observations. If A is an SM-
method such that A" exists and if all A" and A" are convergence zero-
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preserving, then so is A. If in addition all A" and A" are convergence
preserving, then A is convergence preserving if and only if (x(A")) €
T.. In particular, if all A" are convergence zero-preserving and if A’
is zero-regular, then so is A. Moreover, if all A" are convergence
preserving and if lim,, x(A") = 0 and A’ is regular, then 4 is regular
too.

Clearly, if A is convergence zero-preserving, then notations (1.2e)
and (1,2f) have meaning.

Additionally, we adopt the following conditions:

(1.2") the limits limy, limg a?* = 0 exist;
(1.2d") the limit lim,, limy i a® = 1 exists.

Theorem 1.2.2 immediately implies

1.2.3. Corollary. An SM-method A = (a*) is zero-regular (reg-
ular) if and only if it satisfies conditions (1.2a'),(1.2b) and (1.2c)
((1.2a'),(1.2d") and (1.2b),(1.2c)).

Note that this corollary involves that A is zero-regular if and only if
each A" is convergence zero-preserving and A’ is zero-regular. More-
over, A is regular if and only if A satisfies (1,2d'), each A™ is conver-
gence preserving and A’ is zero-regular.

By Corollary 0.2, every convergence preserving SM-method A is
T,-continuous, and so, the characteristic x(A) is defined. Moreover,
in this case each A™ (A"") is T.-continuous too. Clearly, we have

A (z) =x(A")z" + Z a’z for z€T. (n=1,2,...).

1.2.4. Corollary. Let A = (a?") be a convergence preserving SM-
method. Then

li ((A") = a — liminf ? d
im sup x(4A") =a im in Z: al an

liminf y(A") = a — li g
im in (A" ) = 1mnsup£i: al
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which implies that (x(A")) is convergent if and only if A' is conver-
gence preserving. In particular, we have

lim sup |y (A")l < |a| + sup E , |at|,
n n :
1

and so, (x(A")) € Ty. Moreover, if in addition A is convergence
preserving, then

li'rlnx (A") = x(a) — x (4).

Let A = (A") and © = (67,) be matrices. Adopt the following

conditions:
(1.2)) there exist limits lim, Y, 0% AP =%; (i=1,2,...);

(1.20) ¥, At < o' (m=21,2,:0.);
(1.29) sup; 3, {Z:,:l e /\?" <o (n=1,2,...)
(1.26) sup, 33, [, 0 AP| < 00
(1.2¢) there exists a limit lim, ), O (32, A*) = 4.
By Lemma 1.1.1 and by applying Theorem 1.2.2 to the SM-method
O#A, we get

1.2.5. Corollary. (see [8], Theorems IIL1 and II1.2) Let A = (AI")
and © = (62) be matrices. Then the IPM-method O[A] is con-
vergence zero-preserving (preserving) if and only if the matrices A
and © satisfy conditions (1.2))-(1.26) ((1.2X)-(1.2¢)). Moreover, the
following statements hold:

(L) L, 3 e (Z' Am xi) = ¥; iz’ for each x € T, pro-

vided that O[A] is convergence zero-preserving;
(2) lim, 35, 67 (35; AP 2") = (Y= ) + X, viat for

each z € T, provided that ©[A] is convergence preserving.

Well known is the following

1.2.6. Lemma. (Schur) A matrix method A = (A") limits all
bounded sequences if and only if A is convergence zero-preserving
and the following condition holds:

lim ) " |A" — Ai| = 0.
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Moreover, if Ty, C D(A), then

limY APa' =Y Aia' foreach z €T

Applying this lemma we obtain

1.2.7. Theorem. An SM-method A = (al*) limits all bounded
sequences if and only if so are all A® and A’, that is, the following
conditions hold:

(1) lime T Jo?* —af| =0 (=12, );

(2) lim, Y ; |a? — ai| = 0.
Moreover, if Ty, C D(A), then

(iii) limplime Y, aP* 2! = ¥, ai 2’ for each z € T.

This theorem implies that if a zero-regular SM-method A limits
all bounded sequences, then each such sequence is A-limitable to 0.
In particular, does not exist a regular SM-method which limits all
bounded sequences.

Similarly as for Corollary 1.2.5, from Lemma 1.1.1 and Theorem
1.2.7 it follows

1.2.8. Corollary. (see [8], Theorem II1.3) Let A = (A") and © =
(67,) be matrices. Then the IPM-method ©[A] limits all bounded
sequences if and only if conditions (1.2)\)-(1.26) and the following
ones hold:

(1) lime 55, 05 AP =0 (n=1,2,...);
(2) limn 55, S 6 A7 = 7| = 0.
Moreover, if Ty, C D(O[A]), then
(iii) limg Y., 07 (Zl Am x‘) =3 z* for each z € Ty,

1.3. Strong regularity.

Recall that a matrix A = (A") is said to be translative in case
limg, ¥ (/\}" - /\}’il) z' = 0 for all z € Ty, which by Lemma 1.2.6 is
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equivalent to the fact that
li"rlnz | = Am,| =0.
t

We need the following well-known

1.3.1. Lemma. Let A = (\") be a convergence zero-preserving
(preserving) matrix method. Then A is almost convergence zero-
preserving (preserving) if and only if the matrix A® = (A]* — Ai) is
translative. Moreover, the following statements hold:
(1) lim,, ¥2; A2t = ¥, Az for each @ € Tyeo provided that A
is almost convergence zero-preserving;
(2) limy, 3, AP ' = (/\ -3 /\,') 43 i z* for each z € T,
provided that A is almost convergence preserving.

Applying this lemma we get

1.3.2. Theorem. Let A = (al’*) be a convergence zero-preserving
(preserving) SM-method. Then A is almost convergence zero-pre-
serving (preserving) if and only if all A™ and A are translative.
Moreover, the following statements hold:
(1) lim, limg Y, kgt = A a; ' for each € T,y provided
that A is almost convergence zero-preserving;
(2) lim, limg 3, aP*2' = (=%, ai) 2*+ Y, a; 2 foreachz €
T.. provided that A is almost convergence preserving.

This theorem immediately implies

1.3.3. Corollary. An SM-method is strongly zero-regular (regular)
if and only if it is zero-regular (regular) and almost convergence zero-
preserving (preserving).

An SM-method A = (a;"‘) is called translative if

li'rlnliinz (a?k - a?_fl) z'=0 for z €T

By Lemma 1.2.6, we conclude that a convergence zero-preserving SM-
method A is translative if and only if all A"® and A" are translative.
Hence and from Theorem 1.3.2 we get the following corollaries.
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1.3.4. Corollary. Let A be a convergence zero-preserving (pre-
serving) SM-method. Then A is almost convergence zero-preserving
(preserving) if and only if A° is translative.

1.3.5. Corollary. Let A be a convergence zero-preserving (preserv-
ing) SM-method. Then A is strongly zero-regular (regular) if and
only if it is translative (translative and regular). In particular, a
zero-regular (regular) SM-method is strongly zero-regular (regular) if
and only if it is translative.

Let A = (A") and © = (67,) be matrices. The IPM-method ©[A]
is called translative if so is the method O#A. It follows that ©[A] is
translative if and only if the following conditions hold:

(1.3X)
yopraan, e fm=1,2,..),
(1.36) :
li’rcn; i::k 0% (AT = A= =0 (w=1.2..4),
(1.37)
li}lnz N O Ar=an.) =D

Clearly, if ©[A] is convergence zero-preserving, then it is translative

if and only if conditions (1.36) and (1.37) hold. From this and the
definition of IPM-method we get

1.3.6. Proposition. Let A and © be matrices. If A is translative
and if © is zero-regular, then the IPM-method O[A] is translative. In
particular, if A is almost convergence zero-preserving (preserving) and
if © is zero-regular and convergence preserving, then O[A] is almost
convergence zero-preserving (preserving). Moreover, if A is strongly
zero-regular (regular) and if © is zero-regular (regular), then ©[A] is
strongly zero-regular (regular).
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If condition (1.2)) holds, we adopt the following one:

(1.39%) 1@2 > on (AP —Amy) — %+ Yiga | =0.
m

i

It is easily seen that if ©[A] is convergence zero-preserving, then the
SM-method (©#A)° is translative if and only if conditions (1.36) and
(1.3y%) hold. From this, Theorem 1.3.2 and Corollary 1.3.4 we obtain

1.3.7. Corollary. Let A = (A]") and © = (87,) be matrices. Sup-
pose that the IPM-method ©[A] is convergence zero-preserving (pre-
serving). Then ©[A] is almost convergence zero-preserving (preserv-
ing) if and only if the SM-method (O#A)° is translative, that is, if
conditions (1.30) and (1.3y*) hold. Moreover, the following state-
ments hold:
(1) limn 3o @2(F " Ata) = N on a' for each x € Ty pro-
vided that O[A] is almost convergence zero-preserving;
(2) im, 3, Op (3 Al 2:) = (V-2 1) a* + 3, via® for
each x € T,. provided that ©[A] is almost convergence pre-
serving.

Wiodarski ([8], p.351) gave an example of matrices A and © such
that the IPM-method ©[A] is regular, D(O[A]) = D¥(O[A]) and O[A]
is not equivalent to the standard convergence. On the other hand,
the Mazur-Orlicz Theorem (see [4], Theorem 7) says that if a regular
matrix method limits some bounded divergent sequence, then it limits
some unbounded sequence. It turns out that this theorem has an
analogue for almost convergence zero-preserving SM-methods.

1.3.8. Theorem. Every almost convergence zero-preserving SM-
method limits some unbounded sequence.

The last theorem implies

1.3.9. Corollary. There is no SM-method equivalent to the almost
convergence.

The well-known Lorentz Theorem says that there is no matrix
method b-equivalent to the almost convergence. One may ask whether
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there exists an SM-method b-equivalent to the almost convergence.
A negative answer to this question will be given in Section 2.5.

1.4. Structure of SM-methods.

By an SM'-method we shall mean an SM-method A such that
each A" is a convergence zero-preserving matrix method. For ev-
ery SM'-method A the matrix method A is defined, which means
that there exist limits: af = limga?* (n =1,2,...; k = 1,2,...)
and )7, |a}'| < oo (n=1,2,...). Note that if A is an SM'-method,
then A is convergence zero-preserving (zero-regular) if and only if so
is A". Clearly, in this case A is consistent with A" over T.

Let § CT. An SM-method A is said to be decomposable over S if
it is an SM'-method and if § C D~(A4) N D~(A’), i.e. the following
decompositions hold:

A™(z) = A™(z)+ A™(z) for z€S (n=12,... %

It is seen that every SM'-method A is decomposable over D*(A). We
say that A is decomposable if it is decomposable over D(A).

An SM-method A is called reducible over S if there is an SM-
representation of A which is decomposable over S. We say that A is
reducible if it is reducible over D(A); otherwise A is called irreducible.
It is easy to give examples of reducible SM-methods but the existence
of irreducible SM-methods will be explained in Section 3.5.

A convergence zero-preserving matrix method A = (A™) is said
to be decomposable over S if S C D(A) N D(A’), i.e. the following
decomposition holds:

A(z)=A(z)+ A (z) for z €S,

where A? = (/\}" = /\i) and A" = ()\;). Moreover, A is said to be
decomposable if it is decomposable over D(A). Clearly, A is decom-
posable if and only if D(A) C D(A"). It is seen that A is decomposable
(over S) if and only if so is the SM-method (A). Notice however that
every SM-method equivalent to a matrix method A = (A™) satisfy-
ing ¥;|A"| < oo is reducible. Indeed, observe that such a method is



ON SUMMABILITY METHODS 79

equivalent to the SM'-method A! which is obviously decomposable
over D(A).

An SM-method is said to be absolutely reducible if every SM-
representation of it is decomposable. By an easy verification we get

1.4.1. Proposition. An SM-method A is absolutely reducible if
and only if each matrix method © such that D(A) C D(0) is decom-
posable over D(A).

Observe that every convergence zero-preserving SM-method A
such that D(A) = Db(A) is absolutely reducible. This property is
also a consequence of the more general

1.4.2. Proposition. If A is a convergence zero-preserving SM-
method such that D(A) is closed under multiplication by sequences
converging to zero, then A is absolutely reducible.

An SM-method A is said to be quasi decomposable if there ex-
ists a subsequence (A™V) of (A") defining the SM-method which
is equivalent to A and decomposable. If A is not quasi decompos-
able, we call it indecomposable. Clearly, every SM-representation of
an irreducible SM-method is indecomposable. An indecomposable
SM-method A is said to be strongly indecomposable if there does not
exist a subsequence (A™") of (A") such that the SM-method (A4"(")
is decomposable. It is easy to prove

1.4.3. Proposition. A reducible SM-method A has a strongly in-
decomposable SM-representation if and only if it is not absolutely
reducible.

An SM-method A is said to be free if it is an SM'-method such
that A is the zero matrix, that is, each A" is zero-regular. Obviously,
every free SM-method is zero-regular. By a semi-simple SM-method
we shall mean a free SM-method A such that each A™ is regular. We
say that A is simple if it is semi-simple and A' D A2 D ... D A" D

It turns out that one can construct semi-simple SM-methods
which are not b-equivalent to any simple SM-methods, and so, they
are not b-equivalent to any matrix methods.

By an easy verification we get
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1.4.4. Proposition. Every free regular SM-method has a semi-
simple SM-representation.

One can prove

1.4.5. Theorem. If A is a free SM-method and © is a zero-regular
matrix method such that D(A) C D(©), then there exists a decom-
posable SM-method C' such that C ~ A and C" = ©,

This theorem immediately implies

1.4.6. Corollary. If A and © are zero-regular matrix methods such
that D(A) C D(O), then there exists a decomposable SM-method C
such that C ~ A and C' = 0.

Applying Theorem 1.4.5 it is easy to prove

1.4.7. Corollary. If A is a free SM-method and A is a zero-regular
matrix method such that D(A) C D(A), then there exist matrices A
and © such that O[A] ~ A and OA = A.

1.5. Bounded convergence fields.

Recall that T} denotes the complex Banach space of all bounded
sequences under the coordinatewise operations and the norm defined
by ||z|| = sup, |¢"|. We say that a matrix (matrix method) A is
Ty-continuous if Ty C D~(A), A~(Ty) C Tp and the transformation
A~(-) restricted to T} is continuous under the uniform topology on
Ty. Clearly, if A is Tj-continuous, then D*(A) and DE(A) are Banach
subspaces of T.

Adopt the following notations:

T? = {z € T* : the imit limli{n z"* exists};
5 ok

T? = {x € T? : the limit lim liin ™% =0 exists};
n
T ={zeT?: supsupl:zr"k| < oo};
n k
Ty, =Ty VT2



ON SUMMABILITY METHODS 81

We shall regard T}? as a complex Banach space under the coordinate-
wise operations and the norm defined by

lell = supsup a"*],
n k

which determines the uniform topology on T2. Clearly, T2, and T2,
are non-separable Banach subspaces of T?. A (1,2)-indexed ma-
trix (SM-method) A is said to be Tj-continuous if T, C D~(A),
A~(Ty) C T? and A~(-) restricted to T} is continuous under the uni-
form topologies on T, and T?. It turns out that if an SM-method A
is Tj-continuous, then D'(A) = A~~(T2) and DY(A) = A~~1(TZ,),
which implies that D*(A) and D}(A) are Banach subspaces of T} (see
Theorem 1.5.2 and Corollary 1.5.3).
Well-known is the following

1.5.1. Lemma. (see 5], Theorem 1.3.2) A matrix A = (A) trans-
forms T}, into itself if and only if the following condition holds:

(1.51) sup Z [AT*] < oo.

Note that if a matrix A = (A") satisfies condition (1.5)), then it
is Tp-continuous. In particular, if A is convergence Zero-preserving,
then condition (1.5 is fulfilled, and so, D*(A) and D!(A) are Banach
subspaces of Tj. Give attention that an analogous property for SM-
methods does not satisfy (see Theorem 1.5.6).

We introduce the following conditions:

1.5 gt ;

(1.5a) sgps:pzi: laz ’ < o0

(1.5b) s:pzi: |laf*| < 00,1 (n=1,2,:.. )
1.5 li i :

(1.5¢) sgp 1mksupZ la, l < 00

One can prove
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1.5.2. Theorem. Let A = (a*) be a (1,2)-indexed matrix. Then
the following statements are equivalent:

(a) A transforms Ty into T};

(b) A satisfies condition (1.5a);

(¢) A is Ty-continuous.

This theorem immediately implies

1.5.3. Corollary. If a matrix A = (af‘k) satisfies condition (1.5a),

then D (A) and D} (A) are Banach subspaces of T}.
It is easy to prove

1.5.4. Lemma. If A = (a*) is an SM-method satisfying condi-
tions (1.5b) and (1.5c), then it is b-equivalent to some SM-method
satisfying condition (1.5a).

From this lemma and Corollary 1.5.3 we get

1.5.5. Corollary. If A = (a}"‘) is an SM-method satisfying condi-
tions (1.5b) and (1.5¢), then D* (A) and DY} (A) are Banach subspaces
Of Tb.

Note that a (1,2)-indexed matrix A satisfying conditions (1.5b) and
(1.5¢) transforms T} into T but it need not transform some sequences
from T}, into T, even if A is a regular SM-method (compare Corollary
1.2.3).

The following theorem means that in general the bounded conver-
gence field of a regular SM-method cannot be investigated by using
Banach space theory.

1.5.6. Theorem. There are regular SM-methods such that the sets
Db (A) and D} (A) are non-separable and non-complete subspaces of
Ty, and so, they are not Banach spaces.

Since bounded convergence field of every regular matrix method
is a Banach space, it follows that a regular SM-method satisfying

Theorem 1.5.6 is not b-equivalent to any regular matrix method.
Let A = (A") and © = (67,) be matrices such that

su M <00 and su o= 1 <o,
w3 I 03I
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It follows from Lemma 1.5.1 that A and © are Tj-continuous. This
implies that the iteration product ©[A] is T}-continuous too, and so,
D*(O[A]) and D§(O[A]) are Banach subspaces of Tj. The same result
we get by applying Theorem 1.5.2 to the SM-method ©#A which is
b-equivalent to the IPM-method O[A]. On the other hand, applying
Corollary 1.5.5 to the SM-method ©#A one has

1.5.7. Corollary. If A = (A]") and © = (87,) are matrices satisfy-
ing conditions (1.20), (1.2y) and the following one:

Z ge' Nm

then D*(O[A]) and DY(O[A]) are Banach subspaces of Tj.

sup lim sup Z

ki O PR

2. PERFECTNESS FOR BOUNDED CONVERGENCE FIELDS

2.1. Equivalence of b-perfectness in the classes M? and M.

As we know from Chapter 0, for any method 4 € R—%(M) we
have DP¥(A; M?) C DP¥(A). It turns out that applying Lemma 0.1
and the fact that every SM'-method is decomposable over D (A)
(Sectionl.4) one can prove

2.1.1. Theorem. For any A € R“*(M),
DPY (4; M?) = DPP (A).
This theorem implies

2.1.2. Corollary. If A € R~ M), then the following statements
hold:
(1) A is b-perfect in M? if and only if it is b-perfect in M;
(2) A is b-perfectly inconsistent in M? if and only if it is b-
perfectly inconsistent in M.

It turns out that statement (1) of Corollary 2.1.2 can be proved in
the following stronger form



84 B. PRZYBYLSKI

2.1.3. Proposition. Let A be an arbitrary regular method. Then
A is b-perfect in M? if and only if it is b-perfect in M. In particular,
every b-perfect method in M? has a b-majorant in M.

We need the well-known

2.1.4. Lemma. (see (2] and [3]) Every regular matrix method is
b-perfect in M.

From this lemma and Corollary 2.1.2 we get

2.1.5. Corollary. Every regular matrix method is b-perfect in M?.
A regular matrix method is b-perfectly inconsistent in M? if and only
if it is b-equivalent to the standard convergence.

2. D’-majorants of regular SM-methods in the class M.

Let A € M?. Since A is decomposable over its bounded conver-
gence field, we conclude that for any n such that y(A™) # 0 the
method x(A")_lA"O is a D’-majorant of A in M. Thus, a necessary
condition for A that it has no D’-majorant in M is that x(A") = 0
for all n, however, this condition is not sufficient. For example, if B
is a regular matrix method, then we have B! € M? and y(B1") =0
for all n but BT ~ B € M.

We shall regard the set T}, as a complex algebra under the coordi-
natewise operations. One can prove

2.2.1. Lemma. There exist a method A € M? and z, € D"(A)
such that the following conditions hold:

(1) x¢ is an invertible element of the algebra T, and A(zy) = 1;
(i) A has a D*-majorant in M;
(iii) if B is a D*-majorant of A in M., then B(zy) = 0.

Applying this lemma (condition (ii) may be omitted) one can show

2.2.2. Theorem. There exists a method A € M? which has no
Db-majorant in M.

Clearly, every method satisfying Theorem 2.2.2 has no b-majorant,
D-majorant and majorant in M, simultaneously. In particular, from
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Proposition 2.1.3 it follows that such a method is not b-perfect in
M?2,

2.3. Perfect part of bounded convergence field.

A set S C T is said to be a bounded Toeplitz field if there is a
matrix method A such that D?(A) = S. One can prove

2.3.1. Theorem. Every regular SM-method has a greatest b-mino-
rant in M, which means that M~*(A) # 0 for A € M?. Moreover,
if A € M~%(A), then DP*(A) = D¥(A), and so, DP*(A) is a bounded
Toeplitz field.

Applying this theorem and Lemma 2.1.4 we get the following corol-
laries.

2.3.2. Corollary. Let A = (A™) be a regular SM-method defined
by a sequence A',A%..., of regular matrix methods. Then

MT(A4) = M7YAT, A% ).

2.3.3. Corollary. For every finite or countable family A*, A%, ... of
regular SM-methods, there exists a greatest b-minorant in class M.
Moreover, if A € M~Y(A?) fori = 1,2,..., then

MY(AY, A2,...) = MY (AL A2, ..).

In paper [6], by using a special construction, it is proved the ex-
istence of some increasing sequence of regular matrix methods that
has no b-majorant in class M?. On the other hand, one can show
that Theorem 2.3.1 implies

2.3.4. Corollary. If A' ¢ A? C ... is an increasing sequence
of regular matrix methods such that M™YA', A% ...) = 0, then
M2YAL A2 0. =0

The assumption of this corollary can be fulfilled since Brudno (see
[2], Theorem 1 and the proof of Theorem 9) proved the existence of
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an increasing sequence A; C Ay C ... of regular matrix methods
such that there is no matrix method I' satisfying A; Cj I" for all 2.
Thus, for such a sequence there is no SM-method A or equivalently
iteration product ©[A] of matrix transformations such that A; C; A
or A; Cp O[A] ( = 1,2,...). The latter observation for O[A] is
exactly the main result proved in [6] (see Proposition 4.1) by apply-
ing some special considerations which are completely independent of
those presented here.

As one knows if A € M, then D*(A) = T. or D*(A) is a non-
separable Banach subspace of T} (compare [4], Theorem 8). Thus,
from Theorem 2.3.1 we get

2.3.5. Corollary. If A € M?, then D**(A) = T. or DP*(A) is a
non-separable Banach subspace of Ty

4. b-perfectly inconsistent SM-methods.

It is know (see [4], Theorem 10) that a regular matrix method is
perfectly inconsistent if and only if every sequence limitable by it is
convergent or unbounded. This property is not valid for regular SM-
methods because there are regular SM-methods which limit some
divergent sequences but no unbounded sequences. Moreover, such
methods can be inconsistent and b-inconsistent, simultaneously. More
precisely, one can prove

2.4.1. Proposition. If A is a free regular SM-method limiting only
bounded sequences, then A is inconsistent and b-inconsistent, simul-
taneously.

It is easy to show that there are regular SM-methods A not b-
equivalent to the standard convergence for which D*( A) are separable
subspaces of Tj. Hence and from Corollary 2.3.5 it follows that any
such method is b-perfectly inconsistent. On the other hand, one can
prove the following theorems.

2.4.2. Theorem. There exists a method A € M? such that Db(A)
is a non-separable Banach subspace of Ty and DP*(A) = T..
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2.4.3. Theorem. There exists a method A € M*such that D(A)
is a non-separable and non-complete subspace of Ty, and DP*(A) = T..

2.5. Characterization of b-perfect SM-methods.

Applying Theorem 2.3.1 and Lemma 2.1.4 one can prove

2.5.1. Proposition. Let A € M?. Then the following conditions
are equivalent:

(a) A has a least D*-majorant in M;
(b) A is b-perfect;
(¢) A is b-equivalent to a matrix method.

As we know from the end of Section 1.3, there does not exist a
matrix method b-equivalent to the almost convergence (the Lorentz
Theorem). Hence and from Proposition 2.5.1, Corollary 1.3.3 and
Theorem 2.1.1 we get

2.5.2. Corollary. There is no regular SM-method b-equivalent to
the almost convergence.

If A € M?, then by Lemma 0.1 we have DPb(A) C DPY(A). It
turns out that this inclusion can be proper. Namely, Lemma 2.2.1
immediately implies ‘

2.5.3. Theorem. There exists a method A € M? such that DP*(A)
C DY (A).

One can prove

2.5.4. Theorem. A regular SM-method A is b-perfect if and only
if DY(A) = DR (A).

Clearly, the last theorem implies

2.5.5. Corollary. A regular SM-method is not b-perfect if and
only if there exists a method B € M such that D*(A) C D*(B) and
B(zg) # 0 for some zy € D*(A).
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2.6. Quasi b-order for SM-methods and matrix methods.

Applying Proposition 2.5.1 and Corollary 2.5.5 one can prove

2.6.1. Theorem. Let A and B be regular SM-methods such that
A Cy B and DP*(A) C DPY(B). Then there exists a regular SM-
method C such that A C, C C, B, DP*(A) C DP*(C) C DP*(B) and
C' is not b-equivalent to any matrix method.

It is easy to show that under the assumptions of this theorem one
can find A and B such that there is no regular matrix method A
satisfying A Cy A CyB. Clearly, Theorem 2.6.1 implies

2.6.2. Corollary. Let A and © are regular matrix method such
that A Cy ©. Then there exists a regular SM-method C' such that
A Cy C Cy © and C is not b-equivalent to any matrix method.

The following theorem is well know (see [5], Theorem 4.3.3).

2.6.3. Theorem. If (A,) is a sequence of regular matrix methods
such that Apy1 Cp A, for all n, then there exists o € Ty\T. such
that z¢ € ’Db(An) for all n.

On the other hand, one can prove

2.6.4. Theorem. There exists a sequence (Ay) of regular SM-
methods satisfying the following conditions:

(i) An41 Cp Ap for all n,

(o ]

(1) N =T
n=1
3. PERFECTNESS FOR FULL CONVERGENCE FIELDS

3.1. Topology for full convergence fields.

Let A = (A") be a matrix method. Following Mazur and Orlicz
(4] we shall regard D(A) to be a By-space, i.e. a separable complete
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metrizable locally convex space, under the coordinatewise operations
and the topology defined by the following system of pseudonorms:

e} = |a?| - (imity 2.0
k

BT gt

=1
|lz]|* = sup E |/\?‘$il.
m :
1]

It is known that D(A) is an Fk-space, which means that it is a Fréchet
space such that the condition z,, — 2, in D(A) involves zi, — z for
each 1.

Let A and © be matrix methods. From the closed-graph Theorem
and since D(A) and D(O) are Fk-spaces, it follows that the inclusion
map i : D(A) < D(O) is continuous. This implies that for any
A € M we have clp T. C DP(A; M) where cly T. denotes the closure
of T in the topology of D(A). On the other hand, since for A,© € M
we have A C O provided that A C 0, it follows from Lemma 2.1.4
that Db(A) C DP(A; M). More generally, it is known that gl =
DP(A; M) (see [4], Theorem 4 and [9], Theorem 6.3), which implies
that cly D*(A) = DP(A; M).

Given an SM-method A = (a*), in the linear space D(A) we
introduce a locally convex topology defined by the following system
of pseudonorms:

Jzlly =2 =02k

lzll7e = sup Y af*at
m

1=1

lell2, = sup (m=1,2,...)

(n= 1,2, .0 ke 100 Sk

Helld = Sl;P Za?k 2] (n=1,2i..);

[

lz]|* = sup lilrcn E i
n o
1

We shall regard Dy(A) as a topological linear subspace of D(A).
Clearly, D(A) and Dy(A) are By-spaces and separable Fk-spaces.
Analogously as for matrices, we get
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3.1.1. Lemma. Let A and B be SM-methods such that D(A) C
D(B). Then the inclusion map i : D(A) < D(B) is continuous.

Note that if A is a matrix method, then the topology of D(AT)
(D(AT) = D(A)) coincides with that of D(A).

Let now A = (A") and © = (8") be matrices. Since the meth-
ods O[A] and O#A are equivalent by Proposition 1.1.3, we have
D(O[A]) = D(O#A) and the locally convex topology in D(O[A]) is
defined to be such topology in D(O#A), which means that it is given
by the following system of pseudonorms:

el =l=*] G=12,...)
l

lzli7 = sup | Y AP o

l
l
n m _t
Baec¥ Al
=1

2N s
Y e
L )

Lo ER I
ngz\ix

13

e W S

2|5k = sup (n=1,2,...; k=1,2,...);

ll|l7 = sup
k

1
m
T
Jall® = sup |3
n

If Ais an SM-method, then by a linear functional f on D(A)
we shall mean an algebraically C-linear functional f : D(4) — C
continuous in the topology of D(A). Applying the general form of
such a functional one can prove

(= Ay 2

=1
k
=
k
n=
m

3.1.2. Lemma. Let A be u convergence zero-preserving SM-method.
If f is a linear functional on D(A), then the following decomposition
holds:

]
(DI) i) = Z aie' + 33 B A (2) + 3 ym A™(2) + 6 A(x)

n=1 k n

where Y, lai| < 00, 3, |Bnk| < 00 (n =1,2,...,1) and b e
Moreover, there exists an SM-method B such that D(A) C D(B) and
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B(:)|D(A) = f. Remark that such a method B can be defined by the
method A and the coefficients from decomposition (D1).

It turns out that if we omit the assumption of this lemma that A
is convergence zero-preserving, then in general a linear functional on
D(A) may be only expressed in a form much more complicated than
(D1). Clearly, we can reformulate Lemma 3.1.2 for an IPM-method
O[A] where © = (0) and A = (A"). In this case decomposition
(D1) takes the following form:

l
f(z) =Za;mi+zz by o), Zz\;":v"

(D2) i n=1 m i

+ ca D O D Al +dlimy 6 Y Ara
n m i m i

where 3. lai| < oo, T, [0 —b*!| < o0 (n = 1,2,..,1) and
Y. len] < oo. In particular, by putting © to be the identity matrix
we get the following well-known decomposition of a linear functional

f on D(A) (see [9], Theorem 5.2):

(D3) f(z) = Z aiz' + ) ba A™(z) + cA(z)

where ). |a;| < 00, Y, |ba] < 00. One can see that for a matrix A,
by putting A to be the identity matrix in (D2) or by putting A in
(D1) instead of A, we also get an analogous decomposition to (D3). In
this case the assumption that the methods © and A are convergence
zero-preserving plays an essential role.

3.2. Perfectness in the classes M? and M.

Let A be an SM-method. If S C D(A), then by cl4 S will be
denoted the closure of S in the topology of D(A). One can see that
Lemmas 3.1.1 and 3.1.2 imply

3.2.1. Lemma. Let A be a convergence zero-preserving SM-method
and let S be a linear subspace of D(A). Then x € cla S if and only if
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for any SM-method B such that D(A) C D(B) and B(:)|S| = A()|S]
we have B(z) = A(z).
This lemma immediately implies
3.2.2. Theorem. If A € M?, then DP(A; M?) = clu T..

Since for any matrix method A we have D?(A) = clp T, this the-
orem implies the following corollaries.

3.2.3. Corollary. If A € M, then DP(A; M?) = DP(A).

3.2.4. Corollary. Let A € M. Then A is perfect in M? if and only
of it 18 perfect in M.

One can prove

3.2.5. Lemma. Let Ay D Ay D ... be a decreasing sequence of
perfect reqular matriz methods. Then the SM-method (An) s perfect
in M2,

From this lemma and some other considerations one can derive

3.2.6. Theorem. There exists a simple reqular SM-method which
is perfect in M? but is not equivalent to any matriz method.

This is the first fact indicating a difference between the perfectness
and the b-perfectness for SM-methods (compare Proposition 2.5.1 and
Corollary 2.1.2).

3.3. Iteration products of regular matrix transformations.

If A is a regular matrix method, we set

R(A) = {A™(z) : z € D”(A)} and
RP(A) = {A™(z) : = € DP(A)}.

One can prove

3.3.1. Theorem. Let A and © be regular matriz methods satisfying
the following conditions:

(1) R(A)ND(O) is a closed subspace of D(O);

(ii) if x € D~(A) and A~(z) € RP(A), then = € DP(A).
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Then DP(O[A]; M?) = {x € D(O[A]) : A~(z) € cle RP(A)}.
This theorem implies the following corollaries. |

3.3.2.  Corollary. Let A and © be reqular matriz methods. If
R(A) =T and © 1is non-perfect, then O[A] is non-perfect in M2,

3.3.3. Corollary. If A and © are perfect regular matriz methods
such that R(A) = T, then O[A] is perfect in M?2.

It is seen that if A, ®; and ©, are matrix methods such that
0 =~ Oy, then @1[1\] 0,[A]. In particular, ©[A] is perfect in M?
if and only if so is ©,[A]. It turns out that if A;, Asand © are matrix
methods such that A; ~ A, then the methods ©[A;] and ©[A;] may

be not equivalent in general. More precisely, we have

3.3.4. Theorem. There ezist matriz methods A, Ay, ©® € M with
finite (infinite) rows satisfying the following conditions:
(1) Ay, Ay and © are perfect;
(ll) Al —~ Ag,‘
(iii) ©[A4] 1s perfect in M?;
(iv) ©[Az] is non-perfect in M2,

Since the methods ©[A] and OA are equivalent provided that ©
has finite rows (Proposition 1.1.5), Theorem 3.3.4 implies

3.3.5. Corollary. There exist matriz methods A, © € M with finite
rows such that the methods A and © are perfect but the method A©O

18 non-perfect.
One can prove

3.3.6. Theorem. There ezist matriz methods Ay, Ay, © € M with
finite (infinite) rows satisfying the following conditions:

(i) Al, Ay and © are non-perfect;
( ) Mg
(iii) @[Al] is perfect in M?;
(iv) ©[A2] is non-perfect in M2,

Clearly, this theorem implies
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3.3.7. Corollary. There exist matrices A, © € M with finite rows
such that the methods A and © are non-perfect but the method A© is
perfect.

3.4. Reducible methods.

We shall denote by M? the class of all reducible regular SM-
methods. If S C T, then by M?(S) will be denoted the class of all
regular SM-methods which are reducible over S. Since every method
from M? has a decomposable SM-representation, we may expect that
properties of such methods which are connected with the perfectness
should be analogous to those of methods from M? which are con-
nected with the b-perfectness.

One can prove (compare Theorem 2.1.1)

3.4.1. Theorem. For any A € R~ (M),
DP(A; M%(D(A))) = DP(4; M?) = DP(A).

This theorem implies

3.4.2. Corollary. If A € R~ (M), then the following statements
hold:

(1) A 1is perfect in M2 if and only if it is perfect in M;
(2) A 1is perfectly inconsistent in M? if and only if it is perfectly
inconsistent in M.

Applying decomposition (D1) from Section 3.1 one has

3.4.2. Lemma. If A€ M? B € M? and D(A) C D(B), then there
ezists a method C € M?(D(A)) such that D(A) C D(C) and both B
and C are consistent over D(A).

This lemma immediately implies

3.4.3. Corollary. For any A € M2,
DP(A; M?) = DP(4; M?).

Clearly, from Theorem 3.4.1 and Corollary 3.4.3 we get
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3.4.4. Corollary. Let A € M?~(M). Then the following condi-
tions are equivalent:

(a) A is perfect in M?;

(b) A is perfect in M?%(D(A));

(c) A s perfect in M?;

(d) A is perfect in M.

Denote by M: the class of all regular SM-methods which have
simple SM-representations perfect in M?. It follows from Theorem
3.2.6 that a method from M3 need not be equivalent to any matrix
method. A set S C T is said to be a perfect simple field if there exists
A € M? such that D(A) = S.

One can prove

3.4.5. Theorem. If A € M?%, then DP(A; M?) is a perfect simple
field.

Clearly, this theorem and Corollary 3.4.3 imply

3.4.6. Corollary. M? is ezactly the class of all reducible regular
SM-methods perfect in M? or equivalently in M?2,

We shall regard the set T' as a complex algebra under the coordi-
natewise operations. Analogously as Lemma 2.2.1 one can prove

3.4.7. Lemma. There exist a method A € M? and zo € D(A) such
that the following conditions hold:

(i) o 18 an invertible element of the algebra T and A(xy) = 1;
(i1)) A has a D-majorant in M;
(ii1) of B is a D-magorant of A in M., then B(xy) = 0.

This lemma implies the following theorems.

3.4.8. Theorem. There ezists a method A € M2 which has no
D-majorant in M.

3.4.9. Theorem. There exists a method A € M2~ (M) such that
DP(A) C Dy(A).
It is seen that every method A satisfying the latter theorem cannot

be equivalent to any matrix method.
Analogously as Theorem 2.5.4 one can prove



96 B. PRZYBYLSKI

3.4.10. Theorem. Let A € M2~ (M). Then A is perfect in M? if
and only if D(A) = DI(A).

This theorem immediately implies

3.4.11. Corollary. A method A € M*~(M) is non-perfect in M
iof and only if there exists a D-magorant B of A in M, such that
B(zo) # 0 for some xy € D(A).

3.5. Irreducible methods.

This section contains some existence results on irreducible methods
with respect to the perfectness. These results can be proved by using
special constructions. We present their list in which corollaries follow
from the preceding theorems.

3.5.1. Theorem. There exists an irreducible method from M? which
is perfect in M?* and has no D-majorant in M.

3.5.2. Corollary. There ezists an irreducible method from M?*
which 18 perfect in M? and has no D-majorant in M;‘,.

3.5.3. Theorem. There ezists an irreducible method from M? which
is non-perfect in M? and has no D-majorant in M2,

3.5.4. Corollary. There ezists an irreducible method from M?
which 1s perfect (non-perfect) in M? such that every its SM-repre-
sentation 13 strongly indecomposable.

3.5.5. Theorem. There exists an irreducible method from M? which
i perfect in the classes M? and M.

3.5.6. Theorem. There ezists an irreducible method from M? which
has a majorant in M and is non-perfect in the classes M? and M.

3.5.7. Theorem. There exists an irreducible method from M? which
is non-perfect in M? but is perfect in M.
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Bronistaw Przybylsk:

O METODACH SUMOWALNOSCI OKRESLONYCH
PRZEZ CIAGOWE METODY MACIERZOWE
ORAZ OKRESLONYCH PRZEZ ZLOZENIE
PRZEKSZTALCEN MACIERZOWYCH

Praca jest streszczeniem opartym glownie na mojej pracy doktor-

skiej z uwzglednieniem pewnych modyfikacji i uzupelnienn . Na po-
czatku, po oméwieniu ogdlnego pojecia metody w sensie teorii sumo-
walnoéci, wprowadzono pojecie ciagowej metody macierzowej (se-
quential matrix method, SM-method). Dalej, zwrécono uwage na
rownowaznosé takich metod z dobrze znanymi metodami okreslonymi
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przez ztozenie przeksztalcen macierzowych, ktéra pozwala badaé te
ostatnie metody przez sprowadzenie ich do ciggowych metod macie-
rzowych. W szczegdlnoéci, dotyczy to wlasnosci metod zwigzanych z
regularnoscig i prawie regularnoécia (Paragrafy 1.2 i 1.3) oraz zwia-
zanych z opisem topologii w pelnym polu metody (Paragraf 3.1).
Celem gléwnym pracy jest przedstawienie wynikéw w zakresie b-
doskonalosci i doskonatosci regularnych ciagowych metod macierzo-
wych (Rozdzialy 21 3) z zastosowaniem do opisu odpowiednich wlas-
nosci metod okreslonych przez ztozenie przeksztalcen macierzowych.
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