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We introduce sequential matrix methods, called shortly SM-rne- 
thods, and show that they are equivalent to the well-known methods 
defined by iteration products of matrix transformations, being rather 
more complicated for investigations than SM-methods. Our main 
goal is to present result on the b-perfectness and the perfectness 
of regular SM-methods which can frequently be reformulated for 
iteration products of matrix transformations.
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0 .  P r e l i m i n a r i e s

This paper is meant as a summary based mainly on doctoral thesis
[7] and takes into account some modifications and supplements. We 
first introduce sequential matrix methods, called shortly SM-methods 
and consider these methods and those defined by the iteration prod-
ucts of matrix transformations [8], called IPM-methods as well. It 
turns out that the latter ones are equivalent to some SM-methods, 
and vice versa (Section 1.1). This implies that both the kinds of 
methods have global properties in common, that is, properties de-
pending only on limit functionals. In general, the investigation of 
IPM-methods is rather more complicated than that of SM-methods. 
Therefore, many global properties of IPM-methods can be drawn 
from those of SM-methods.



We pay attention to the assignment which sends every IPM-me- 
thod 0[A] to the equivalent SM-method 0 # A . This assignment al-
lows us to transfer the global properties of IPM-methods formulated 
in terms of their defining matrices to those of SM-methods formu-
lated in terms of their defining (l,2)-indexed matrices. In particular, 
this concerns the regularity and the almost regularity (Sections 1.2 
and 1.3). Moreover, in this way one can describe the topology in the 
full convergence field of an IPM-method (Section 3.1).

Our main goal is to present results on the 6-perfectness and the 
perfectness of regular SM-methods (Chapters 2 and 3). These re-
sults can be reformulated for IPM-methods because the classes of 
IPM-methods and SM-methods are equivalent. From the viewpoint 
of global properties, the class M 2 of regular SM-methods can be re-
garded as that containing the class M. of regular matrix methods. 
In the case of the 6-perfectness, we obtain the result stating that 
for any A  £ M 2 the following conditions are equivalent: A  is 6- 
perfect in M 2, A  is 6-perfect, in M , and A  is 6-equivalent to a matrix 
method (Propositions 2.1.3 and 2.5.1), which implies that every ma-
trix method is 6-perfect in M 1 ■ In the case of the perfectness, we 
can distinguish the class A4f of regular reducible SM-methods which 
has properties similar to those of regular SM-methods relative to the 
6-perfectness (Corollary 3.4.4). In general, the perfectness for an SM- 
method can be investigated by using the corresponding topology in 
the full convergence field of such a method (Section 3.1). This topol-
ogy generalizes that for a matrix method (see [9]). By applying it we 
get the following characterization: a regular SM-method A  is perfect 
in M .2 if and only if the set Tc is dense in the full convergence field of 
A  (Theorem 3.2.2). In particular, any matrix method perfect in M  
is perfect in M 2. The above-mentioned results on the 6-perfectness 
and the perfectness are chosen as most characteristic among other 
ones.

In this paper we accept the following conventions unless otherwise 
stated:

Matrices arid, sequences are infinite and complex;
Linear spaces and linear maps between them, are over the field C;
All indexes i , k, I, n, m  ranges over natural numbers 1 ,2 ,. . .  ;
I f  x is a sequence, we denote by x n its n-th element, i.e. x — (x n).



Moreover, if x is convergent., we adopt x' =  lima; =  limn x n\
We shall shortly write E, instead of E£Sj. For example, the nota-

tion E íXí ( resp. E iXl) means the infinite sum (resp. E°2 ,
By 1 vrill be denoted the sequence (1 ,1 , . . .) ;
For any sets A and B  the notation A  C B  means that A is a proper 

subset of B. Moreover, we adopt that A  C B if A  C B  or A = B.
We introduce the following notations:
T  - the set. of all sequences;
Ti, - the set of all bounded sequences'
Tc - the set of all convergent sequences;
Tco - the set of all sequences converging to zero.
The set T  will be regarded as a linear space under the coordinate- 

wise operations. Clearly, the sets Tj,, Tc and Tco are linear subspaces 
of T.

In general, by a method, we shall mean an object A  together with a 
linear functional (the limit functional of A), denoted by >!(•), which is 
determined by this method, i.e. the object A , and defined on a linear 
subspace T>(A) of T  (the full convergence field of A). If x 6  T>(A), 
then by A(x) will be denoted the value of A(-) on x. Moreover, if 
A(x) — a, we say that A limits x (to a) or that x is A -it limitable (to 
a). Following [6] we introduce:

Vo (A) = { x e  V(A )  : A(x) = 0 };
V b(A) =  ’D(A) fl T(,- the bounded convergence field of A;
V q (A) =  { i £  V h(A) : A(.r) =  0}.
For any method A we define the b-lim.it functional of A  to be the 

functional A b(-) =  A(-)\Vh(A).
The general notion of a method is very useful as the basis for 

a common language for all special kinds of methods considered in 
the paper. In particular, this concerns the classical matrix methods, 
methods defined by iteration products of matrix transformations and 
SM-methods introduced here.

If A  and B  are methods such that 'D(A) C T>(B) (T)b(A) C Db(B )), 
we say that B  is a V-majora.nt (V b-mu.jorant) of A  or that A  is a D- 
minorant. (V b-minorant) of B. For any classes JC and C of methods 
we introduce the following notations:

IC^(C) = {A  e  1C : 3B e C, V (A )  C £>(£)};
K.~b(C) = { A e lC  : 3 B e C ,  V b(A) C V b(B)};



K -\C \  =  {A  € K, : \/B  € £, V (B )  C D(A)};
x ;-‘6[£] =  {a  e /c : VJ5 € £ , £>6(£ )  c  p 6(A)}-
Methods A and J5 are said to be consistent (6-consistent) over a 

set 5  C T if 5  C 2?(A) n £>(£) (5  C V h(A) Cl V b(B)) and A(-)|S =  
5 (-) |5 . Accept that if S  =  V (A )r\V (B )  (S  =  I?6(A )n P 6(B )), we can 
omit the indication of S  in this definition. If V (A ) C V (B ) (T>b(A) C 
T>b{B)) and the methods A and B  are consistent (6-consistent), we 
write A  C B  (A Cb B). In this case we say that B  is a majorant 
(b-m,ajorant) of A  or that A is a rninorant (b-minorant) of B. Clearly, 
the relation C (C b) between methods is reflexive and transitive, which 
means that it defines a quasi order, called the quasi order ( quasi 6- 
order) for methods. If K. and £  are classes of methods, we introduce 
the following notations:

K*[C) = { A e K . : \ / B e £ ,  A C  B}-
K*=h[£\ =  {A  € K : VB e  £ , A Cb B };
A:=>[£] = {A e K, : MB € C, B  C A}-,
fC ^b[£] = {A  e  1C : \/B  6  £ , B  Cb A}.
Methods A  and B  are said to be equivalent (b- equivalent) if AC. B  

and B C A (A Cb B  and B Cb A). For such methods we write A  ~  B  
(A B) and say that B  is a representation (b-representation) of A , 
and conversely. In this case if B  belongs to a class K. of methods, 
we also say that B  is a 1C-representation (JCb-representation) of A. 
Clearly, the relation ~  (~&) is an equivalence relation between meth-
ods and we have A  ~  B (A ~ b B) if and only if A(-) =  J5(-) ( ^ 6(-) =  
B b(-)). It is seen that the quasi order C (quasi 6-order Cb) induces a 
partial order for the equivalence (6-equivalence) classes of methods, 
that is, the relation C (C b) is antisymmetric up to equivalence (6- 
equivalence) of methods. For any methods A  and B  we shall write 
A C B  (A Cb B) if A C B  (A Cb B) and A  is not equivalent (6- 
equivalent) to B.

If K, and £  are classes of methods, we set
JC~[£] = /C ^ r jn /C ^  [£*=[£]];
K~b[£} = /c<=6[£] n
It is seen that £ “ [£] (A.'~6[£]) denotes the class of all greatest 

minorants (6-minorants) of £  in K which may be empty in general. 
More precisely, K~[£] (/C_6[£]) consists of all methods A  6  fC satis-



fying the following conditions:
(i) A  C B  (A Cj, B) for each B  G £;

(ii) if A' G K and A! C B  (A ' Cb B) for each B  G C, then A! C A  
{A' Cb A).

It is seen that for any A G K~[C] (A  G £ _h[£]) we have

JC~[C] = {A1 G AZ - .A '~ A }

(«-*[£]) =  {A ' €  K  : A' ~ t A}),

which means that a greatest minorant (6-minorant) of C in K is de-
fined up to equivalence (6-equivalence) of methods from 1C.

A sequence x G T  is called almost, convergent to x* if

x n +  • • • +  xn+ fc- 1
lim -------------------------=  x
k k

uniformly in n, and write Lim x =  Lim„ x n = x*. It is known 
that every almost convergent sequence is bounded (Lorentz). We 
introduce the following notations:

Tac- the set of all almost convergent sequences;
TacO - the set of all sequences almost converging to zero.
A method A  is called convergence zero-preserving (preserving) if 

Tco C V (A ) (Tc C. V (A )).  Moreover, such A  is called zero-regular 
(regular) if A(x) =  0 for x  G Tco (A(x) = limx for x G Tc). Analo-
gously we define an almost convergence zero-preserving (preserving) 
method. By a strongly zero-regular (regular) method we shall mean 
an almost convergence zero-preserving (preserving) method A  such 
that A(x) =  0 for x  G Taco (A(x)  =  Lim x  for x  G Tac).

A method A  is said to be Tco-continuous (Tc-continuous) if it is 
convergence zero-preserving (preserving) and the limit functional A(-) 
restricted to Tco (Tc) is continuous in the uniform topology. If A  is a 
Tcq-continuous method, we conclude that

A(ar) =  S iA{Xl for x G Tco,

where (A t ) is a complex sequence uniquely defined by A  such that
< oo. Moreover, if in addition A  is convergence preserving or 

equivalently 1 G 'D(A), then it is Tc-contmuous and we have

A(x) = S ,A j(x ' — x  ) +  x 'A ( \)  for x  G Tc.



Clearly, if A  is zero-regular, then Ai = 0 (i — 1 ,2 , . . . ) .  For 
any Tc-continuous method A  we define the characteristic of A  to be 
the complex number x (^ )  =  -A(l) -  S,A,. In this case we have 
A(x) =  x(A )x  +  Ei-A,#* for x G Tc. For example, note that every 
convergence zero-preserving (preserving) matrix method A =  (A'n ) 
is Tco-continuous (Tc-continuous). Moreover, we have A,- =  lirnm A-11 
(i =  1, 2,...), and A (l) =  limm S,A"‘ provided that 1 G ^(A ).

In this paper by TZ will be denoted the class of all regular methods. 
If K. is an arbitrary class of regular methods, then for any A  G TẐ ~{)C) 
(.A G 'R*~h(K.)) we define the perfect part of the full (bounded) con-
vergence field, of A relative to JC to be the set

Vr(A;JC) =  {* G V(A) : V5 G K*[A], B (x ) = A(x)} 

( W \A \K )  =  { iG  V b(A) : Vi? G IC -b[A], B (x) = A(x)})

where K,~*[A\ =  /C "[jC] (JC~*b[A] — K~~"h{C\) for £  =  {A}. Note that 
Tc C Vi'b(A -X )  C V*(A-,JC) and both V»{A\K) and V>b(A \K )  are 
linear subspaces of T.

A method A G 7^‘~(tC) (A  G /R.*~b(tC)'j is said to be perfect (b-per 
feet) m K'. i£VP(A\JC) =  V(A) (P p6(A;/C) = V b{A)). By a perfectly 
(b-perfectly) inconsistent method in K.' we shall mean a method A  G
K -()C ) (A  G n - b(fC)) such that V?{A-1C) =  Tc (V p\ a -1C) =  Tc). 
It follows that for any A ,B  G TV~{K) (A ,B  G 7Z*~b(IC)) such that 
A C  B  (A Cb B) we have V P(A ,K )  C £»’( £ ;£ )  (VPb(A-,JC) C 
V pb(B\lC)). In particular, if B  is perfectly (¿-perfectly) inconsistent, 
then so is A.

Throughout this paper by yM will be denoted the class of all reg-
ular matrix methods. In case 1C = M  we shall frequently omit the 
indication of M  in the above definitions. In particular, we accept 
VP(A) = X>p(A; M ) (V»b(A) =  V f \A \  M ))  and shortly say that a 
method is perfect (b-perfect) or perfectly (b-perfectly) inconsistent if it 
is such in M .

Let M . denote the class of all zero-regular convergence preserving 
matrix methods and let

M )  =  { A g M.  : x (A) =  0}.



For any method A £ (A  £ )) we introduce the
following notations:

V p(A) = { x e  V (A ) : VZ? £ MT[A] ,  B (x) = x (B )A (x)}\

(Vpb{A) = {x £ V(A) : V5 £ A *r‘[A]. B( x ) = X(B)A(x)});
V l(A ) = { x e  V(A)  : \/B  £ A V M ,  # (* ) =  0); 

( ^ ‘(A) =  (x 6  0(A ) : VB 6  A V * M , « (* ) =  ° ))

where M \A \  =  .A/i.[£] (M \A ]  = M \C \)  and M q [A] =  M q [C] 
(M q [A\ =  X o[£]) for £  =  {A}.

It is easy to show

0.1. Lemma. I f A £ 'R ^ (M )  (j4 £ /R.^~b{M )) , then

V P(A) = V P(A) C £>P(A) (P p6(A) =  V pb(A) C Dg6(A )).

Let now £  be an arbitrary class of methods. By a sequential K- 
method or shortly an S()C)-method we shall mean an infinite sequence 
A =  (A n ) of methods from /C where A n denotes the n-th element of 
A. If A  is an S(/C)-method, we define the full (bounded) convergence 
pseudofield of A  to be the set

oo oo
V ~(A ) = P | V (A n) (V ~ b(A ) =  P | V b(A n))

n = l  n —1

which is obviously a linear subspace of T  (Tj,). For such A we de-
note by .<4~(-) the linear transformation from V ~ (A )  to T  given by 
A~(x) =  (A n(x )). If S  and S ' are subsets of T, we say that A  trans-
forms 5  into S' provided that S  C £>~(A) and A ~(S)  C S'. The set 
V (A ) = A  1(TC) is a linear subspace of T, called the full convergence 
field of A. The limit functional A(-) is defined by A(x) — limn A n(x) 
for x £ V{A). Thus, an S(/C)-method is a method in the general 
sense. By an S-method we shall mean an S(X)-method where K. is 
the class of all methods.

For example, if A =  (A-71) is a matrix method, then every row 
Am =  (A"1, Aj*,. . . )  £ T can be regarded as a method with the limit 
functional Am(-) defined by

Am(x) =  SjA^a:' for x  £ P (A m),



where V (Am) is the set of all x G T  such that the series S,A"lz ' is 
convergent. It is seen that A can be identified with the S(T)-method 
(Am). In particular, we have the pseudofield P~(A ) and the linear 
transformation A~(-) : P~(A ) —► T.

Let M denote the class of all usual matrix methods. By SM  we 
shall denote the class of all S(M)-methods which are the main objects 
under consideration, called SM -methods for short. Especially, we are 
interested in the class M 2 of all regular SM-methods.

Every SM-method A  determines a sequence (An) of matrix meth-
ods such that A = (A "). This means that A  is represented by a 
unique complex infinite (l,2)-indexed matrix (a”fc) such that A n = 
(a "fc) (n =  1, 2 , . . .  ), which implies

A(x) — lim A”(z) =  limlim ^  a"kx l for x  G T>(A).
i

Let us put

A nk = (A n)k = ( a f )  (n = 1, 2 , . . . ;  k =  1 ,2 ,...)

and note that A nk(x) =  for x G D (Ank). We define the
inner pseudofield of A  to be the set

oo oo oo
v ~(a ) =  p i  v ~ ( A n) =  p i  p i  v ( A nk).

n = l  n = 1 k= 1

Let T 2 =  denote the set of all 2-indexed sequences. If
x G T 2, then by x nk will be denoted its nfc-th element, i.e. x =  (x nk). 
For any (l,2)-indexed matrix A — (a"fc), we define the linear trans-
formation (•) : V ~ (A) T 2 by A~  (x) =  (A nk (x)).  If S  Ç T  
and S' Ç T 2, we say that A  transforms S  into S'  provided that 
S C V ~ ( A )  and A ~ ( S ) C S ' .

It is easy to prove (compare [5], Theorem 1.3.2)

0.2. P ro p o s itio n . Let A be an S-method. I f A is convergence zero- 
preserving (preserving) and each A n is Tc0-continuous (Tc-continuo- 
us), then so is A. Moreover, A is consistent with some m atrix method  
overTco■ I f  in addition A is convergence preserving and limn x (A n) — 
0, then A is consistent with some matrix method over Tc.

From this proposition and since every convergence zero-preserving 
(preserving) matrix method is TC0-continuous (Tc-continuous), we get



0.3. C o ro llary . I f  A is a convergence zero-preserving (preserving) 
SM-method, then A is Tco-cntinuous (T,.-continuous).

Let A =  (A”1) be a matrix method. It is seen that A is equiv-
alent to the SM-method A 1 =  (a™*) defined by a"tk = AJ" (k =
1,2...). Moreover, one can see that A is equivalent to the SM-method 
(A) defined by (A)n =  A (n — 1,2,...). On the other hand, for 
global (6-global) properties of methods one can identify equivalent 
(¿-equivalent) methods. Thus, we can regard that M C SM via 
the identification A i-» A1 (A ~  AT) or A h  (A) (A ~  (A)). In 
this paper we prefer the first identification unless otherwise stated 
because D ~(A T) =  X>~ (AT) =  Z>~ (A) but I>~((A)) =  £>~(A) and 
V ~ ((A)) =  V(A) ,  i.e. A h  A t  preserves the pseudofields of methods 
but A (A) does not. In particular, we can regard that M  C j\42. 
This implies that for any method A £ (A  e  7l'~b(M ) ) we
have

V p( A ; M 2) C V '\A )  (V pb(A- ,M2) C V i,b(A)).

Let A =  (A-'1) and 0  =  (0"x) be matrices. Recall that the iteration 
product ©[A] of m,atrix transformations, that is, the composition of 
the matrix transformations A and 0  is defined by

(*) z" =  £ ( < C E .A ”V )  (n =  1, 2 ,...)
m

for x £ £>~(0[A]), the convergence pseudofield of 0[A] consisting 
of all x  £ T  such that the series are convergent. This means that 
0[A]~ : Z>~(0[A]) —» T is a linear map given by (*), where z =  
0[A](x). The convergence field of 0[A] is defined to be the set 
£>(0[A]) =  ©[A] 1(TC). Finally, the limit functional 0[A](-) is given 
by 0[A](x) =  lim0[A]~(x) for x £ D(Q[A]). The method defined 
above will be called the IPM -method 0[A].

Let A =  (AJn) and 0  =  (#",) be matrices. Following Agnew [1] the 
composition product of A and 0  is defined to be the matrix 0 A =  (c") 
where

c ?* =EmC \ f  (n =  1,2,...; * =  1,2,. ..)

provided that all series are convergent. It is known that if the IPM- 
method 0[A] is convergence zero-preserving (see [8], Theorem 1.1),



then the composition product 0A exists. It turns out that in general 
the methods 0A  and 0[A] need not be equivalent (¿-equivalent), even 
if both 0  and A are regular.

1.1. Equivalence between IPM -m ethods  and SM -m ethods.

Let A =  (A"1) and 0  =  (#," ) be matrices. Define the ( l , 2 )-indexed 
matrix 0 # A  =  (c"fc) as follows:

This matrix determines a unique SM-method, denoted also by 0 # A , 
such that 0 # A  =  (C " ) where C" =  (cf^) for each n. One can show

1.1.1. Lemma. For any matrices A and 0  the IPM -method  0[A] is 
equivalent to the SM-method  0 # A .

Let now C' = (c}lk) be a (1, 2)-indexed matrix. Let us take a one- 
to-one map r  from N2 onto N such that r(n , k ) < r(n , k +  1) for all 
n ,k  £ N. For example, such a function can be given by r ( n , k ) =  
2nk — 2n_1. Define matrices A =  (A-n) and 0  =  (#" ) as follows:

1. B a s i c  p r o p e r t i e s

for n =  1, 2 , . . .  ; k = 1, 

for n = 1 , 2 , . . . ;  k = 2 , 3 , . . .

(1.1a)

By an easy verification we get



1.1.2. Lemma. If  C  =  (c"*) is a (1 ,2)-indexed m atrix and i f  m a-
trices A =  (A"1) and 0  =  (#",) are defined by formulas (1.1a) and 
(1.1 fi), then the method C is equivalent to the IPM-method  0[A].

Clearly, Lemmas 1.1.1 and 1.1.2 imply

1.1.3. Proposition . Every IPM-method is equivalent to an SM- 
method, and conversely.

Let A =  (A"') and 0  =  (0“ ) be matrices. As we know from 
Chapter 0 the composition product 0A  exists provided that the IPM- 
method 0[A] is convergence zero-preserving. Additionally, one can 
see that if A (0 )  has finite columns (rows), then 0A  exists too. It is 
easy to prove the following propositions.

1.1.4. Proposition . If  A = (A’n) and 0  = (0?) are matrices such 
that the composition product 0 A exists and i f the following condition 
holds:

OO

utm E i £  o r i  =  o ( "  =  i , 2 , - ) .
i m = k

then the methods  0A  and 0 [A] are b-equivalent.

1.1.5.  Proposition . I f  A =  (A-” ) and 0  =  (0}*) are matrices and if
0  has finite rows, then the methods 0A  and 0[A] are equivalent.

1.2. Regularity and limitation o f bounded sequences.

For any matrix A =  (A’n) we shall adopt the following conditions:

(1 .2A) there exist limits limm A”* =  A¿(i = 1,2,...);
(1 .2 0 )  sup m X3i IA”l | <  oo;
(1.2r)  there exists a limit limm A-" =  A.

The following lemma is well known.



1.2.1 . L em m a. A matrix method A = (A"‘) is convergence zero- 
preserving (preserving) i f and only i f it satisfies conditions (1.2A)-
(1.20) ((1.2A)-(1.2T)). Moreover, the following statem ents hold:

(1) limm x ' =  1 A« x ' f°r each x e ^ c0 Provi(ied that A 
is convergence zero-preserving;

(2) limm £ .  A”‘ x* =  (A -  A¿) x' +  ^  A; x‘ for each x e  Tc 
provided that A is convergence preserving.

Let now .4 =  (a”*) be a (1 ,2)-indexed matrix. Adopt the following 
conditions:
(1 .2a) there exist limits limn lim* a fk = ai (¿ =  1 , 2 , . . . ) ;
(1.2b) supfc I«”* I < 00 (n - 1’2’ - • •);
(1.2c) there exist limits lim* a"* =  a" (n =  1, 2 , . . . ;  ¿ =  1 , 2 , . . . )  

and supn £ .  |a"| < oo;
(1 .2d) there exist a limit lim„ lim* a?k = a-

We introduce the following notations:
(1 .2e) A 0 =  (o"fc — and A '0 = («” — ^i) provided that condition 

(1 .2a) holds;
(1.2f) A ’ =  (a?) and A n0 =  ( a -1*1 -  a” ) (n =  1 ,2 , . . .  provided that 

condition (1.2c) holds.
Note that if A  satisfies conditions (1.2b) and (1.2c) ((1.2a) and 

(1.2c)), then each matrix method A n (A ) is convergence zero-preser- 
ving. Clearly, in this case the methods A n0 and A '0 are zero-regular. 
Moreover, if in addition A  satisfies condition (1.2d), then each A n is 
convergence preserving.

Applying Lemma 1.2.1 one can prove

1.2.2. Theorem. An SM-method A  =  ( a \ l k )  is convergence zero- 
preserving (preserving) i f  and only i f  it satisfies conditions (1.2a)- 
(1.2c) ((1.2a)-(1.2d)). Moreover, the following statements hold:

(1) lim„ lim* Yli ai k x * = H i  a« x> for each x e  Tc0 Provided 
that A is convergence zero-preserving;

(2 ) lim„ limfc a" fc x ' =  (a -  £,• a*) x' +  a, x l for each x e  
Tc provided that A is convergence preserving.

This theorem implies the following observations. If .4 is an SM- 
method such that A  exists and if all A n and A  are convergence zero-



preserving, then so is A. If in addition all A n and A  are convergence 
preserving, then A  is convergence preserving if and only if (x (A n)) 6 
Tc. In particular, if all A n are convergence zero-preserving and if A 
is zero-regular, then so is A. Moreover, if all A '1 are convergence 
preserving and if limn x(A n) =  0 and A' is regular, then A  is regular 
too.

Clearly, if A  is convergence zero-preserving, then notations ( 1.2e) 
and ( l ,2f) have meaning.

Additionally, we adopt the following conditions:

(1 .2 ') the limits lim„ lim* a?k = 0 exist;
(1 .2d') the limit limn limjt Ylt a’i k ~  exists.

Theorem 1.2.2 immediately implies

1.2.3. C o ro lla ry . An SM-method A  =  (a”fc) is zero-regular (reg-
ular) i f  and only i f it, satisfies conditions (1.2a1),(1.2b) and (1.2c)  
((1.2a'),(1.2d!) and (1.2b),(1.2c)).

Note that this corollary involves that A  is zero-regular if and only if 
each A n is convergence zero-preserving and A  is zero-regular. More-
over, A  is regular if and only if A satisfies (l,2d '), each A n is conver-
gence preserving and A  is zero-regular.

By Corollary 0.2, every convergence preserving SM-method A  is 
Tc-continuous, and so, the characteristic xM ) is defined. Moreover, 
in this case each A n (Ano) is Tc-continuous too. Clearly, we have

From this and Theorem 1.2.2.(2 ) we get

1 .2.4. Corollary. Let, A — (a"k) be a convergence preserving SM- 
method. Then

A n(x)  =  x ( A n)x '  -f a” x x for x £ Tc (n = 1 ,2 , . . . ) .

lim sup x (An) =  a -  lim inf V '  a” and
n nn



which implies that ( x ( A nJ') is convergent i f  and only i f  A' is conver-
gence preserving. In particular, we have

limsup |x (A") I <  |a| +  sup V  |aj*|,
n ?i i

and so, (x(A n)) £ Tb. Moreover, i f  in addition A' is convergence 
preserving, then

lim x(A ”) = x ( a ) - x ( ^ ' ) -

Let A =  (A”') and 0  =  (#",) be matrices. Adopt the following 
conditions:
(1.2A) there exist limits lim„ E ,„  0"» =  7« (* =  1 ,2 ,. . .) ;
(1.20) A"1 < oo (m =  1 ,2 ,. . .) ;

(1.2 7 ) supk Y,i 
(1.26) supn Y.i

C  K  (» =  1 , 2 , . . . ) ;

Em Qm A"‘ l <
(1.2c) there exists a limit lim„ E m m̂ ( E .  =  7 -

By Lemma 1.1.1 and by applying Theorem 1.2.2 to the SM-method 
0 # A , we get

1.2.5. C o rollary , (see [8], Theorems III. 1 and III.2) Let A =  (A™) 
and 0  =  (8',ln) be matrices. Then the IPM-method  0[A] is con-
vergence zero-preserving (preserving) i f  and only i f  the matrices  A 
and 0  satisfy conditions (1.2\)-(1.28) ((1.2\)-(1.2e)). Moreover, the
following statements hold:

(1) limn Em em ( E .  XT x ') = E«  7»** for each x £ Tc0 pro-
vided that 0[A] is convergence zero-preserving;

(2 ) limn Em (E,- K x i) = ( 7 -  E ,  7i) + E ,  nxi for 
each x £ Tc provided that 0[A] is convergence preserving.

Well known is the following

1 .2 .6 . L em m a. (Schur) A matrix method  A =  (AJ71) limits all
bounded sequences i f  and only if  A is convergence zero-preserving 
and the following condition holds:



Moreover, ifTb C V(A),  then

lim ^P  A-" x‘ =  ^« x ' ôr eac^ ,T ^ Tb-
I I

Applying this lemma we obtain

1.2.7. T h e o r e m . An SM-method A  =  («”*) limits all bounded 
sequences i f and only i f  so are all A 11 and A ', that is, the following  
conditions hold:

(1) lim* < 1  =  0 (n = 1,2 , . . . ) ;
(2 ) lim n E , K  — 0*1 =  0 .

Moreover, ifTb Q 'D(A), then

(iii) lim„ limjt ai k x% =  Yh a« x* ôr eac^ x e  Tb-

This theorem implies that if a zero-regular SM-method A  limits 
all bounded sequences, then each such sequence is A-limitable to 0. 
In particular, does not exist a regular SM-method which limits all 
bounded sequences.

Similarly as for Corollary 1.2.5, from Lemma 1.1.1 and Theorem 
1.2.7 it follows

1 .2 .8 . C o ro llary . (see [8], Theorem III.3) Let A =  (A"1) and 0  =  
(0^)  be matrices. Then the IPM-metliod  0[A] limits all bounded  
sequences if  and only if conditions (1.2\)-(1.26) and the following  
ones hold:

(1) Hmt E , I E “ =t ^ A r | = 0  (n =  l , 2 , . . . ) ;

(2) lim„ E ,  IEm C  A”‘ -  7,1 =  0.
Moreover, ifTb Q X>(0[A]), then

(iii) limn ( £ ,  K n *’’) =  E ,  7« for each x e  Tb.

1.3. Strong regularity.

Recall that a matrix A =  (A?1) is said to be translative in case 
limm (A-” -  A-^j) x' =  0 for all x 6  Tt, which by Lemma 1.2.6 is



equivalent to the fact that

l i m E l A r - A & . l - O .
m 1' 1 i

We need the following well-known

1.3.1. L em m a. Let A =  (A"1) be a convergence zero-preserving 
(preserving) m atrix method. Then A is almost convergence zero- 
preserving (preserving) i f  and only i f  the m atrix  A0 =  (A'n — A,) is 
translative. Moreover, the following statements hold:

(1) limm A"1 x 1 =  A, x' for each x G Tac.o provided that A 
is almost convergence zero-preserving;

(2) limm Ar x ‘ = (A -  Ai) x* +  A, x l for each x G Tac 
provided that A is almost convergence preserving.

Applying this lemma we get

1.3.2 . T he o rem . Let A — («"*) be a convergence zero-preserving 
(preserving) SM-method. Then A is almost convergence zero-pre-
serving (preserving) if  and only i f all A n0 arid A u are translative. 
Moreover, the following statements hold:

(1) limn lim* a’,k x l =  diX1 for each x G Tac0 provided
that A is almost convergence zero-preserving;

(2 ) limn lim* J2i ai k x% = (a — a*) x * +  Yli a‘ x% f°r each x  e  
Tac provided that A is almost convergence preserving.

This theorem immediately implies

1.3.3. C o ro lla ry . An SM-method is strongly zero-regulai- (regular) 
i f  and only i f  it is zero-regular (regular) and almost convergence zero- 
preserving (preserving).

An SM-method A  =  (a?fc) is called translative if

lim lim y  (a"fc -  a"+\) x l =  0 for x G Tb. 
i

By Lemma 1.2.6, we conclude that a convergence zero-preserving SM- 
method A  is translative if and only if all A n0 and A  are translative. 
Hence and from Theorem 1.3.2 we get the following corollaries.



1.3.4 . C o ro lla ry . Let A be a convergence zero-preserving (pre-
serving) SM-method. Then A is almost convergence zero-preserving  
(preserving) if  and only i f  A0 is translative.

1.3.5. C o rolla ry . Let A he a convergence zero-preserving (preserv-
ing) SM-method. Then A is strongly zero-regular (regular) if  and 
only i f  it is translative (translative and regular). In particular, a 
zero-regular (regular) SM-method is strongly zero-regular (regular) if  
and only if  it is translative.

Let A =  (A™) and 0  =  (0JJ,) be matrices. The IPM-method 0[A] 
is called translative if so is the method 0 # A . It follows that 0[A] is 
translative if and only if the following conditions hold:

(1.3A)

(1.30)

(1.37 )

£  h !“ -  Aft, I < oc (m =  1 ,2 , . . . ) ,

iimu Z_j

u”  £

£  c ( A r - A f t . )
rn=:k

£  W” - a;;,)

=  0 (n =  1 , 2 , . . . ) ,

=  0 .

Clearly, if ©[A] is convergence zero-preserving, then it is translative 
if and only if conditions (1.30) and ( I.3 7 ) hold. From this and the 
definition of IPM-method we get

1.3.6. P ro po s itio n . Let A and 0  be matrices. I f  A is translative 
and i f  0  is zero-regular, then the IPM-method  0[A] is translative. In 
particular, i f  A is almost convergence zero-preserving (preserving) and  
i f  0  is zero-regular and convergence preserving, then 0[A] is almost 
convergence zero-preserving (preserving). Moreover, i f  A is strongly  
zero-regular (regular) and i f  0  is zero-regular (regular), then 0[A] is 
strongly zero-regular (regular).



If condition (1.2A) holds, we adopt the following one:

(1.37+) 11 L ' W - a ? ; , ) - 7 ¡  +  7¡+ i =  0 .

It is easily seen that if 0[A] is convergence zero-preserving, then the 
SM-method (0 #A )° is translative if and only if conditions (1.30) and 
(1.37+ ) hold. From this, Theorem 1.3.2 and Corollary 1.3.4 we obtain

1.3.7. C o ro lla ry . Let A =  (A"1) and 0  =  (Q]ln) be matrices. Sup-
pose that the IPM-method 0[A] is convergence zero-preserving (pre-
serving). Then 0[A] is almost convergence zero-preserving (preserv-
ing) i f  and only i f  the SM-metliod  (0#A )° is translative, that is, i f  
conditions (1.30) and (1.3^+) hold. Moreover, the following state-
ments hold:

(1) limn £ m 0" ( E ,  \¡n Xi) = E ,  7 i x% for each x 6 Tac0 pro-
vided that 0 [A] is almost convergence zero-preserving;

(2 ) limn E m 0» ( ¿ .  A-" X{) =  ( 7 “ E i  7.) +  E .  H xi for
each x 6 Tac provided that 0[A] is almost convergence pre-
serving.

Włodarski ([8], p.351) gave an example of matrices A and 0  such 
that the IPM-method 0[A] is regular, P(0[A]) =  2?6(©[A]) and 0[A] 
is not equivalent to the standard convergence. On the other hand, 
the Mazur-Orlicz Theorem (see [4], Theorem 7) says that if a regular 
matrix method limits some bounded divergent sequence, then it limits 
some unbounded sequence. It turns out that this theorem has an 
analogue for almost convergence zero-preserving SM-methods.

1.3.8. T he o rem . Every almost convergence zero-preserving SM- 
method limits some unbounded sequence.

The last theorem implies

1.3.9. C o ro llary . There is no SM-method equivalent to the almost 
convergence.

The well-known Lorentz Theorem says that there is no matrix 
method 6-equivalent to the almost convergence. One may ask whether



there exists an SM-method ¿-equivalent to the almost convergence. 
A negative answer to this question will be given in Section 2.5.

1.4. Structure o f  SM -methods.

By an SM -method, we shall mean an SM-method A  such that 
each A n is a convergence zero-preserving matrix method. For ev-
ery SM'-method A the matrix method A  is defined, which means 
that there exist limits: aj* =  lim* a?k (n = 1 ,2 ,. . . ;  k =  1 ,2 , . . . )  
and Yh \a'i \ < 00 (n = 1 ,2 ,. . .) .  Note that if A  is an SM'-method, 
then A  is convergence zero-preserving (zero-regular) if and only if so 
is A . Clearly, in this case A  is consistent with A  over Tcq .

Let S  C T. An SM-method A  is said to be decomposable over S  if 
it is an SM'-method and if S  C X>~(A) n  X>~(A'), i.e. the following 
decompositions hold:

A n(x) = An0(x) +  A n (x) for x e S  (n =  1 ,2 ,. . .) .

It is seen that every SM'-method A  is decomposable over V b(A).  We 
say that A  is decomposable if it is decomposable over 'D(A).

An SM-method A  is called reducible over S  if there is an SM- 
representation of A which is decomposable over S. We say that A  is 
reducible if it is reducible over T>(A); otherwise A is called irreducible. 
It is easy to give examples of reducible SM-methods but the existence 
of irreducible SM-methods will be explained in Section 3.5.

A convergence zero-preserving matrix method A =  (A™) is said 
to be decomposable over S  if S  C X>(A) D X>(A'), i.e. the following 
decomposition holds:

A(x) =  A0 (x) +  A' (x) for x € 5,

where A0 =  (A"1 — A,) and A =  (A,). Moreover, A is said to be 
decomposable if it is decomposable over V(A).  Clearly, A is decom-
posable if and only if T)(A) C T)(A ). It is seen that A is decomposable 
(over S ) if and only if so is the SM-method (A). Notice however that 
every SM-method equivalent to a matrix method A =  (A-n) satisfy-
ing S,|A 'n | < oo is reducible. Indeed, observe that such a method is



equivalent to the SM -method A* which is obviously decomposable 
over T>( A).

An SM-method is said to be absolutely reducible if every SM- 
representation of it is decomposable. By an easy verification we get

1 .4.1. P ro p o s itio n . An SM-methocl A is absolutely reducible i f  
and only i f  each m atrix method  0  such that T>(A) C T>{ 0 )  is decom-
posable over V(A).

Observe that every convergence zero-preserving SM-method A  
such that V ( A ) — V b(A) is absolutely reducible. This property is 
also a consequence of the more general

1.4.2. P ro p os it ion . I f  A is a convergence zero-preserving SM- 
method such that V(A)  is closed under multiplication by sequences 
converging to zero, then A is absolutely reducible.

An SM-method A  is said to be quasi decomposable if there ex-
ists a subsequence (A n of (A 11) defining the SM-method which 
is equivalent to A  and decomposable. If A  is not quasi decompos-
able, we call it indecomposable. Clearly, every SM-representation of 
an irreducible SM-method is indecomposable. An indecomposable 
SM-method A  is said to be strongly indecomposable if there does not 
exist a subsequence (A"«)) of (An) such that the SM-method (An^ )  
is decomposable. It is easy to prove

1.4.3. P ro p o s itio n . A reducible SM-method A has a strongly in-
decomposable SM-representation i f  and only i f  it is not absolutely  
reducible.

An SM-method A is said to be free if it is an SM'-method such 
that A' is the zero matrix, that is, each A n is zero-regular. Obviously, 
every free SM-method is zero-regular. By a semi-simple SM-method 
we shall mean a free SM-method A such that each A” is regular. We 
say that A is simple if it is semi-simple and A1 D A2 D . . .  D A" D 
. . . .  It turns out that one can construct semi-simple SM-methods 
which are not ¿-equivalent to any simple SM-methods, and so, they 
are not ¿-equivalent to any matrix methods.

By an easy verification we get



1.4.4 . P ro po s itio n . Every free regular SM-method has a semi-
simple SM-representation.

One can prove

1.4.5 . T he o re m . I f  A is a free SM-method and 0  is a zero-regular 
matrix method such that D(A)  Ç X>(0), then there exists a decom-
posable SM-metliod C such that C  ~  A and C' = 0 .

This theorem immediately implies

1.4.6. C o ro llary . I f A and 0  are zero-regular matrix methods such 
that V(A)  Ç T>{0) , then there exists a decomposable SM-method C 
such that C ~  A and C' = 0 .

Applying Theorem 1.4.5 it is easy to prove

1.4.7 . C o ro llary . I f A is a free SM-method and A is a zero-regular 
matrix method such that V(A)  Ç T>(A), then there exist matrices A 
and 0  such that ©[A] ~  A and 0A  =  A.

1.5. B ounded  convergence fields.

Recall that 7), denotes the complex Banach space of all bounded 
sequences under the coordinatewise operations and the norm defined 
by ||z|| =  supn |xn |. We say that a matrix (matrix method) A is 
Tb-continuous if Tj, C P~(A), A~(Tj) C Tb and the transformation 
A~(-) restricted to Tb is continuous under the uniform topology on 
Tb. Clearly, if A is T/,-continuous, then V b(A) and T>b(A) are Banach 
subspaces of T/,.

Adopt the following notations:

Tr = { i 6  T 2 : the limit limlim x nk exists};
n k

Tco =  {^ € T2 : the limit limlim x nk = 0 exists};
n k

r 62 =  {x  € T2 : sup sup Ix"* I < oo};
n k

The ~  Tb n T2;
rr2 _ rp2 o  rp2

6c0 b ' ' -^c0 ‘



We shall regard T62 as a complex Banach space under the coordinate- 
wise operations and the norm defined by

|x|| =  sup sup \x"k \
n k

which determines the uniform topology on 7?. Clearly, T¡c and 7£„ 
are non-separable Banach subspaces of Tb . A (l,2)-indexed ma-
trix (SM-method) A  is said to be Tb-continuous if Tb C 'D~(J4), 
A~(Tb) C Tb and A~(-) restricted to Tb is continuous under the uni-
form topologies on Tb and Tb . It turns out that if an SM-method A 
is Tfc-continuous, then V h{A) =  A l {Tbc) and T>hQ(A) =  A — 1(Tjfc0), 
which implies that V b{A) and V b0(A) are Banach subspaces of Tb (see 
Theorem 1.5.2 and Corollary 1.5.3).

Well-known is the following

1.5.1. L em m a, (see [5], Theorem 1.3.2) A matrix A =  (A"1) trans-
forms Tb into itself if  and only i f  the following condition holds:

(1-5A) sup V ' |A”11 < oo.
*

Note that if a matrix A =  (A;") satisfies condition (1.5A), then it 
is 7),-continuous. In particular, if A is convergence zero-preserving, 
then condition (1.5A is fulfilled, and so, V b(A) and V b(A) are Banach 
subspaces of Tb. Give attention that an analogous property for SM- 
methods does not satisfy (see Theorem 1.5.6).

We introduce the following conditions:

(1.5a) sup sup |a’lA:j <  oo;
n k ■

(1.5b) s u p X :  |«,nfc| <  OO (n =  1 , 2 , . . . ) ;
k X

(l -5c)  s u p l im s u p ^  I«"*! <  oo.

One can prove



1.5.2 . T he o re m . Let A  =  («"*) be a (l,2)-indexed matrix. Then 
the following statements are equivalent:

(a) A transforms Tb intoTfi;
(b) A satisfies condition (1.5a);
(c) A is Tb-continuous.

This theorem immediately implies

1.5.3. C o ro llary . I f  a matrix A = (a"k) satisfies condition (1.5a), 
then V b (A) and V b (A) are Banach subspaces of Tb.

It is easy to prove

1.5.4. L em m a. I f  A — (a"*) is an SM-method satisfying condi-
tions (1.5b) and (1.5c), then it is b-equivalent to some SM-method  
satisfying condition (1.5a).

From this lemma and Corollary 1.5.3 we get

1.5.5. C oro lla ry . I f A = (a"fc) is an SM-method satisfying condi-
tions (1.5b) and (1.5c), then V b (A) and T>b {A) are Banach subspaces 
o f T b.

Note that a (l,2)-indexed matrix A  satisfying conditions (1.5b) and 
(1.5c) transforms Tb into T2 but it need not transform some sequences 
from Tb into T¿¿, even if A  is a regular SM-method (compare Corollary 
1.2.3).

The following theorem means that in general the bounded conver-
gence field of a regular SM-method cannot be investigated by using 
Banach space theory.

1.5.6. T he o rem . There are regular SM-methods such that the sets 
V b (A) and V b (A) are non-separable and non-complete subspaces of 
Tb, and so, they are not Banach spaces.

Since bounded convergence field of every regular matrix method 
is a Banach space, it follows that a regular SM-method satisfying 
Theorem 1.5.6 is not 6-equivalent to any regular matrix method.

Let A =  (A”*) and 0  =  (0,’Jj) be matrices such that

sup Y  i < °° and sup £ i a <
rri n



It, follows from Lemma 1.5.1 that A and 0  are Tb-continuous. This 
implies that the iteration product 0[A] is Tj-continuous too, and so, 
r>fe(0[A]) and Pg(0[A]) are Banach subspaces of 7},. The same result 
we get by applying Theorem 1.5.2 to the SM-method © #A which is 
¿»-equivalent to the IPM-method 0[A]. On the other hand, applying 
Corollary 1.5.5 to the SM-method 0 # A  one has

1.5.7. C o ro llary . I f  A =  (A"*) and 0  =  (#£,) are matrices satisfy-
ing conditions (1.26), (1.2y) and the following one:

sup lim sup E  A"‘
m=l

< oo (n =  1 , 2 , . . . ) ,

then £>6(0[A]) and 7?o(0[A]) are Banach subspaces of TJ,.

2. P e r f e c t n e s s  f o r  b o u n d e d  c o n v e r g e n c e  f i e l d s

2 .1 . E quivalence o f b -pe rfectness  in th e  classes M 2 an d  M .

As we know from Chapter 0, for any method A  G 7Z*~b( M )  we 
have V pb(A; M'2) Ç V pb (A). It turns out that applying Lemma 0.1 
and the fact that every SM  -method is decomposable over V h (A) 
(Sectionl.4) one can prove

2.1 .1 . T h eo rem . For any A  G 7l'_ 6(A/i),

V pb ( A ; M 2) = V ph(A).

This theorem implies

2.1.2 . C o ro lla ry . I f  A  G 7Z'~b(M) ,  then the following statements  
hold:

(1) A is b-perfect in M 2 i f  and only i f  it is b-perfect, in A4;
(2) A is b-perfectly inconsistent in M 2 i f  and only i f  it is b- 

perfectly inconsistent in M .

It turns out that statement (1) of Corollary 2.1.2 can be proved in 
the following stronger form



2.1.3. Proposition. Let A be an arbitrary regular method. Then 
.4 is b-perfect in M 2 if  and only if it is b-perfect in M . In particular, 
every b-perfect method in M 2 has a b-majorant in M .

We need the well-known

2.1.4. Lemma, (see [2] and [3]) Every regular matrix m ethod is 
b-perfect in M .

From this lemma and Corollary 2.1.2 we get

2.1.5. Corollary. Every regular matrix method is b-perfect in M 2. 
A regula,r matrix method is b-perfectly inconsistent in M 2 if  and only  
if  it is b-equivalent to the standard convergence.

2. X>fc-majorants o f regular SM -methods in the class M .

Let A £ M 2. Since A is decomposable over its bounded conver-
gence field, we conclude that for any n such that x ( A n) i  0 the 
method x ( ^ n) 1.An0 is a -majorant of A in Ai .  Thus, a necessary 
condition for A  that it has no X>A-majorant in M  is that x {An) =  0 
for all n, however, this condition is not sufficient. For example, if B  
is a regular matrix method, then we have 2? 1 £ M 2 and x (B^n) = 0 
for all n but B 1 ~  B £ J\A.

We shall regard the set Ti, as a complex algebra under the coordi- 
natewise operations. One can prove

2.2.1. Lemma. There exist a method A £ M.2 and xo £ V b(A) 
such that the following conditions hold:

(i) x o is an invertible element o f the algebra Tb and A ( x q ) =  1;
(ii) A has a V b-majorant in M ;

(iii) i f  B  is a V h-majorant o f A in M ., then B (x 0) = 0.

Applying this lemma (condition (ii) may be omitted) one can show

2.2.2. Theorem. There exists a method A £ A42 which has no 
V b -majorant in A4.

Clearly, every method satisfying Theorem 2 .2.2 has no 6-majorant, 
D-majorant and majorant in M ,  simultaneously. In particular, from



Proposition 2.1.3 it follows that such a method is not ¿-perfect in 
M 2.

2.3. Perfect part of  bounded convergence field.

A set 5  C T  is said to be a bounded Toeplitz field, if there is a 
matrix method A such that X>6(A) =  S. One can prove

2.3.1. Theorem. Every regular SM-method has a greatest b-mino- 
rant in M , which means that M ~ b(A) /  0 for A  6  M 2. Moreover, 
i f  A 6  then V pb(A) = V b(A), and so, T>pb(A) is a bounded 
Toeplitz held.

Applying this theorem and Lemma 2.1.4 we get the following corol-
laries.

2.3.2. Corollary. Let A = (A") be a regular SM -method defined 
by a sequence A1, A ". . . ,  of regular matrix methods. Then

M ~ b(A) = M ~ b( A \ A 2, . . . ) .

2.3.3. Corollary. For every finite or countable family A 1, A 2, . . .  of 
regular SM-methods, there exists a greatest b-minorant in class M . 
Moreover, i f  A 1 £ M ~ b{Al) for i = 1,2 ,..., then

M - b{ A \ X 2, . . . )  = M ~ b{ A \ A 2, . . . ) .

In paper [6], by using a special construction, it is proved the ex-
istence of some increasing sequence of regular m atrix methods that 
has no 6-majorant in class M 2. On the other hand, one can show 
that Theorem 2.3.1 implies

2.3.4. Corollary. I f  A 1 C A2 C . . .  is an increasing sequence 
of regular matrix methods such that .M ^ ^ A 1, A2, . . .  ) =  0, then 
M 2^ b( A \ A 2, . . . )  = 0.

The assumption of this corollary can be fulfilled since Brudno (see
[2], Theorem 1 and the proof of Theorem 9) proved the existence of



an increasing sequence Aj C A2 C . . .  of regular matrix methods 
such that there is no matrix method T satisfying C i> T for all i. 
Thus, for such a sequence there is no SM-method A  or equivalently 
iteration product 0[A] of matrix transformations such that A¿ C 1, A 
or A¿ Cb 0[A] (i — 1 ,2 ,. . .) .  The latter observation for ©[A] is 
exactly the main result proved in [6] (see Proposition 4.1) by apply-
ing some special considerations which are completely independent of 
those presented here.

As one knows if A £ M ,  then V b(A) = Tc or V h(A)  is a non- 
separable Banach subspace of T& (compare [4], Theorem 8 ). Thus, 
from Theorem 2.3.1 we get

2.3.5. Corollary. If A  £ M 2, then T>pb(A) =  Tc or V pb(A) is a 
non-separable Banach subspace of Tb.

4. />-perfectly inconsistent SM -methods.

It is know (see [4], Theorem 10) that a regular matrix method is 
perfectly inconsistent if and only if every sequence limitable by it is 
convergent or unbounded. This property is not valid for regular SM- 
methods because there are regular SM-methods which limit some 
divergent sequences but no unbounded sequences. Moreover, such 
methods can be inconsistent and />-inconsistent, simultaneously. More 
precisely, one can prove

2.4.1. Proposition. I f A is a free regular SM-methocl limiting only 
bounded sequences, then A is inconsistent and b-inconsistent, simul-
taneously.

It is easy to show that there are regular SM-methods A  not b- 
equivalent to the standard convergence for which V h(A)  are separable 
subspaces of Tb. Hence and from Corollary 2.3.5 it follows that any 
such method is ¿-perfectly inconsistent. On the other hand, one can 
prove the following theorems.

2.4.2. Theorem. There exists a method A  € such that T>h(A) 
is a non-separable Banach subspace o f T b and V pb(A) = Tc.



2.4.3. Theorem. There exists a method A  G M 2sucli that T>b(A) 
is a non-separable and non-complete subspace of Tj and T>ph(A) =  Tc.

2.5. Characterization of /¿-perfect SM -m ethods.

Applying Theorem 2.3.1 and Lemma 2.1.4 one can prove

2.5.1. Proposition . Let A  G A42. Then the following conditions 
arc equivalent:

(a) A has a least T>b-majorant in A4;
(b) A is b-perfect;
(c) A is b-equivalent to a m atrix method.

As we know from the end of Section 1.3, there does not exist a 
matrix method 6-equivalent to the almost convergence (the Lorentz 
Theorem). Hence and from Proposition 2.5.1, Corollary 1.3.3 and 
Theorem 2 .1.1 we get

2.5.2. Corollary. There is no regular SM-method b-equivalent to 
the almost convergence.

If A  G A42, then by Lemma 0.1 we have V pb(A)  Ç V pb(A). It 
turns out that this inclusion can be proper. Namely, Lemma 2.2.1 
immediately implies

2.5.3. Theorem. There exists a method A  G A42 such that V pb(A) 
C V 0\A ) .

One can prove

2.5.4. Theorem. A regular SM-method A is b-perfect i f  and only  
i f V b(A) = V pb(A).

Clearly, the last theorem implies

2.5.5. Corollary. A regular SM-method is not b-perfect i f  and 
only i f  there exists a method B  G A4o such that V b(A)  Ç V b(B) and 
B (x o) ^  0 for some xo G V b(A).



2.6. Quasi ¿-order for SM -m ethods and matrix  m ethods.

Applying Proposition 2.5.1 and Corollary 2.5.5 one can prove

2.6.1. Theorem. Let A and D be regular SM-methods such that 
A Cb B and 'Dph(A) C  T>ph(B). Then there exists a regular SM- 
method C such that A Cb C Cb B, V pb(A) C  V pb(C) C  V r \ B )  and 
C is not b-equivalent, to any matrix method.

It is easy to show that under the assumptions of this theorem one 
can find A  and B  such that there is no regular matrix method A 
satisfying A Cb A C&B. Clearly, Theorem 2.6.1 implies

2.6.2. Corollary. Let A and 0  are regular matrix method such 
that A Cb 0- Then there exists a regular SM-method C such that 
A Cb C Cb 0  and C is not b-equivalent to any matrix method.

The following theorem is well know (see [5], Theorem 4.3.3).

2.6.3. Theorem. I f  (An) is a sequence of regular matrix methods 
such that A„_|_i Cb An for all n, then there exists xo £ Tb\Tc such 
that x0 £ T>b(An) for all n.

On the other hand, one can prove

2.6.4. Theorem. There exists a sequence (A n ) of regular SM- 
methods satisfying the following conditions:

(i) A n+i Cb A n for all n,
OO

(ii) n V(An)  = Tc.
7 1 = 1

3 . P e r f e c t n e s s  f o r  f u l l  c o n v e r g e n c e  f i e l d s

3.1. Topology for full convergence fields.

Let A =  (A-re) be a matrix method. Following Mazur and Orlicz 
[4] we shall regard V( A) to be a Z?o-space, i.e. a separable complete



metrizable locally convex space, under the coordinatewise operations

It is known that 'D(K) is an Fk-space, which means that it is a Frechet 
space such that the condition x n — x 0 in 'D(A) involves x ln —► x for 
each i.

Let A and 0  be matrix methods. From the closed-graph Theorem 
and since T>(A) and P(O ) are Fk-spaces, it follows that the inclusion 
map i. : D(A) t-> X>(0) is continuous. This implies that for any 
A € M  we have clA Tc C V ^{A \ M)  where clA Tc denotes the closure 
of Tc in the topology of T>( A). On the other hand, since for A, 0  G M  
we have A C6 0  provided that A C 0 , it follows from Lemma 2.1.4 
that V b(A) C £>p(A;M) .  More generally, it is known that clA Tc = 
T>P(A;M) (see [4], Theorem 4 and [9], Theorem 6 .3 ), which implies 
that clA V b(A) =  T>})(A;M).

Given an SM-method A = (a "fc), in the linear space V(A)  we 
introduce a locally convex topology defined by the following system 
of pseudonorms:

We shall regard V 0(A)  as a topological linear subspace of V(A).  
Clearly, V(A)  and V 0(A)  are B 0-spaces and separable Fk-spaces. 
Analogously as for matrices, we get

k
IMIrn =  sup 2:1 (rn =  1 ,2 , . . . ) ;  

k ¿=i

INI«- =  |* '| (¿ =  1, 2 , . . . ) ;

(n =  1, 2 , . . . ) ;

||x ||4 =  sup lim a”k x l
n kn



3.1 .1 . L em m a. Let A and D be. SM-rnethods such that 'D(A) C 
T>(B). Then the inclusion may i : 'D(A) V( B)  is continuous.

Note that if A is a matrix method, then the topology of D(A'r) 
(Z>(Af) =  £>(A)) coincides with that of I)(A).

Let now A =  (A"1) and 0  =  (0JJJ be matrices. Since the meth-
ods 0[A] and 0 # A  are equivalent by Proposition 1.1.3, we have 
X>(0[A]) =  X)(0 # A ) and the locally convex topology in X>(0[A]) is 
defined to be such topology in P (0 # A ), which means that it is given 
by the following system of pseudonorms:

If A  is an SM-method, then by a linear functional /  on T>(A) 
we shall mean an algebraically C-linear functional /  : T>(A) —> C 
continuous in the topology of T>(A). Applying the general form of 
such a functional one can prove

3.1 .2 . L em m a. Lei A be a convergence zero-preserving SM-method. 
I f  f  is a linear functional on T>(A), then the following decomposition 
holds:

(m =  1 , 2 , . . . ) ;

k I
||*||** =  sup Y  C  Y  x‘ (n =  1)2,• • • ; fc =  1,2, . . . ) ;

m=1 J=l 
k

(DI) f ( x )  -= <*» x ‘ + Y  £ ,3nk A 'lk(x ) +  £  7 n A n(x) +  6 A{x)
n= 1 k n

where H  < °o, \Pnk\ < oo (n = 1 ,2,..., I) and £ n |7 „| <  oo. 
Moreover, there exists an SM-method B such that V(A)  C T>(B) and



D(-)\T>(A) =  / .  Remark that such a method B  can be defined by the 
method A and the coefficients from decomposition (D 1).

It, turns out that if we omit the assumption of this lemma that A 
is convergence zero-preserving, then in general a linear functional on 
V(A)  may be only expressed in a form much more complicated than 
(D l). Clearly, we can reformulate Lemma 3.1.2 for an IPM-method 
0[A] where 0  =  (#,” ) and A =  (AJn). In this case decomposition 
(D l) takes the following form:

/

/(* )  =  y .  “�x' +  E  E E
(D2) * «=* m *

+ E c» E fl™ E A: "i i  +  i<li” E ^ E Ar * i
n in i m i

where |a,-| < oo, E m |6n “ 6» + I | < 00 (n =  *>2 , and 
Yin lr «l ^  00• particular, by putting 0  to be the identity matrix 
we get the following well-known decomposition of a linear functional 
/  on V(A)  (see [9], Theorem 5.2):

(D3) f (x )  =  ^  cii x l +  ^  bn An(x) +  c A(x)
t n

where l°i| < °°> Yin IM  < °0, ^ ne can see ^ lat f°r a m atrix A, 
by putting A to be the identity matrix in (D2 ) or by putting A in 
(D l) instead of A , we also get an analogous decomposition to (D3). In 
this case the assumption that the methods 0  and A are convergence 
zero-preserving plays an essential role.

3.2. P e rfec tn ess  in th e  classes M 2 and  M .

Let A  be an SM-method. If S  C V(A) ,  then by c \a  S  will be 
denoted the closure of S  in the topology of T*( A). One can see that 
Lemmas 3.1.1 and 3.1.2 imply

3.2 .1 . L em m a. Let A be a convergence zero-■preserving SM-method 
and let S  be a linear subspace ofT>(A). Then x £ cl^ S  if and only if



for any SM-method B  such that V(A)  Ç V( B)  and S (-) |5 | =  A(-)\S\ 
we have B(x)  = A(x).

This lemma immediately implies

3.2 .2 . T h eo rem . I f  A € A42, then V P(A] M 2) = clA Tc.

Since for any matrix method A we have V p(A) =  clA Tc, this the-
orem implies the following corollaries.

3 .2 .3 . C o rollary . I f A € M ,  then V P( A \ M 2) = V P(A).

3.2 .4. C o ro llary . Let A € A4. Then A is perfect in A42 i f and, only 
if it is perfect in A4.

One can prove

3.2.5 . L em m a. Let A] D A2 3  . . .  be a decreasing sequence of 
perfect regular matrix methods. Then the SM-method (An) is perfect 
in A42.

From this lemma and some other considerations one can derive

3.2 .6. T heo rem . There exists a simple regular SM-method which 
is perfect in A42 but is not equivalent to any matrix method.

This is the first fact indicating a difference between the perfectness 
and the 6-perfectness for SM-methods (compare Proposition 2 .5.1 and 
Corollary 2.1.2).

3.3. I te ra t io n  p ro d u c ts  o f regu la r  m a trix  tra n sfo rm atio n s .

If A is a regular matrix method, we set

R (A) =  (A~(x) : x € D~(A)} and 
R p(A) =  (A~(x) : x e  £>P(A)}.

One can prove

3.3 .1 . T heo rem . Let A and 0  be regular matrix methods satisfying 
the following conditions:

(i) R (A) PI T>(Q) is a closed subspace of T>(Q);
(ii) i f x  € D~(A) and A~(x)  6  R p(A), then x  6  DP(A).



Then PP(0[A];7W2) =  {x G 2>(0[A]) : A~(x) G cle  JP(A)}.

This theorem implies the following corollaries.

3.3.2. C orollary . Let A and 0  be regular matrix methods. I f  
R{A) =  T  and 0  is non-perfect, then 0[A] is non-perfect in A42.

3.3.3. C oro llary . I f  A and 0  are perfect regular matrix methods 
such that R (A) =  T, then 0[A] is perfect in A42.

It is seen that if A, 0 ] and 02  are matrix methods such that
01 ~  0 2, then 0i[A] ~  0 2[A]. In particular, 0i[A] is perfect in A42 
if and only if so is 02  [A]. It turns out that if Aj, A2and 0  are matrix 
methods such that Ai ~  A2, then the methods 0[Ai] and 0[A 2] may 
be not equivalent in general. More precisely, we have

3.3.4. T he o rem . There exist matrix methods Ai, A2, 0  G A4 with 
finite (infinite) rows satisfying the following conditions:

(i) Ai, A2 and 0  are perfect;
(ii) At ~  A2;

(iii) 0[Ai] is perfect in A i2;
(iv) 0 [A2] is non-perfect in A42.

Since the methods 0[A] and 0A are equivalent provided that 0  
has finite rows (Proposition 1.1.5), Theorem 3.3.4 implies

3.3.5. C oro llary . There exist matrix methods A, 0  G A4 with finite  
rows such that the methods A and 0  are perfect but the method A0 
is non-perfect.

One can prove

3.3.6. T h eo rem . There exist matrix methods Ai, A2 , © G -M with 
finite (infinite) rows satisfying the following conditions:

(i) A], A2 and 0  are non-perfect;
(ii) Ai ~  A2;

(iii) 0[Ai] is perfect in A42;
(iv) 0 (A.2] is non-perfect in A i2.

Clearly, this theorem implies



3.3.7. Corollary. There, exist matrices A, 0  G M  with finite rows 
such that the methods A and 0  are non-perfect, but the method A0 is 
perfect.

3.4. Reducible methods.

We shall denote by M  j the class of all reducible regular SM- 
methods. If S  Ç T, then by M 2r(S)  will be denoted the class of all 
regular SM-methods which are reducible over S.  Since every method 
from M  j. has a decomposable SM-representation, we may expect that 
properties of such methods which are connected with the perfectness 
should be analogous to those of methods from A42 which are con-
nected with the ¿-perfectness.

One can prove (compare Theorem 2.1.1)

3.4.1. Theorem. For any A  G TV~ (M) ,

V " (A ; M 2r(p (A )))  =  VP (A- M 2r) = V P(A).

This theorem implies

3.4.2. Corollary. If A  G TV~ (M) ,  then the following statements 
hold:

(1) A is perfect in M 2. if and, only if it is perfect in M.;
(2) A is perfectly inconsistent in M 2r if and only if it is perfectly 

inconsistent in M..

Applying decomposition {D 1) from Section 3.1 one has

3.4.2. Lemma. I f  A  G A i2, D G M 2 and T)(A) Ç T>{B), then there 
exists a method C G Ml(T>(A)) such that V(A)  Ç V(C)  and both B  
and C are consistent over D(A).

This lemma immediately implies

3.4.3. Corollary. For any A  G M 2r,

I y  (A- M 2) = V p(A-, M l ) .

Clearly, from Theorem 3.4.1 and Corollary 3.4.3 we get



3.4 .4 . C orollary . Let A  G M 2r'~(M ). Then the following condi-
tions are equivalent:

(a) A is perfect in AA2;
(b) A is perfect in AA2(V(A));
(c) A is perfect in AAf;
(d) A is perfect in AA.

Denote by AA2, the class of all regular SM-methods which have 
simple SM-representations perfect in AA2. It follows from Theorem 
3.2.6 that a method from AA2 need not be equivalent to any matrix 
method. A set S  C. T  is said to be a perfect simple field if there exists 
A G M 2 such that V(A)  = S.

One can prove

3.4 .5 . T h eo rem . If A  G A i2., then V P(A; ./Vi2) is a perfect simple 
field.

Clearly, this theorem and Corollary 3.4.3 imply

3.4 .6 . C oro llary . AA2 is exactly the class of all reducible regular 
SM-methods perfect in AA2 or equivalently in A42.

We shall regard the set T as a complex algebra under the coordi- 
natewise operations. Analogously as Lemma 2.2.1 one can prove

3.4 .7 . L em m a. There exist a method A  G AA2 and x0 £ V(A)  such 
that the following conditions hold:

(i) xq  is an invertible element of the algebra T  and A (x o) =  1;
(ii) A has a V-majorant in A i;

(iii) if B  is a V-majorant of A in A i , ,  then B (x o) =  0.

This lemma implies the following theorems.

3 .4 .8 . T he o rem . There exists a method A  € AA2 which has no 
V-majorant in AA..

3.4 .9 . T h eo rem . There exists a method A  £ A42i~(A4) such that 
W ( A )  C V P0(A).

It is seen that every method A satisfying the latter theorem cannot 
be equivalent to any matrix method.

Analogously as Theorem 2.5.4 one can prove



3.4.10. Theorem. Let A  6  M 2r*~{M). Then A is perfect in M 2 if  
and only if V(A)  =  V P(A).

This theorem immediately implies

3.4 .11. Corollary. A method A  € is non-perfect in M  
if and only if there exists a V-majorant B  of A in M o such that 
B (xo) ^  0 for some x0 € V(A).

3.5. Irreducible methods.

This section contains some existence results on irreducible methods 
with respect to the perfectness. These results can be proved by using 
special constructions. We present their list in which corollaries follow 
from the preceding theorems.

3.5.1. Theorem. There exists an irreducible method from M 2 which 
is perfect in M 2 and has no V-majorant in M .

3.5.2. Corollary. There exists an irreducible method from M 2 
which is perfect in M 2 and has no T>-majorant in M 2.

3.5.3 . Theorem. There exists an irreducible method from M 2 which 
is non-perfect in M 2 and has no V-majorant in M 2.

3.5.4 . Corollary. There exists an irreducible method from M 2 
which is perfect (non-perfect) in M 2 such that every its SM-repre- 
sentation is strongly indecomposable.

3.5.5. Theorem . There exists an irreducible method from M.2 which 
is perfect in the classes M 2 and M..

3.5.6. Theorem . There exists an irreducible method from M 2 vihich 
has a majorant in M  and is non-perfect, in the classes M 2 and M .

3.5.7. Theorem. There exists an irreducible method from M 2 which 
is non-perfect in M 2 but is perfect in M .
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Bronislav) Przybylski

O M ETOD ACH  SUM OW ALNOŚCI OK R EŚLO N Y C H  
PRZEZ CIĄGOW E M ETOD Y  M AC IERZOW E  

ORAZ O KR EŚLON YCH  PRZEZ ZŁOŻENIE  
PRZEKSZTA ŁCEŃ M AC IERZO W Y CH

Praca jest streszczeniem opartym głównie na mojej pracy doktor-
skiej z uwzględnieniem pewnych modyfikacji i uzupełnień . Na po-
czątku, po omówieniu ogólnego pojęcia metody w sensie teorii sumo- 
walności, wprowadzono pojęcie ciągowej metody macierzowej (se-
quential matrix method, SM-method). Dalej, zwrócono uwagę na 
równoważność takich metod z dobrze znanymi metodami określonymi



przez złożenie przekształceń macierzowych, która pozwala badać te 
ostatnie metody przez sprowadzenie ich do ciągowych metod macie-
rzowych. W szczególności, dotyczy to własności metod związanych z 
regularnością i prawie regularnością (Paragrafy 1.2 i 1.3) oraz zwią-
zanych z opisem topologii w pełnym polu metody (Paragraf 3 .1). 
Celem głównym pracy jest przedstawienie wyników w zakresie b- 
doskonałości i doskonałości regularnych ciągowych metod macierzo-
wych (Rozdziały 2 i 3) z zastosowaniem do opisu odpowiednich włas-
ności metod określonych przez złożenie przekształceń macierzowych.
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