ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 8, 1996

Aleksander Waszak

ON SPACES OF DOUBLE SEQUENCES GENERATED BY MODULI OF SMOOTHNESS

To Professor Lech Włodarski on His 80th birthday

For a given φ -function φ and an element x from the space X of all real double sequences. We first introduce a sequential φ -modulus ω_{φ} . Next, for a given function Ψ , we define the spaces $X(\Psi)$ and X_{ρ} generated by ω_{φ} . The purpose of this paper is to investigate properties of the spaces $X(\Psi)$ and X_{ρ} .

1. DEFINITIONS AND PRELIMINARIES

Let X be the space of all real bounded double sequences. Sequences belonging to X will be denoted by $x = (t_{\mu\nu}) = ((x)_{\mu\nu})$ or $x = (t_{\mu\nu})_{\mu\nu=0}^{\infty} = ((x)_{\mu\nu})_{\mu\nu=0}^{\infty}, y = (s_{\mu\nu}), |y| = (|s_{\mu\nu}|), x_p = (t_{\mu\nu}^p)$ for $p = 1, 2, \ldots$ By a convergent sequence we shall mean a double sequence converging in the sense of Prinsgheim.

For any two nonnegative integers m and n, we may define the sets $I_1 = \{\mu, \nu\} : \mu < m, \nu < n\}$, $I_2 = \{\mu, \nu\} : \mu \ge m, \nu < n\}$, $I_3 = \{\mu, \nu\} : \mu < m, \nu \ge n\}$ and $I_4 = \{\mu, \nu\} : \mu \ge m, \nu \ge n\}$. An (m, n)-translation of a sequence $x \in X$ is defined as the sequence

 $\tau_{mn} x = ((\tau_{mn} x)_{\mu\nu})^{00}_{\mu,\nu=0}$ where

$$(\tau_{\mu\nu}x)_{\mu\nu} = \begin{cases} \tau_{\mu,\nu} & \text{for } (\mu,\nu) \in I_1, \\ \tau_{\mu+m,\nu} & \text{for } (\mu,\nu) \in I_2, \\ \tau_{\mu,\nu+n} & \text{for } (\mu,\nu) \in I_3, \\ \tau_{\mu+m,\nu+n} & \text{for } (\mu\nu) \in I_4. \end{cases}$$

It is obvious that $((\tau_{00}x)_{\mu\nu})_{\mu,\nu=0}^{\infty} = ((x)_{\mu\nu})_{\mu,\nu=0}^{\infty}$ and, moreover,

$$\begin{aligned} (\tau_{m0}x)_{\mu\nu} &= \begin{cases} \tau_{\mu,\nu} & \text{for } 0 \leq \mu < m \text{ and all } \nu, \\ \tau_{\mu+m,\nu} & \text{for } \mu \geq m \text{ and all } \nu, \\ (\tau_{0n}x)_{\mu\nu} &= \begin{cases} \tau_{\mu,\nu} & \text{for } 0 \leq \nu < n \text{ and all } \mu, \\ \tau_{\mu,\nu+n} & \text{for } \nu \geq n \text{ and all } \mu. \end{cases} \end{aligned}$$

Next, we define $M^{mn}_{\mu\nu}(x) \equiv M_{\mu\nu}(x)$ by the formulae

$$M_{\mu\nu}^{mn}(x) = |(\tau_{00}x)_{\mu\nu} - (\tau_{m0}x)_{\mu\nu} - (\tau_{0n}x)_{\mu\nu} + (\tau_{mn}x)_{\mu\nu}|$$

for all μ and ν such that $\mu \ge m \ge 1$ and $\nu \ge n \ge 1$ and, moreover,

$$\begin{aligned} M^{00}_{\mu\nu}(x) &= 0 \quad \text{for any} \quad \mu = 0, 1, 2, \dots \text{ and } \nu = 0, 1, 2, \dots, \\ M^{m0}_{\mu\nu}(x) &= |(\tau_{00}x)_{\mu\nu} - (\tau_{m0}x)_{\mu\nu}| \quad \text{for any} \quad \mu \ge 1 \text{ and } \nu \ge 0, \\ M^{m0}_{\mu\nu}(x) &= |(\tau_{00}x)_{\mu\nu} - (\tau_{0n}x)_{\mu\nu}| \quad \text{for any} \quad \nu \ge 1 \text{ and } \mu \ge 0. \end{aligned}$$

Let us remark that

$$M_{\mu\nu}^{mn}(x) = \begin{cases} |\tau_{\mu,\nu} - \tau_{\mu+m,\nu} - \tau_{\mu,\nu+n} + \tau_{\mu+m,\nu+n}|, & (\mu,\nu) \in I_4, \\ 0, & (\mu,\nu) \in I_1 \cup I_2 \cup I_3, \end{cases}$$

and, moreover, for m = 0 or n = 0, we have $M_{\mu\nu}^{0n}(x) = |\tau_{\mu,\nu} - \tau_{\mu,\nu+n}|$ or $M_{\mu\nu}^{m0}(x) = |\tau_{\mu,\nu} - \tau_{\mu+m,\nu}|$, respectively.

By a φ -function we mean a continuous nondecreasing function $\varphi(u)$ defined for $u \ge 0$ and such that $\varphi(0) = 0$, $\varphi(u) > 0$ for u > 0 and $\varphi(u) \to \infty$ as $u \to \infty$. A φ -function φ is said to satisfy the condition (Δ_2) for small u if, for some constants K > 0, $u_0 > 0$, the inequality

 $\varphi(2u) \leq K\varphi(u)$ is satisfied for $0 < u \leq u_0$. A φ -function φ is said to satisfy the condition (Δ_2) for all u, if there exists a positive number K such that $\varphi(2u) \leq K\varphi(u)$ for all $u \geq 0$ (compare [3], [4], [5] or [9]). A sequential φ -modulus of a sequence $x \in X$ is defined as

(1)
$$\omega_{\varphi}(x;r,s) = \sup_{m \ge r} \sup_{n \ge s} \sum_{\mu,\nu=0}^{\infty} \varphi(M_{\mu\nu}^{mn}(x))$$

where φ is a given φ -function and r and s are nonnegative integers. It is easy to check that

$$\omega_{\varphi}(x;r,s) = \sup_{m \ge r} \sup_{n \ge s} \sum_{\mu=m, \nu=n}^{\infty} \varphi(M_{\mu\nu}^{mn}(x))$$

(compare e.g. [7] or [8]).

2. The space $X(\Psi)$

Let (a_{rs}) be a sequence of positive numbers with

$$(2) s = \inf a_{rs} > 0.$$

Moreover, let Ψ be a nonnegative nondecreasing function of $u \ge 0$ such that $\Psi(u) \to 0$ as $u \to 0_+$, $\Psi(u)$ is not the identity.

We define the set

(3)
$$X(\Psi) = \{ x \in X : a_{rs} \Psi(\omega_{\varphi}(\lambda x; r, s)) \to 0 \\ \text{as } r, s \to \infty \text{ for a } \lambda > 0 \}.$$

Theorem 1. Let φ be a φ -function which satisfies the condition (Δ_2) for small u, with a constant K > 0, and let the function Ψ satisfy the conditions $\Psi(0) = 0$ and (Δ_2) for small u, with a constant $K_1 > 0$. Then $x \in X(\Psi)$ if and only if

$$\lim_{r,s\to\infty}a_{rs}\Psi(\omega_{\varphi}(\lambda x;r,s))=0$$

for each $\lambda > 0$.

Proof. The condition $x \in X(\Psi)$ implies that

(4)
$$\lim_{r,s\to\infty} a_{rs}\Psi(\omega_{\varphi}(\lambda_0 x; r, s)) = 0 \quad \text{for some} \ \lambda_0 > 0$$

and there exists a constant $\overline{M} > 0$ such that $|t_{\mu\nu}| < \overline{M}$ for all μ and ν . For $\lambda > \lambda_0$, we choose an integer k such that $2^{k-1}\lambda_0 < \lambda < 2^k\lambda_0$ and $2^{k+2}\lambda_0\overline{M} \leq u_0$. Next, we have $\lambda M_{\mu\nu}(x) \leq 2^k\lambda_0 M_{\mu\nu}(x) \leq 2^{k+2}\lambda_0\overline{M}$ for all μ and ν ; by (Δ_2) , for the function φ with with a constant K > 0, we have

$$\begin{split} \omega_{\varphi}(\lambda x; r, s) &= \sup_{m \ge r} \sup_{n \ge s} \sum_{\mu,\nu=0}^{\infty} \varphi(\lambda M_{\mu\nu}(x)) \\ &\leq \sup_{m \ge r} \sup_{n \ge s} \sum_{\mu,\nu=0}^{\infty} K^{k} \varphi(\lambda_{0} M_{\mu\nu}(x)) = K^{k} \omega_{\varphi}(\lambda_{0} x; r, s). \end{split}$$

By (2) and (4), we have $\Psi(\omega_{\varphi}(\lambda_0 x; r, s)) \to 0$ as $r, s \to \infty$. It is seen at once that the condition $\Psi(\omega_{\varphi}(\lambda_0 x; r, s)) \leq \delta$ for sufficiently large r and s implies that $\omega_{\varphi}(\lambda_0 x; r, s) \leq M$ for sufficiently large r and s, where δ and M are some positive numbers. But the function Ψ satisfies (Δ_2) with the constant K_1 ; then

$$\Psi(2^{l}\omega_{\varphi}(\lambda_{0}x;r,s)) \leq K_{1}^{l}\Psi(\omega_{\varphi}(\lambda_{0}x;r,s))$$

for sufficiently large r and s, where l is chosen so that $K^k < 2^l$. Consequently,

$$a_{rs}\Psi(\omega_{\varphi}(\lambda_{0}x;r,s)) \leq a_{rs}\Psi(2^{l}\omega_{\varphi}(\lambda_{0}x;r,s)) \leq K_{1}^{l}a_{rs}\Psi(\omega_{\varphi}(\lambda_{0}x;r,s))$$

for sufficiently large r and s. Applying the above inequality and condition (4), we obtain $a_{rs}\Psi(\omega_{\varphi}(\lambda_0 x; r, s)) \to 0$ as $r, s \to \infty$ for each $\lambda > 0$.

Theorem 2. If Ψ satisfies (Δ_2) with a constant K_1 for small u, then $X(\Psi)$ is a vector space.

Proof. Let $x = (t_{\mu\nu}), y = (s_{\mu\nu})$. From the inequality $\varphi(u+v) \leq \varphi(2u) + \varphi(2v)$ and the properties of the φ -function φ and the function Ψ we get

(5)
$$a_{rs}\Psi\left(\omega_{\varphi}\left(\frac{1}{2}\lambda(x+y);r,s\right)\right) \leq a_{rs}\Psi\left(\omega_{\varphi}(\lambda x;r,s) + \omega_{\varphi}(\lambda y;r,s)\right)$$

 $\leq a_{rs}\Psi(2\omega_{\varphi}(\lambda x;r,s)) + a_{rs}\Psi(2\omega_{\varphi}(\lambda y;r,s)).$

Since $x, y \in X(\Psi)$, therefore, by assumption (2),

$$\Psi(\omega_{\varphi}(\lambda x; r, s)) o 0 \quad \text{ and } \quad \Psi(\omega_{\varphi}(\lambda y; r, s) o 0)$$

as $r, s \to \infty$, for some $\lambda > 0$. Next, from the properties of the function Ψ we obtain that there exist indices r_0 and s_0 such that $\Psi(\omega_{\varphi}(\lambda x; r, s)) < \delta$ and $\Psi(\omega_{\varphi}(\lambda y; r, s)) < \delta$ for all $r \ge r_0$ and $s \ge s_0$, where δ is some positive number. Consequently, $\omega_{\varphi}(\lambda x; r, s) \le M$ and $\omega_{\varphi}(\lambda y; r, s) \le M$; moreover, $\Psi(2\omega_{\varphi}(\lambda x; r, s)) \le K_1 \Psi(\omega_{\varphi}(\lambda x; r, s))$, $\Psi(2\omega_{\varphi}(\lambda y; r, s)) \le K_1 \Psi(\omega_{\varphi}(\lambda y; r, s))$ for $r \ge r_0$ and $s \ge s_0$. Thus

$$a_{rs}\Psi\Big(\omega_{\varphi}\Big(\frac{1}{2}\lambda(x+y);r,s\Big)\Big) \leq K_{1}(a_{rs}\Psi(\omega_{\varphi}(\lambda x;r,s) + a_{rs}\Psi(\omega_{\varphi}(\lambda y;r,s))) \to 0 \quad \text{as} \quad r,s \to \infty,$$

and $X(\Psi)$ is a vector space.

Theorem 3. Let us suppose that a function φ satisfies the following condition:

(a) there exists an $\overline{\alpha} > 0$ such that for each u > 0 and any α satisfying the inequality $0 < \alpha \leq \overline{\alpha}$, the inequality $\varphi(\alpha u) \leq \frac{1}{2}\varphi(u)$ holds.

Then $X(\Psi)$ is a vector space.

Proof. For $x, y \in X$ and some $\lambda, \alpha > 0$, we have

$$\sup_{m \ge r} \sup_{n \ge s} \sum_{\mu,\nu=0}^{\infty} \varphi(\alpha \lambda M_{\mu\nu}(x)) \le \frac{1}{2} \sup_{m \ge r} \sup_{n \ge s} \sum_{\mu,\nu=0}^{\infty} \varphi(\lambda M_{\mu\nu}(x))$$

and, similarly,

$$\sup_{m \ge r} \sup_{n \ge s} \sum_{\mu,\nu=0}^{\infty} \varphi(\alpha \lambda M_{\mu\nu}(y)) \le \frac{1}{2} \sup_{m \ge r} \sup_{n \ge s} \sum_{\mu,\nu=0}^{\infty} \varphi(\lambda M_{\mu\nu}(y)).$$

By these two inequalities and (5),

$$a_{rs}\Psi\Big(\omega_{\varphi}\Big(\frac{1}{2}\alpha\lambda(x+y);r,s\Big)\Big) \le a_{rs}\Psi(\omega_{\varphi}(\lambda x;r,s)) \\ + a_{rs}\Psi(\omega_{\varphi}(\lambda y;r,s)) \to 0 \quad \text{as} \quad r,s \to \infty,$$

for some $\lambda > 0$. Finally, $X(\Psi)$ is a vector space.

3. PSEUDOMODULARS AND PSEUDONORMS

Let ρ be a functional defined on a real vector space Y with values $0 \leq \rho(x) \leq \infty$. This functional will be called a pseudomodular if it satisfies the following conditions:

$$\begin{split} \rho(0) &= 0, \\ \rho(-x) &= \rho(x), \\ \rho(\alpha x + \beta y) &\leq \rho(x) + \rho(y), \text{ for all } x, y \in X \text{ and for any } \alpha, \beta \geq 0 \\ & \text{ with } \alpha + \beta = 1. \end{split}$$

If ρ satisfies the condition

$$\rho(x) = 0$$
 if and only if $x = 0$

instead of condition one, then ρ is called a moduler (compare e.g. [3], [4], [5] or [11]).

Now, we define in X the functional

(6)
$$\rho(x) = \sup_{r,s} a_{rs} \Psi(\omega_{\varphi}(x;r,s)).$$

Theorem 4. Let a function Ψ be concave and let $\Psi(0) = 0$. Then $X(\Psi)$ is a vector space and ρ is a pseudomodular in X.

Proof. First, let us remark that if Ψ is concave and $\Psi(0) = 0$, then Ψ satisfies (Δ_2) for all u > 0. Thus, by Theorem 2, the space $X(\Psi)$ is a vector space. Moreover, if $x, y \in X$ and $\alpha, \beta \ge 0, \alpha + \beta = 1$, then

$$\rho(\alpha x + \beta y) \leq \sup_{r,s} a_{rs} \Psi\Big(\sup_{m \geq r} \sup_{n \geq s} \sum_{\mu,\nu=0}^{\infty} \varphi(\alpha M_{\mu\nu}(x) + \beta M_{\mu\nu}(y))\Big)$$
$$\leq \rho(x) + \rho(y).$$

Theorem 5. If a φ -function φ is convex, then $X(\Psi)$ is a vector space and ρ is a pseudomodular.

Proof. A trivial verification shows that each convex function satisfies (a), and so, by Theorem 3, $X(\Psi)$ is a vector space. For $\alpha, \beta \geq 0$, $\alpha + \beta = 1$, and $x, y \in X$, we have

$$\rho(\alpha x + \beta y) \leq \sup_{r,s} a_{rs} \Psi(\omega_{\varphi}(\alpha x; r, s)) + \sup_{r,s} a_{rs} \Psi(\omega_{\varphi}(\beta y; r, s)) \leq \rho(x) + \rho(y).$$

Theorem 6. If Ψ is \overline{s} -convex with $0 < \overline{s} \leq 1$ (i.e. $\Psi(\alpha x + \beta y) \leq \alpha^{\overline{s}}\Psi(x)\beta^{\overline{s}}\Psi(y)$ for $\alpha, \beta \geq 0, \alpha^{\overline{s}} + \beta^{\overline{s}} \leq 1$) and φ is convex, then ρ is an \overline{s} -convex pseudomodular.

Proof. Let us notice that ρ is a pseudomodular (see Theorem 5), and that, for $x, y \in X$, we have

$$\rho(\alpha x + \beta y) \leq \sup_{r,s} a_{rs} \Psi(\alpha \omega_{\varphi}(x;r,s) + \beta \omega_{\varphi}(y;r,s))$$
$$\leq \sup_{r,s} a_{rs}(\alpha^{\overline{s}} \Psi(\omega_{\varphi}(x;r,s)) + \beta^{\overline{s}} \Psi(\omega_{\varphi}(y;r,s)))$$
$$\leq \alpha^{\overline{s}} \rho(x) + \beta^{\overline{s}} \rho(y)$$

where $\alpha, \beta \geq 0, \alpha^{\overline{s}} + \beta^{\overline{s}} \leq 1$.

The functional ρ defines the modular space

(7)
$$X_{\rho} = \{ x \in X : \rho(\lambda x) \to 0 \text{ as } \lambda \to 0_{+} \}$$

and the F-pseudonorm

(8)
$$|x|_{\rho} = \inf\left\{u > 0 : \rho\left(\frac{x}{u}\right) \le u\right\}$$

(compare [3], [4], [5]).

Theorem 7. Let Ψ be an \overline{s} -convex function, $0 < \overline{s} \leq 1$, let Ψ_{-1} be the inverse function to Ψ and, moreover, let φ be convex. Then the \overline{s} -homogeneous pseudonorm

(9)
$$||x||_{\rho}^{\overline{s}} = \inf\left\{u > 0 : \rho\left(\frac{x}{u^{1/\overline{s}}}\right) \le 1\right\}$$

satisfies the inequalities

$$\|x\|_{\rho}^{\overline{s}} \begin{cases} \geq \sup_{r,s \geq 1} \left(\frac{\omega_{\varphi}(x;r,s)}{\Psi_{-1}\left(\frac{1}{a_{rs}}\right)}\right)^{\overline{s}} & \text{for } x \in X_{\rho} \text{ and } \|x\|_{\rho}^{\overline{s}} < 1, \\ \leq \sup_{r,s \geq 1} \left(\frac{\omega_{\varphi}(x;r,s)}{\Psi_{-1}\left(\left(\frac{1}{a_{rs}}\right)\right)}\right)^{\overline{s}} & \text{for } x \in X_{\rho} \text{ and } \|x\|_{\rho}^{\overline{s}} > 1, \\ = 1 & \text{for } \sup_{r,s \geq 1} \frac{\omega_{\varphi}(x;r,s)}{\Psi_{-1}\left(\frac{1}{a_{rs}}\right)} = 1. \end{cases}$$

Proof. First, let us note that, by Theorem 6, ρ is \overline{s} -convex, so $\|\cdot\|_{\rho}^{\overline{s}}$ is an \overline{s} -homogeneous pseudonorm. If $\|x\|_{\rho}^{\overline{s}} < u < 1$, then

$$a_{r,s}\Psi\Big(\omega_{\varphi}\Big(\frac{x}{u^{1/\overline{s}}};\,r,s\Big)\Big) \le 1$$

and

$$a_{r,s}\Psi\Big(\sup_{m\geq r}\sup_{n\geq s}\sum_{\mu,\nu=0}^{\infty}\varphi\Big(\frac{1}{u^{1/\overline{s}}}M_{\mu\nu}(x)\Big)\Big)\leq a_{r,s}\Psi\Big(\frac{1}{u^{1/\overline{s}}}\omega_{\varphi}(x;r,s)\Big)\leq 1,$$

for all r, s. Thus $\omega_{\varphi}(x; r, s) \leq u^{1/\overline{s}} \Psi_{-1}(\frac{1}{a_{rs}})$ and, for $u \to \|x\|_{\rho^+}^{\overline{s}}$, we obtain first inequality. If $\|x\|_{\rho}^{\overline{s}} > u > 1$, then we have the condition

$$\sup_{r,s} a_{r,s} \Psi(u^{1/\overline{s}} \omega_{\varphi}(x;r,s)) > 1$$

which gives the second inequality. The last identity is evident.

4. Some Fréchet spaces

In the sequel, \overline{c} will denote the space of all double sequences $x = (t_{\mu\nu})_{\mu,\nu=0}^{\infty}$ such that $t_{00} = t_0$, $t_{o\nu} = t_1$ for $\nu = 1, 2, \ldots, t_{\mu 0} = t_2$ for $\mu = 1, 2, \ldots$ and $t_{\mu\nu} = t_3$ for all $\mu \ge 1$ and $\nu \ge 1$, where t_0, t_1, t_2 and t_3 are arbitrary numbers.

It is easy to verify that:

 \overline{c} is a subspace of the space of all convergent double sequences;

 $\overline{c} = \{ x \in X : \rho(x) = 0 \};$

if φ is convex, then $x \in \overline{c}$ if and only if $|x|_{\rho} = 0$;

if Ψ is concave and φ is \overline{s} -convex with some $0 < \overline{s} \leq 1$, then $x \in \overline{c}$ if and only if $|x|_{\rho} = 0$

(compare e.g. [2], [7] and [10]).

Next, let one of the following two conditions hold:

 φ satisfies (a),

 Ψ satisfies (Δ_2) for small u.

Applying the results of [2], we shall consider quotient spaces $\widetilde{X}_{\rho} = X_{\rho}/\overline{c}$ and $\widetilde{X}(\Psi) = X(\Psi)/\overline{c}$ with elements \widetilde{x} , \widetilde{y} , etc. Moreover, we may define the modular

$$\widetilde{\rho}(\widetilde{x}) = \inf\{\rho(y) : y \in \widetilde{x}\}$$

and the pseudonorms $|\widetilde{x}|_{\rho} = |x|_{\rho}, \|\widetilde{x}\|_{\rho}^{\overline{s}} = \|x\|_{\rho}^{\overline{s}}$ where $x \in \widetilde{x}$.

Let $(\varphi_j)_{j=1}^{\infty}$ be a given sequence of φ -functions. By formulae (1) and (6), we may introduce sequences $(\omega_{\varphi_j}(x; r, s))$ and $(\rho_j) \equiv (\rho_{\varphi_j})$, respectively. Next, applying definitions (3) and (7), we have two sequences of spaces $(X_j(\Psi))$ and $(X_{\rho_{\varphi_j}}) \equiv (X_{\rho_j})$, respectively. Moreover, by means of the sequence (ρ_j) we shall introduce sequences $(||x||_j^{\overline{s}}) \equiv (||x||_{\rho_{\varphi_j}}^{\overline{s}})$ and $(|x|_j) \equiv (|x|_{\rho_{\varphi_j}})$ (see (8) and (9)). Arguing as in [1] and [6], we shall define the extended real-valued modulars

$$\rho_0(x) = \sup_j \rho_j(x) \text{ and } \rho_w(x) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{\rho_j(x)}{1 + \rho_j(x)}$$

and the countably modulared spaces X_{ρ_0} and X_{ρ_w} .

Evidently, we have $X_{\rho_0} \subset X_{\rho_w} = \bigcap_{j=1}^n X_{\rho_1}$, and it is easily verified that:

Theorem 8. If Ψ is a function which satisfies the condition (Δ_2) for small u and if (φ_j) is a given sequence of φ -functions which satisfy the condition:

(b) there exist positive constants K, c, u_0 and in index j_0 such that

$$\varphi_j(cu) \leq K\varphi_{j_0}(u) \quad \text{for all } j \geq j_0 \text{ and } 0 \leq u \leq u_0,$$

then the spaces X_{ρ_w} and X_{ρ_0} are identical.

Theorem 9. Let φ_j for $j = 1, 2, \ldots$ satisfy the conditions:

- (c) for each $\varepsilon > 0$, there exist A > 0 and $\overline{\alpha} > 0$ such that, for any α and u satisfying the inequalities $0 < \alpha \leq \overline{\alpha}, 0 < u \leq A$, the inequality $\varphi_j(\alpha u) \leq \varepsilon \varphi_j(u)$ holds for all j,
- (d) for each $\eta > 0$, there exists an $\varepsilon > 0$ such that, for all u > 0and all indices j, the inequality $\varphi_j(u) < \varepsilon$ implies $u < \eta$.

Let Ψ be increasing, continuous, $\Psi(0) = 0$, and satisfying the condition:

(e) for arbitrary $v_1 > 0$ and $\delta_1 > 0$, there exists an $\eta_1 > 0$ such that the inequality $\Psi(\eta u) \leq \delta_1 \Psi(u)$ holds for all $0 \leq u \leq v_1$ and $0 \leq \eta \leq \eta_1$.

Moreover, let one of the conditions hold: Ψ is concave or φ_j (j = 1, 2, ...) are convex. Then X_{ρ_0} is a Fréchet space with respect to the F-norm $|\cdot|_{\rho_0}$.

Proof. Let $x_p \in \tilde{x}_p$, $x_p = (t^p_{\mu\nu})^{\infty}_{\mu,\nu=0}$ be such that $t^p_{1,\nu} = t^p_{\mu,1} = 0$ for all μ, ν and p, let (\tilde{x}_p) be a Cauchy sequence in \tilde{X}_{ρ_j} and, moreover, let j be an arbitrary index. For each $\varepsilon > 0$, one can find an N such that $|x_p - x_q|_{\rho} < a\Psi(\varepsilon)$ for p, q > N, where a is defined by (2). Thus there exists u_{ε} such that $0 < u_{\varepsilon} < a\Psi(\varepsilon)$ and

$$a_{rs}\Psi\Big(\omega_{\varphi_j}\left(\frac{x_p-x_q}{u_{\varepsilon}};\,r,s\right)\Big) \le u_{\varepsilon}$$

for p, q > N and all r, s. Hence

$$\omega_{\varphi_j}\left(\frac{x_p - x_q}{u_{\varepsilon}}; r, s\right) \le \Psi_{-1}\left(\frac{u_{\varepsilon}}{a_{rs}}\right) \le \Psi_{-1}\left(\frac{u_{\varepsilon}}{a}\right) < \varepsilon$$

for p, q > N and all r, s, where Ψ_{-1} denotes the inverse function to Ψ . Applying (1), we have

(10)
$$\sum_{\mu=m, \nu=n}^{\mu=\overline{m}, \nu=\overline{n}} \varphi_j \left(\frac{1}{u_{\varepsilon}} M_{\mu\nu} (x_p - x_q) \right) < \Psi_{-1} \left(\frac{u_{\varepsilon}}{a} \right) < \varepsilon$$

for p, q > N, $\overline{m} \ge \mu \ge m \ge r$ and $\overline{n} \ge \nu \ge n \ge s$. By (d), for each $\eta > 0$, one can find an $\varepsilon > 0$ such that

(11)
$$\frac{1}{u_{\varepsilon}}M_{\mu\nu}(x_p - x_q) < \eta$$

for p, q > N, $\mu \ge m \ge 1$, $\nu \ge n \ge 1$. Next, we have

$$|t_{\mu+m,\nu+n}^p - t_{\mu+m,\nu+n}^q| < A_1 + A_2 + A_3 + M_{\mu\nu}(x_p - x_q)$$

where $A_1 = |t_{\mu,\nu}^p - t_{\mu,\nu}^q|$, $A_2 = |t_{\mu+m,\nu}^p - t_{\mu+m,\nu}^q|$, $A_3 = |t_{\mu,\nu+n}^p - t_{\mu,\nu+n}^q|$. First, let us remark that, by the definitions of $t_{1,\mu}^p$ and $t_{\mu,1}^p$, we have $A_1 = A_2 = A_3 = 0$ for r = s = 1 and $\mu = \nu = 1$ and we see that $(t_{2,2}^p)_{p=1}^{\infty}$ is a Cauchy sequence. Next, by induction we obtain that $(t_{\mu\nu}^p)_{p=1}^{\infty}$ are Cauchy sequences for all μ, ν . Hence these sequences are convergent. We write $x = (t_{\mu\nu})_{\mu\nu=0}^{\infty}$ where $t_{\mu\nu} = 0$ for $\mu = 0$ or $\nu = 0$ and $t_{\mu\nu} = \lim_{p\to\infty} t_{\mu\nu}^p$ for $\mu, \nu = 1, 2, \ldots$. Taking $q \to \infty$ in (10), we have

$$\sum_{u=m, \nu=n}^{u=\overline{m}, \nu=\overline{n}} \varphi_j \left(\frac{1}{u_{\varepsilon}} M_{\mu\nu} (x_p - x) \right) \le \Psi_{-1} \left(\frac{u_{\varepsilon}}{a_{rs}} \right)$$

for p > N, $\overline{m} \ge m \ge r$, $\overline{n} \ge n \ge s$; and, for $\overline{m}, \overline{n} \to \infty$, we obtain

$$\sum_{\mu=m, \nu=n}^{\infty} \varphi_j \left(\frac{1}{u_{\varepsilon}} M_{\mu\nu}(x_p - x) \right) \le \Psi_{-1} \left(\frac{u}{a_{rs}} \right)$$

for p > N, $m \ge r \ge 1$ and $n \ge s \ge 1$. Consequently,

$$\omega_{\varphi_j}\left(\frac{x_p-x}{u_{\varepsilon}}; r, s\right) \leq \Psi_{-1}\left(\frac{u_{\varepsilon}}{a_{rs}}\right)$$

for p > N and $r, s \ge 1$, so

(12)
$$a_{rs}\Psi\left(\omega_{\varphi_j}\left(\frac{1}{u_{\varepsilon}}(x_p-x);r,s\right)\right) \le u_{\varepsilon} \text{ for } p > N \text{ and all } r, s.$$

We are going to prove that $\rho(\lambda(x_p - x)) \to 0$ as $\lambda \to 0_+$ for large p. Let N be chosen as above. For $\varepsilon, \lambda > 0$ and p > N, we have

$$\omega_{\varphi_j}(\lambda(x_p - x); r, s) = \omega_{\varphi_j}\left(\lambda u_{\varepsilon} \frac{x_p - x}{u_{\varepsilon}}; r, s\right)$$
$$= \sup_{m \ge r} \sup_{n \ge s} \sum_{\mu, \nu}^{\infty} \varphi_j\left(\lambda u_{\varepsilon} M_{\mu\nu}\left(\frac{x_p - x}{u_{\varepsilon}}\right)\right).$$

If we take $p \to \infty$ in (11), then $M_{\mu\nu}\left(\frac{x_p - x}{u_{\varepsilon}}\right) \leq \eta$. By (c) with $\overline{\varepsilon} = \varepsilon$, $\eta = A, \ \alpha = \lambda u_{\varepsilon} \leq \overline{\alpha} \text{ for } u = \frac{1}{u_{\varepsilon}} M_{\mu\nu}(x_p - x)$, we have

$$\varphi\Big(\lambda u_{\varepsilon} M_{\mu\nu}\big(\frac{x_p - x}{u_{\varepsilon}}\big)\Big) \leq \overline{\varepsilon}\varphi\Big(\Big(\frac{1}{u_{\varepsilon}} M_{\mu\nu}(x_p - x)\Big)$$

for p > N and $\mu \ge m \ge 1, \nu \ge n \ge 1$. Hence

$$\omega_{\varphi_j}(\lambda(x_p-x);r,s) \leq \overline{\varepsilon}\omega_{\varphi_j}\left(\frac{x_p-x}{u_{\varepsilon}};r,s\right) \leq \overline{\varepsilon}\Psi_{-1}\left(\frac{u_{\varepsilon}}{a_{rs}}\right) \leq \overline{\varepsilon}\varepsilon.$$

Finally, for $0 < \lambda < \frac{\overline{\alpha}}{u_{\epsilon}}$, we have

$$\rho_j(\lambda(x_p - x)) \leq \sup_{r,s} a_{rs} \Psi\Big(\overline{\varepsilon} \Psi_{-1}\Big(\frac{u_{\varepsilon}}{a_{rs}}\Big)\Big).$$

Next, we apply condition (e) with $v_1 = \Psi_{-1}\left(\frac{u_{\epsilon}}{a}\right)$ and $u = \Psi_{-1}\left(\frac{u_{\epsilon}}{a_{rs}}\right)$. For $\delta_1 > 0$ and $\overline{\varepsilon} = \eta_1$, we have

$$\Psi\Big(\overline{\varepsilon}\Psi_{-1}\Big(\frac{u_{\varepsilon}}{a_{rs}}\Big)\Big) \leq \delta_1\Psi\Big(\Psi_{-1}\Big(\frac{u_{\varepsilon}}{a_{rs}}\Big)\Big) = \delta_1\frac{u_{\varepsilon}}{a_{rs}}.$$

Thus

$$\rho_j(\lambda(x_p - x)) \le \sup_{r,s} a_{rs} \delta_1 \frac{u_{\varepsilon}}{a_{rs}} = \delta_1 u_s$$

for $0 < \lambda u_{\varepsilon} \leq \overline{\alpha}$. Since u_{ε} is fixed, this implies $\rho_0(\lambda(x_p - x)) \to 0$ as $\lambda \to 0_+$, for p > N, i.e. $x_p - x \in X_{\rho_0}$ for sufficiently large p. Since X_{ρ_j} is a vector space, $x \in X_{\rho_j}$. By (12), $\rho_0(\frac{1}{u_{\varepsilon}}(x_p - x)) \leq u_{\varepsilon}$ for p > N. Thus $|x_p - x|_{\rho_0} < u_{\varepsilon} a \Psi(\varepsilon)$ for p > N. Finally, $|x_p - x|_{\rho_0} \to 0$ as $p \to \infty$, which proves the completeness of the space X_{ρ_0} .

Theorem 10. Let a function Ψ satisfy the same assumptions as in Theorems 1 and 9 and let φ -functions (φ_j) , where $\varphi = (\varphi_j)$, satisfy conditions (c), (d) and the condition (Δ_2) (i.e. $\varphi = \varphi_j(u)$ satisfies the condition (Δ_2) for small u with a constant K > 0 independent of j). Then $\widetilde{X}_j(\Psi) \cap \widetilde{X}_{\rho_j}$ is a Fréchet space with respect to the F-norm $|\cdot|_{\rho_j}$ for $j = 1, 2, \ldots$

Proof. Let j be an arbitrary positive integer. It is sufficient to remark that $\widetilde{X}_j(\Psi) \cap \widetilde{X}_{\rho_j}$ is a closed subspace of \widetilde{X}_{ρ_j} with respect to the F-norm $|\cdot|_{\rho_j}$. Let $\widetilde{x}_p \to \widetilde{x}$ in $\widetilde{X}_{\rho_j}, \ \widetilde{x}_p \in \widetilde{X}_j(\Psi) \cap \widetilde{X}_{\rho_j}, \ x_p \in \widetilde{x}_p, \ x \in \widetilde{x}$. Then, for each $\lambda > 0$,

$$a_{rs}\Psi(\omega_{\varphi_j}(\lambda(x_p-x);r,s)) \to 0 \text{ as } p \to \infty$$

uniformly with respect to r and s. Applying the property of ω_{φ_j} and the condition (Δ_2) for φ with a constant K > 0, we obtain

$$\omega_{\varphi_j}(\lambda x; r, s) \leq \omega_{\varphi_j}(2\lambda(x_p - x); r, s) + \omega_{\varphi_j}(2\lambda x; r, s)$$
$$\leq K(\omega_{\varphi_j}(\lambda(x_p - x); r, s) + \omega_{\varphi_j}(\lambda x; r, s)).$$

Taking $\lambda > 0$ fixed, by the properties of Ψ , we may find some \overline{p} such that $\Psi(\omega_{\varphi_j}(\lambda(x_p - x); r, s)) < \delta$ for $p \geq \overline{p}$ and for all r and s, where δ is some positive constant. Hence there exists M > 0 such that $\omega_{\varphi_j}(\lambda(x_p - x); r, s) \leq M$ for $p \geq \overline{p}$ and all r and s. If k is chosen so that $K \leq 2^k$, then, from the inequality $\Psi(u + v) \leq \Psi(2u) + \Psi(2v)$ and the condition (Δ_2) for Ψ , for small u with a constant $K_1 > 0$, we

obtain

$$\begin{aligned} a_{rs}\Psi(\omega_{\varphi_j}(\lambda x; r, s)) &\leq a_{rs}\Psi(2K\omega_{\varphi_j}(\lambda(x_p - x); r, s)) \\ &+ a_{rs}\Psi(2K\omega_{\varphi_j}(\lambda x_p; r, s)) \\ &\leq K_1^{k+1}a_{rs}(\Psi(\omega_{\varphi_j}(\lambda(x_p - x)x; r, s))) \\ &+ \Psi(\omega_{\varphi_j}(\lambda x_p; r, s))) \end{aligned}$$

for $p \geq \overline{p}$ and all r and s. Let us fix $\varepsilon > 0$. There is an index $p_0 > \overline{p}$ such that

$$a_{rs}\Psi(\omega_{\varphi_j}(\lambda(x_{p_0}-x);r,s)) < \frac{1}{2}\varepsilon K_1^{-(k+1)},$$

But $x_{p_0} \in X_j(\Psi)$, and so, by Theorem 1, we obtain

$$a_{rs}\Psi(\omega_{\varphi_j}(\lambda x_{p_0}; r, s)) \to 0 \quad \text{as} \quad r, s \to \infty.$$

Thus, there exist r_0 and s_0 such that

$$a_{rs}\Psi(\omega_{\varphi_j}(\lambda(x_{p_0};r,s)) < \frac{1}{2}\varepsilon K_1^{-(k+1)}$$

for all $r \geq r_0$ and $s \geq s_0$. Finally,

$$a_{rs}\Psi(\omega_{\varphi_j}(\lambda x; r, s)) \le K_1^{k+1}\left(\frac{1}{2}\varepsilon K_1^{-(k+1)} + \frac{1}{2}\varepsilon K_1^{-(k+1)}\right) = \varepsilon$$

for all $r \geq r_0$ and $s \geq s_0$, which shows that $x \in X_j(\Psi)$. Since, by Theorem 9, $x \in X_{\rho_j}$, therefore $x \in X_j(\Psi) \cap X_{\rho_j}$, and so, $x \in \widetilde{X}_j(\Psi) \cap \widetilde{X}_{\rho_j}$.

We may also consider Theorems 9 and 10 with modular convergence (with respect to the modular $\tilde{\rho}(\tilde{x})$) in place of *F*-norm convergence. In the subsequent paper an application to problems of two-modular convergence of sequences will be shown.

REFERENCES

- J. Albrycht and J. Musielak, Countably modulared spaces, Studia Math. 31 (1968), 331-337.
- [2] T. Jędryka and J. Musielak, Some remarks on F-modular spaces, Functiones et Approx. 2 (1976), 83-100.
- [3] A. Kufner, O. John and S. Fučik, Function spaces, ACADEMIA, Prague, 1977.
- [4] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- [5] _____ and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
- [6] _____ and A. Waszak, On some countably modulared spaces, Studia Math. 38 (1970), 51-57.
- [7] _____, Generalized variation and translation operator in some sequence spaces, Hokkaido Math. Journal 17 (1988), 345-353.
- [8] _____, Sequence spaces generated by moduli of smoothness, Revista Math. Comp. (Madrid) 8 (1995), 1-15.
- [9] H. Nakano, Generalized modular spaces, Studia Math. 31 (1968), 439-449.
- [10] A. Waszak, On some modular spaces of double sequences I, Commentationes Math. 30 (1991), 255-264.

Aleksander Waszak

PRZESTRZENIE CIĄGÓW PODWÓJNYCH GENEROWANE MODUŁAMI GŁADKOŚCI

Dla danej φ -funkcji φ oraz elementu $x = ((x)_{\mu,\nu})$ z przestrzeni X ciągów rzeczywistych podwójnych, najpierw wprowadzony został ciągowy φ -moduł ω_{φ} wzorem

$$\omega_{\varphi}(x;r,s) = \sup_{m \ge r} \sup_{n \ge s} \sum_{\mu,\nu=0}^{\infty} \varphi(|(\tau_{00}x)_{\mu\nu} - (\tau_{m0}x)_{\mu\nu} - (\tau_{m0}x)_{\mu\nu} - (\tau_{m0}x)_{\mu\nu}|)$$

gdzie τ_{mn} oznacza (m, n)-translację ciągu $x \in X$. W dalszym ciągu

dla danej funkcji \varPsi zdefiniowane zostały przestrzenie

$$X(\Psi) = \{ x \in X : a_{r,s} \Psi(\omega_{\varphi}(x; r, s)) \to 0 \text{ dla } \lambda > 0 \text{ oraz } r, s \to \infty \}, \\ X_{\rho} = \{ x \in X : \rho(\lambda x) = \sup_{r,s} a_{r,s} \Psi(\omega_{\varphi}(x; r, s)) \to 0 \text{ gdy } \lambda \to 0^{+} \},$$

gdzie (a_{rs}) oznacza ciąg liczb dodatnich. Celem prezentowanej pracy jest podanie własności przestrzeni $X(\Psi)$ oraz X_{ρ} .

Faculty of Mathematics and Computer Science Adam Mickiewicz University ul. Matejki 48/49, 60-769 Poznań, Poland