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For a given ^-function ip and an element x from the space X  of 
all real double sequences. We first introduce a sequential (¿’-modulus 
u>ip. Next, for a given function IP, we define the spaces X ( ^ )  and 
X p generated by The purpose of this paper is to investigate 
properties of the spaces X('P) and X p.

1. D e f i n i t i o n s  a n d  p r e l i m i n a r i e s

Let X  be the space of all real bounded double sequences. Se-
quences belonging to X  will be denoted by x — „) =  ((x)^,,) or
x — =  V =  \v\ — (ls /*i'l)i xp — ,)
for p = 1 ,2 ,----  By a convergent sequence we shall mean a double
seqvience converging in the sense of Prinsgheim.

For any two nonnegative integers m and n, we may define the 
sets 7i =  : fi < m , v < n}, / 2 =  {v, v)  ■ H > m, v < n},
J3 =  : ¡x < m, v > ??.} and I4 = {/ i,v) : n > m,  u >  n}.
An (m, n)-translation of a sequence x € X  is defined as the sequence



Tmnx  — ((7’mna;)/ii/)^t,=o where

( T~n v 'x) n u —

where

TH,u for ( / ' ,  v) e  h ,

TH+m,u for (f i ,  v )  €  / 2 ,

Tn ,v + n for € / 3,
for (/<i/) € ¿t-

/*«')/*%=<) ~ ( ( X )/IV „-o and, mor

(7”inOa')/ii/ — ^ 

( TOnx \t i/  =

T,ltl/ for 0 < fi < m  and all u,
r /i+m,i/ for //. > m  and all u,
t>,„ for 0 < v < n and all /¿,
Tfx^+n for v > n and all /¿.

Next, we define M™n(x) =  M iiu(x) by the formulae

^ f i v  (x ) =  |(T00a:)/ii/ —  {jmOx )pv —  (T0 nx )nv +  (Tmnx ) ^ l/\ 

for all /i and i/ such that f.i > m  >  1 and i/ > ?i, > 1 and, moreover,

M nv(x ) =  0 for any ¡.t =  0 , 1, 2 , . . .  and i / =  0 , 1 , 2 , . . .  ,

^ \ iu  (■*") 1(^00^ ) ^  fo r  a n y  ^  1 a n d  i/ >  0,

- ^ ” ° ( x ) =  l(r ooa;)//i/ — (T0na;)Mi/| fo r  a n y  i/ >  1 a n d  / i >  0.

Let us remark that

A C "(* ) =
T ii+ m ,u  " f  T ' / i + m ^ + i i | )  ( /- i » €  -^4 ,

0, (p, u) G /] U / 2 U / 3 ,

and, moreover, for m =  0 or n  =  0 , we have M f f l x )  = 
or M™°(x) =  |rMji/ -  rM+miI/|, respectively.

By a (¿»-function we mean a continuous nondecreasing function v?(u ) 
defined for u > 0 and such that <p(0 ) =  0 , tp(u) >  0 for u > 0 and 
<p(u) —> oo as u —> oo. A (^-function ip is said to satisfy the condition 
( A 2) for small u if, for some constants K  > 0, Uq > 0, the inequality



<¿>(2?/.) < K<p(u) is satisfied for 0 < u < u0. A (¿»-function ip is said to 
satisfy the condition (z\2) for all u, if there exists a positive number 
K  such that tp(2u) < K<p(u) for all u > 0 (compare [3], [4], [5] or [9]). 

A sequential ^-modulus of a sequence x € X  is defined as

OO

(1) wv(x;r,8) = sup sup '¿T <p(M™n(x))m>r n>.s M I/=0

where <p is a given ^-function and r and s are nonnegative integers. 
It is easy to check that

OO

uv(x; r, a) =  sup sup ^  V>(M™n(x))
m > m > , /i=m u=n

(compare e.g. [7] or [8]).

2. T h e  s p a c e  X(\P)

Let (ara) be a sequence of positive numbers with

(2 ) s =  inf cirs >  0 .
r,s

Moreover, let & be a nonnegative nondecreasing function of u >  0 
such that \P(u) -> 0 as —► 0+ , i'(it) is not the identity.

We define the set

X ( $ )  = {x e  X  : arsil'(uip( \x \r ,4 ))  -> 0
(3) as r, s —> oo for a A > 0}.

T h eo re m  1 . Let ip be a (p-function which satisfies the condition 
(A 2) for small u, with a constant K  > 0, ancl let the function <P 
satisfy the conditions <F(0) =  0 and ( A 2) for small u, with a constant 
A'j > 0 . Then x G X('P) i f  and only if

lim ars&iuJeiXx; r, s)) =  0
r,s—+oo



for each A > 0.

Proof. The condition x 6 X(&)  implies that

(4) r lim^ arj)\P(ujp(\()x; r, s)) =  0 for some Ao > 0

and there exists a constant M  > 0 such that < M  for all // and v.
For A >_A0, we choose an integer k  such that 2*“ 1 A0 < A < 2*A0 and
2*+2A0M  <  u0. Next, we have A M ^ (i)  < 2*A0Mp ( i)  < 2k+2X0M
for all /i and //; by (zi2), for the function with with a constant 
K  > 0, we have

^V(A:r;r, s) =  sup sup y  ip(XM,lv(x))
m>r n>s „ 

oo

< s u p s u p  V  K kip(X0M liI/(x)) = K ku}v ( \ 0x-,r,s).
m>rn>sllu=o

By (2) and (4), we have i'(wv,(Aoa:; r, 5)) —» 0 as r, s —» 00 . It is seen 
at once that the condition •¿'(cj^Aox; r, s)) <  8 for sufficiently large 
r and s implies that ^ (A o x-,r,s) <  M  for sufficiently large r and 
s, where ¿1 and M  are some positive numbers. But the function \P 
satisfies ( A 2) with the constant K \ ; then

'P(2lu lfi( \ oX-,r,s)) < I i{<P(^(X0x;r,s) )

for sufficiently large r and s, where I is chosen so that K k < 2l. 
Consequently,

ar9^,(uip(X0x-,r,s)) < ars'P(2,Lov ( \ 0x; r, 5)) < K l a n &(uv ( \ 0x]r,s))

for sufficiently large r and s. Applying the above inequality and 
condition (4), we obtain a„!P(w„(A0:r;r,s)) -+ 0 as r ,s  -> 00 for 
each A >  0.



T h eo rem  2. If'P satisfies (A 2) with a constant, K \ for small u, then 
X ( &) is a vector space.

Proof. Let x — (t t y — From the inequality ip(u +  v) <
ip(2u) + ip(2v) and the properties of the (¿-function <p and the function 
$  we get

(5) araip (uv ( ^ \ ( x  + y)-,r,s)^j < ars'P(ulfi(\x', r, s) +  ^ ( X y ;  r, s))

< ars<P(2ulfi(Xx;r,s))  +  ars^ ( 2u lfi(Xy;r,s)).

Since x , y  G X(\P), therefore, by assumption (2),

i'(wv tA .r;r,ls)) -> 0 and i'(u>v,(Aj/; r, s) —* 0

as r, s —> 00 , for some A > 0. Next, from the properties of the 
function \P we obtain that there exist indices r 0 and so such that 
'P(ujlfi( \ x; r , s ) )  < 6 and ¿ '(^ (A y ; r,s ) ) <  6 for all r > r 0 and 5 >  s0, 
where S is some positive number. Consequently, uj^ X x -, r, s) < M  
and Ay; r, s) <M; moreover, \P(2ui^(Xx-,r,s)) <  A'j ^ ( ^ (A x ; r, 3)), 
'P(2u>lfi(Xy;r, s)) < K 1 &(ulfi(Xy, r, s)) for r > r 0 and s > s0. Thus

+  ara^(uJv (Xy; r,s)))  —> 0 as r, s —> 00,

and X(&)  is a vector space.

T h eo rem  3. Let us suppose that a function ip satisfies the following 
condition:

(a) there exists an a  > 0 such that for each u > 0 and any a 
satisfying the inequality 0 < a < a, the inequality <p(au) <  
¿<p(u) holds.

Then X(\P) is a vector space.

Proof For x , y  6 X  and some A, a  > 0, we have

O O  1 OO

sup sup Y  ipiaXM^ix) )  < -  sup sup ‘p(XMftI/(x))
m>r n>s _ n ^  m>r n>s _ n



and, similarly,

°° J oo
sup sup < -  sup sup V  y?(AM,iv(y)).
m >r n>s n L m >r n > a  n— — fl,u—l) — —

By these two inequalities and (5),

+ y);r ,s)^) < ara'I'(ulfi(\x-,r ,s))

-f a.rs$'(uip(\y;  r, ¿¡)) -4 0 as r, „s -> oo,

for some A > 0. Finally, X(\P) is a vector space.

3 . PSEUDOMODULARS AND PSEUDONORMS

Let p be a functional defined on a real vector space Y  with values
0 < p{x) <  oo. This functional will be called a pseudomodular if it 
satisfies the following conditions:

p( 0) =  0, 

p ( - x )  = p(x),

p(ax  +  fly) < p(x) +  p(y), for all x, y £ X  and for any a, (3 > 0 
with a  +  ft — 1.

If p satisfies the condition

p(x) — 0 if and only if x  =  0

instead of condition one, then p is called a moduler (compare e.e [3l
[4], [5] or [11]).

Now, we define in X  the functional

(6) p(x) =  supar.,lP(a)v,(x ;r,5 )).
r,s



T h eo rem  4. Let a function & be concave and let ¿'(O) =  0. Then 
X('P) is a vector space and p is a pseudomodular in X .

Proof. First, let us remark that if 'P is concave and *P(0) =  0, then [P 
satisfies (zl2) for all u > 0. Thus, by Theorem 2, the space X(\P) is 
a vector space. Moreover, if x , y  E X  and a , ft >  0, a  + ft = 1, then

OO

p(a:x + fty) < suparj,tfM sup sup ^  ^ (oi M^^x)  +  f t M ^ y ) ) )r,s 'm>rn>s )l l/=Q
< p(x) +  p{y).

T h e o rem  5. If  a ip-function ip is convex, then X('P) is a vector space 
and p is a pseudomodular.

Proof. A trivial verification shows that each convex function satisfies
(a), and so, by Theorem 3, X(\P) is a vector space. For a, ft > 0, 
a  +  ft = 1, and x, y E X ,  we have

p(ax  +  fty) < supnr9'P(u>ifi(ax-, r, s))
r,.s

+  sup ars'P{i0{p{fty, r, s)) < p(x) +  p(y).r,s
T h eo rem  6. I f  & is s-convex with 0 < s < 1 (i.e. \P{ax +  fty) < 
a 3\P(x)fts\P(y) for «, ft > 0, a 8 +  ft3 < 1) and <p is convex, then p is 
an s-convex pseudomodular.

Proof. Let us notice that p is a pseudomodular (see Theorem 5), and 
that, for x ,y  E X ,  we have

p(ax  +  fty) < sup ars'P(au>ip(x; r, s) +  f tuv (y; r, s))r,s
< sup ars{aH'P{u)v (x-, r, s)) +  fts^(u;v (y ;r, 5)))r,s
< a 9p(x) +  ft*p(y)

where a, ft > 0, a 8 + ft8 < 1.



The functional p defines the modular space

(7) X p = {x e  X  : p (\x )  -* 0 as A —► 0+} 
and the F-pseudonorm

(8) \x\p =  inf ju  > 0 : />(-) < it j  

(compare [3], [4], [5]).

T h eo rem  7. Let $  be an s-convex function, 0 < s <  1, let !^_j be 
the inverse function to & and, moreover, let <p be convex. Then the 
s-h om ogen eous pseu cion orm

(9) H ÎIJ == { u > 0 : P (^ j= )  < l }
satisfies the inequalities

Flip

> sup 
r,a> 1 (— )V ar , /

< sup
r , . > l  \ ! P _ i ( (  — ) /

=  1

for x 6 X p and ||x||£ < 1,

for x € X p and ||x||£ > 1,

, u j x ; r , s )
for sup ~ —, , =  1.

r,s> i * _ , ( ; * -
— a r  g

Proof. First, let us note that, by Theorem 6, p is s-convex, so || • ||^ 
is an s-homogeneous pseudonorm. If ||x||£ < u <  1, then

°r,s^ ( ^ (  — ; r , s ) )  < 1

and
oo

" - I T S  E  < a , , f ( - L Uv(X; r , , ) )  < 1 ,
— — /t,i/=0

for all r, s. Thus u>v(x \r ,s )  <  and, for ii —» ||x ||T+, we
obtain first inequality. If ||x||* > u > 1, then we have the condition

supari,!p(u1/?uv(x;r,.s)) > 1
r,s

which gives the second inequality. The last identity is evident.



4 . S o m e  F r £ c h e t  s p a c e s

In the sequel, c will denote the space of all double sequences x = 
(*m v)“ i/=o such that *1)0 =  io, tov -  *1 for v =  1 , 2 , . t ll() =  t 2 for 
//, — 1 ,2 ,. . .  and =  <3 for all // > 1 and u > 1, where <0, ¿1, ¿2 
and ¿3 are arbitrary numbers.

It is easy to verify that:

c is a subspace of the space of all convergent double se-
quences;
c = {x e  X  : p(x) =  0};
if ip is convex, then x G c if and only if \x\p = 0;
if $  is concave and ip is ^-convex with some 0 < s < 1, then
x G c if and only if \x\p =  0

(compare e.g. [2], [7] and [10]).
Next, let one of the following two conditions hold:

<y? satisfies (a),
'P satisfies {A2) for small u.

Applying the results of [2], we shall consider quotient spaces X p =
X p/c  and X(P)  =  X{'P)/c with elements x, y,  etc. Moreover, we 
may define the modular

p(x) =  inf{p(?/) : y G x}

and the pseudonorms \x\p = |x |p, ||ic||® =  ||a;||* where x e x .
Let (ipj)j l  1 be a given sequence of (¿»-functions. By formulae (1) 

and (6), we may introduce sequences (uVj (x; r, s)) and (pj) = (p^ . ), 
respectively. Next, applying definitions (3) and (7), we have two se-
quences of spaces (Xj(&))  and (X Pif. ) =  ( X Pj), respectively. More-
over, by means of the sequence (pj) we shall introduce sequences 
( N i p  =  (N I J ^  ) and (M i) =  (M *y ) (see (8) and (9))- Arguing as
in [1] and [6], we shall define the extended real-valued modulars 

Po(x) — sup^»ji(ar) and pw(x)  =  V
j 1 +



and the countably modulared spaces X Po and X Pw.
Evidently, we have X Po C X Pw = X P], and it is easily verified 

that:

T he o rem  8 . I f xt  is a function which satisfies the condition (A^) for 
small u and i f  (ipj) is a given sequence of ip-functions which satisfy 
the condition:

(b) there exist positive constants K , c, uq and in index jo such 
that

<fij(cu) < Kipj0(u) for all j  > jo and 0 <  u < iio,

then the spaces X Pw and X Po are identical.

T h e o rem  9. Let ipj for j  =  1 ,2 ,. . .  satisfy the conditions:
(c) for each e > 0 , there exist A > 0 and a  > 0 such that, for any 

a and u satisfying the inequalities 0 < a  < a, 0 < u < A, 
the inequality ipj(au) < £ipj(u) holds for all j ,

(d) for each 77 > 0 , there exists an e > 0 such that, for all u > 0 
and all indices j ,  the inequality ifj(u) < e implies u < rj.

Let & be increasing, continuous, 'P(O) =  0, and satisfying the condi-
tion:

(e) for arbitrary  >  0 and  ¿1 >  0 , there exists an r/i >  0 such 
that the inequality <  ¿li '(u )  holds for all 0 <  u <  V\ 
and 0 < t/ < i/ i.

Moreover, let one of the conditions hold: *P is concave or (¿>j (j  =
1 ,2 , . . .)  are convex. Then X Po is a Frechet space with respect to the 
F-norm  | • |Po.

Proof. Let xp G xp, xp = (¿£„)^i/=0 be such that t \  v = tp x =  0 for 
all //, v and p, let (xp) be a Cauchy sequence in X Pj and, moreover, 
let j  be an arbitrary index. For each e > 0, one can find an N  such 
that |xp — x q\p < «¿'(e) for p , q > N ,  where a is defined by (2). Thus 
there exists ue such that 0 < u£ < a i'(e) and



for p,q >  N  and all r, s. Hence

<  e

for p,q >  N  and all r, s, where !p_i denotes the inverse function to  
'P. A pplying (1 ), we have

/i=m, v=n
( 10) Y  - * ? ) )  <  < £

fiz=my u = n

for p , q > N , m > n > m > r  and n >  v >  n  >  s. By (d), for each  
i] >  0, one can find an e >  0 such that

(U ) *£7) ^  T]
£

for p, q >  JV, p >  m  >  1, v >  n >  1. N ext, we have

K / i + m ,  i / + n  v - f n  I ^  "I” ^ 2  “I-  A 3  -f- - £ g )

where A* =  |*£i(/ -  A 2 =  |i£+m>(/ -  f j + ||||„ |, A 3 =  |t % +n -  

tp,v+n\- F irst, let us remark that, by the definitions o f t \  and tp n  
we have Aj =  A 2 =  A3 =  0 for r  =  s =  1 and p =  u =  1 and  
we see that ( i 2 2)£Li is a Cauchy sequence. N ext, by induction we  
obtain  that are Cauchy sequences for all //, v. H ence these
sequences are convergent. We write x =  where =  0 for
ft =  0 or u =  0 and =  l im ,, - ^  for ^,1/ =  1 , 2 , -----  Taking
q —► 00 in (10), we have

/¿=rn, i/=n

£  <fj ( ^ M,iu(Xp _  * 0  -  ( ¿ ; )/x=m, i/=n

iov p  >  N ,m  >  m  >  r, n >  n >  .<?; and, for m , n —> 00, we obtain



for p > TV, m > r  > 1 and n > ,s > 1. Consequently,

for p > N  and r, s >  1, so

(12) ars& i ~ ( xp ~ x )'ir i s ) Sj  5: '<£ for p > N  and all r, 5.

We are going to prove that p(X(xp -  *)) -» 0 as A -+ 0+ for large 
p. Let jV be chosen as above. For e, A > 0 and p > N,  we have

/  X _ X \
u lfiJ(X(xp -  x) ;r ,$) = u v . [Xu£1-^----- ; r , s j

OO

=  sup s u p ^ ( a ueM ^ ( -  ~  J' ) ) .
m > r  n > s  '  /[¿¡is

If we take p —> oo in (11), then ------) < ?y. By (c) with e = e,

f] = A, a  = Xus < a for u = ■~Mfll/(xp — x ), we have

for p > N  and fi > m > 1, u > n > 1. Hence

u (fij(X(xp — x ) ; r , s ) <  eu Vj f — ------ ; i \ s )  <  e ^ - \  ( —— )  <  ee.
' Mg / \  dj'g /

Finally, for 0 < A < -S-, we have
U e

P j ( X ( x p -  X ))  <  s u p a ^ / W . ^ — ) Y  
r ,s  V a rs  /

Next, we apply condition (e) with «j =  ?£_, ( ^ )  and u =
For ¿i > 0 and e — 7ji, we have



Thus
11

Pj( \(xp -  x)) < sup arsS} —  =  8xue
r,3 drs

for 0 < Aue < ci. Since uc is fixed, this implies po(\(xp -  x)) —> 0 as 
A —> 0+, for p > N,  i.e. xp — x G X Po for sufficiently large p. Since 
X Pi is a vector space, x G X Pj. By (12), p0( ±  (xp -  x)) < ut for 
p > N.  Thus \xp -  x \Po < uea'P(e) for p > N . Finally, \xp -  x |Po -> 0 
as p —> oo, which proves the completeness of the space X Po.

T heo rem  10. Let a function satisfy the same assumptions as in 
Theorems 1 and 9 and let if-functions (ipj), where <p = (ipj), satisfy 
conditions (a), (d) and the condition (Z\2) (i.e. <p =  ipj(u) satisfies 
the condition (Z\2) for small u with a constant K  > 0 independent o f
j) .  Then Xj(<P) n X (lj is a Frechet space with respect to the F-norm
I • \Pj for j  =  1 ,2 ,. . . .

Proof.^ Let j be an arbitrary positive integer. It is sufficient to remark 
that Xj('P) n  X Pj is a closed subspace of X p. with respect to the F-
norm | • \p. . Let xp —> x  in X p. , xp G A j('P) fl X p. , xp G xp, x G x. 
Then, for each A > 0,

ara^(u>Vj (A(xp -  x); r, s)) -> 0 as p -> oo

uniformly with respect to r and .s. Applying the property of and 
the condition (Z\2) for y? with a constant K  > 0, we obtain

(Ax, 7, s) 5: (2A(xp x); s) 4* (2Ax; r , .s)
< K (u Vi (A(xp -  x); r, s) +  (Ax; r, s)).

Taking A > 0 fixed, by the properties of P, we may find some p such 
that (A(xp — x)\ r, s)) < 8 for p >  p and for all r and s , where
8 is some positive constant. Hence there exists M  > 0 such that 

(A(xp x); r, s ) <  M  for p > p  and all 7- and s. If k is chosen so 
that K  < 2fc, then, from the inequality \P(u +  v ) <  P(2u)  +  xI'(2v) 
and the condition (A?)  for 'P, for small u with a constant K\  > 0, we



obtain

ar.i^(w^ (Ax; r, .s)) < ars* P ( 2 K (A(xp — x ) ; /•, ,s))
+ ars'I,{2Kujlfi. (Ax,,; r, .s))

< A f + 1ars(^(aJw (A(xp —  x )x ;r, 5 ))

+  ^ ( ^ ( A x p j r , ^ ) )

for p > p and all r and Let us fix e > 0. There is an index p0 > p 
such that

a r ^ ( aV,-(A(xPo — x); r, 5 )) <  ie/ifj (t+ ,).

But, x po e  and so, by Theorem 1, we obtain

arn^r(U}ipj (Axpo; r, 5)) —► 0 as r , . s —>00 .

Thus, there exist ?’o and sq  such that

a™ ^¥>, (A(xp0;r ,s ) )  < ^ e K ~ (k+1) 

for all r >  r 0 and .s > ¿¡0. Finally,

ar,*Ky(Ax;r ,s))  < K t+ '(± e K r(k+1) + \eK ~ (k+l)  ̂ =  £

for all r > r0 and s > s0, which shows that x 6 Xj(S'). Since, 
by Theorem 9, x G XPj , therefore x G *,■(#) n X  . , and so, x G
x ^ ) n x Pr

We may also consider Theorems 9 and 10 with modular conver-
gence (with respect to the modular p(x))  in place of F-norm  con-
vergence. In the subsequent paper an application to problems of 
two-modular convergence of sequences will be shown.
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Aleksander Waszak

PRZESTR ZEN IE C IĄG Ó W  P O D W Ó JN Y C H  
G EN ER O W A N E M O DU ŁAM I GŁA DKO ŚC I

Dla danej (¿»-funkcji <p oraz elementu x = ((x)fltl/) z przestrzeni 
X  ciągów rzeczywistych podwójnych, najpierw wprowadzony został 
ciągowy (¿¡-moduł lov  wzorem

OO

u v (x-,r,s) =  sup sup Y  <p (\(t o o x )iiv ~  (rm
m>r n>s „-  -  ił,(/=0
(t"0nx ) "i” 1)

gdzie Tmn oznacza (m, n)-translację ciągu x 6 X .  W dalszym ciągu



dla. danej funkcji i '  zdefiniowane zostały przestrzenie

X(\P) = {x G X  : artS\P(u>v (x]r,s))  —> 0 dla A > 0 oraz r, s —> oo}, 

X p — {x e  X  : p( \ x)  =  supar„,!fr(a;¥,(a:;r,5)) -*■ 0 gdy A —► 0+ },
r,a

gdzie (a.r.,) oznacza ciąg liczb dodatnich. Celem prezentowanej pracy 
jest podanie własności przestrzeni X(\P) oraz X p.
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