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ON GENERAL ESTIMATIONS OF COEFFICIENTS 

OF BOUNDED SYMMETRIC UNIVALENT FUNCTIONS

Lac M > 1, be the class of functions

F(z> - z + £  Anp z"
n*2

holomorphic, univalent and bounded by a constant M in the unit disc 

E. If K it an odd positive integer» wheraes N-even, and X , ¿J 

are real numbers such that X > 0 and y > 0, then there exists a 

constant M ,M >1, such that, for all M > M in the class S„(M),
O O O R

the inequality

*KF + *NF * PK,M + PN,M

takes place, where

oo
v - PM(z) « z ♦ P zn, z 6 E,

M n-2 n,M

is a Pick function given by the equation'

---SL- 2 --------  . z s E.

0 - 5 )  c - » 2



t. INTRODUCTION

Let S be the class of functions

* £(1) P(z) - Z + 2-1 Anp zn
11*2

holomorphlc and univalent in the disc E » {z » Izl < 1}f and 

S(M), M > 1, the subclass of the above class, consisting of 

functions bounded by M, that is, of those which satisfy the

condition

IF (z)I < M, z e E.

Charzyrfski and Tammi set the following hypothesis for the 

classes S (M): for every N ■ 2,3,4, • there exists a con-

stant M̂ j > 1 such that, for all M < Mj, and every function F« 

e S (M), the sharp estimation

I A. I < P (N~1)IANf ' * N,M

takes place, where

'p(N-D . _ 1 _  . ____1_,
N ,M - N - 1 U  MN-1'

is the N-th coefficient of Taylor expansion (1) of the Pick

function w = P„K-1'(z) (symmetric, of order N-1) given by the 

equation

w z e E,

and satisfying the condition P^N 1^(0 ) = O.
This hypothesis was positively determined by S i e w i e r -

s k i  ([13], [14], [15]} and, in some other way, by S c h i f- 

f e r and T a m m i  [ 12 j.
Jakubowski raised for the classes S(M) a hypothesis antipo-



dal to the above-mentioned ones for every even N = 2, 4, 6 , 
there exists a constant Mĵ  > 1 such that, for all M > and 

every function F e S(M), the sharp estimation

(cf. [4]) is the N-th coefficient of Taylor expansion (1) of the 

Pick function w - PM <2) (symmetric, of order 1) given by the 

equation

and satisfying the condition PM (0 ) =* 0 .

The premises for raising this hypothesis were the estimations 

in the classes S(M), known earlier ([7], [10]):

on whose grounds, as can be seen, one may adopt, for instance,

M = 1 and M. = 700.
2 4 i 

However, for any even N. the hypothesis has not been deter-

mined till now.

Note that, for any odd N, the above hypothesis is not valid 

since, as early as N = 3, in the class S(M) the sharp * -

tion

,ANf' 4 PN,M

takes place, where

(2)
N,M

1*3
(m+1)!

(2m-1)
(s s )m
s, + .. ,+s =*N i m

1<Sj<N,j = 1 ,.. . ,m

/

(3) w z z e E,
2(1 - z)

I A j p l  ^ P 2 , M  M > 1



holds, where \ is the greater root of equation Xlog X - -M~1; 

the third coefficient of the Pick function w m PM (z) is« as 

can easily be verified, less than the right-hand side of (4).

Denote by SR and SR (M), M > 1, the subclasses of, respec-

tively, s and S (M) of functions with real coefficients.

Jakubowski raised for the classe» a hypothesis analo-

gous to the previous one: for every even N « 2,4,6, there

exists a constant M^ > 1 such that, for all M > M^ and every 

function’ F e sr (M), the sharp estimation

! " 4 PN,M

takes place, where P^ M is, as previously, the N-th coefficient 

of Taylor expansion (1) of the Pick function v - given

by equation (3) and satisfying the condition. PM <0) « 0.

An additional premise for the supposition and possibilities 

of a positive solution to the problem was the following result 

of D i e u d o n n é  ([1]): for every function F e SR,

(6) AnF < Pn,oo' n = 2,3,4,

where Pn ^  = n is the n-th coefficient in Taylor expansion (1)

of the Koebe function

(7) 3C (z) •*» P (z) = -- ----X, z e E ,
(1 - z )

being the limit case of the Pick function w * pm(z) as one pas-

ses in equation (3) with M to infinity. Moreover, Koebe func-

tion (7) is the only function for which equality in estimation

(6) holds when n is even.

The use of the above fact, .the differential-functional equa-

tion of extremal functions and the theory of r-Btructures all-

owed to determine J a k u b o w s k i '  s hypothesis positi-

vely in the class Sj.(M) ([4], [5], [16], [17]).

The present paper constitutes a generalization of the above 

result. Namely, in the class SR (M), M > 1, instead of single 

coefficients we consider some of their linear combinations of 

type XAj,? + p A ™,  where K and N are any positive integers,



X, p - any non-negative real numbers. In virtue of estimation

(5), it is evident that, if we assume K and N to be even, 

then, for M sufficiently large, the maximum of ^AKp + P a nf

is realized by the Pick function w » PM <2> only. Consequently, 

non-trivial is the case when .K,N are any positive integers, N

- even, K - odd. Besides, it can be seen from estimation (4) 

that the coefficients X, p cannot be arbitrary; in this con-

text, we shall further assume that X > 0 and p > 0 .

The method used in the paper allows one to avoid complicat-

ed integration of the differential-functional equation of ex-

tremal functions (e.g., [3], [6 ], [11]); instead, one makes use 

of the theory of r-structures and the above-mentioned result of 

Dieudonné, including the onliness of the Koebe function in esti-

mation (6 ) for n even.

2. THE FUNCTIONAL AND AUXILI\RY RESULTS

Consider a real functional 

(8y J(F) = àakf + p anf, F e Sr (M),

where K,N are any positive integers, K - odd, N - even; X, - 

any real numbers, X > 0, p > 0 .
It follows from the Weierstrass theorem that functional (8 ) 

is continuous, whereas the family SR W  is compact in the topo-

logy of almost uniform convergence. Consequently, for every M>  1, 

in the family 8R <M) there is at least one function realizing 

the maximum of functional (8). In the sequel, each function Fq 

for which

max J(F) = J(F )
F e S R (M) °

will be shortly called extremal function.

We shall now give some information on the Pick functions 

w = given by equation (3) and satisfying the condition

PM (0) = 0.

First of all, note that each of the functions PM (z)v M > 1,



belongs to the class SR (M) since It can be represented in the

form

PM (z) « z e E,

where 3C ia Koebe function (7). From this relation it also foll-

ows that every function w * * m PM ^ ' M > maP8 the

disc Izl < 1 onto the disc |w| < 1 cut along the radius from 

-1 to r„ * -2M + 1 + 2 VM(H - 1)k .

Next, note that, in accordance with (2), the convergences

(9) lira F_ „ - n, n * 2,3, ...,
M — +oo n'M

hold. .

For the extremal functions, the following property takes play

ce:

Let = 1 2 136 an^ se<iuence of real numbers, >

> 1, h * 1,2, ..., such that lim M. * +oo, and let
h-co n

(Fh (z))h - l ‘,2 , ...' 2 e E '

be any sequence of extremal functions realizing the maximum of 

functional <8) in the.respective classes SR <MU)* b » 1,2 , ... 

Then the sequence <Fh (z)>h = 1 2  is almo8t uniformly con-

vergent in the disc E to the Koebe function 3G(z).

Indeed, denote

Fh (*>

Since, for every 

therefore

PN,Mh < XAKh + F ^ h  < U + f N‘ 

of (9), we get

?'PK,Mh + P 

Consequently, in view

z + X j Anh z“, h « 1,2, ..., z e E.
n»2

h, h - 1,2 , ..., PM (z) e SR<Mh> and ph* SB'
h



(10) 11m [>AKh + p A^] - X K + p N. 
h-*+oo

Sine« the sequence <Fh*h«1,2, is a norinal and almost common-

ly bounded sequence in the disc E, lit suffices to prove that 

any subsequence of (Fh) i,2 , almost uniformly convergent

"In E, converges to the function 36.

So, take any such subsequence *Fj*j»i,2, __' almost uni“

formly convergent in the disc E to.some function F .• It follows 

from the compactness of the class SR that F e SR. From con-

dition (10) and the Weierstrass theorem we conclude that

X Arji + p Ajj ■ X K + p N , 

which, in view of Dieudonné estimation (6 ), yields

(11) W  " N-

and, since Koebe function (7) is the only one in the family SR 

for which (11) holds, there must be that ¥ * X.

Note that from the above property of extremal functions foll-

ows immediately the almost uniform convergence in E of the sequ-

ence (Fh<z)>h*=1 2 ' m * 2'3' **”  °f powers of extremal 

functions in the families SR(Mh), h * 1,2 , ..., to the func-

tion 3Cm (z), where 50 is a Koebe function. In consequence, we 

shall obtain another property of extremal functions.

Let m be any positive integer, n - any index, n = m, m + 

+ 1, ... For every number E > 0, there exists a constant > 1 

such that, for all M > M E and every function F extremal in 

the class SR (M> * where M > Mj., the condition

IA,Ï) - An S l < £

is satisfied, with that the coefficients , m * 2,3, ..., n =

= m, m + 1, ..., are given by the formula

(1 2 )



and ® , n = 2,3, • A}f "1*

Really, otherwise, for any fixed m and n' <* m, m + 1* ,

there exists a real number E_ such that, for every M P , one
° co

can find a constant M, M > M_ , and a function F extremal in
Lo

the class SR(M) , M > M£ , so that IÂ 5 - A ^  I > ZQ . Then

there exist an increasing sequence ,2 , °* raa* numbers

(lim M. • = +oo) and its corresponding sequence ^^«1,2,... ot 
h-co » *•••

powers of extremal functions in the classes W  ' h - 1 ' 2 ....

such that lA^* - A (mil > E_, which contradicts the almost uni- 
nF^ n% o

form convergence on the sequence 2 , . function

30m in the disc E.

3. PROOF OF THE FUNDAMENTAL THEOREM

We shall prove the following

Theorem. Let K, N be any fixed positive integers, K - odd, 

N - raven; X, p - any real numbers, X > O, u > 0. Then there 

exists a constant Mq, Mq > 1, such that, for all M > MQ and 

every function F e SR (M), the estimation

(13) XAKF + P ^ F  4 XPK,M + P PN,M

Is true, where

oo
W = PM(Z) * 2 + X] Pn M 

M n'M
zn

n=2

is a Pick function given by the equation

w _ z
T

■, z e E,

and satisfying the condition pu(0) * This funtion is the



only one for which, with a given M, M > Mq, equality holds in 

estimation (13).

*. The proof of the theorem will consist of two parts.

3.1. The differential-functional equation 

for extrema1 functions

Without loss of generality, assume that N < K.

It is well known [2] that every function w ■ f(z) ■ i F(z), 

where F is an extremal function in the family SR(M), M > 1, 

satisfies the following differential-funtional equation:

(14)

where

K . (m)
r*"' rr>

(15) +

(16) JClz) - A.(K-1)Akf + (i(N-1)ANF + ^

lK-m+1 ,F (z
m-1

N

(17) p s min Re 
0<x<23T

1
ix(m-1) i

the numbers A^™^, n = 1 , 2 n = m, t n + 1 , ..., at*':



by formula (12). The functions <M.(w) and rf*(2) assume, respec-

tively, on the circles Iwl » 1  and Is I » 1  real non-negative 

values. Either of these functions has on the respective circle 

at least one zero of even multiplicity. Let us still observe

that, if di(wQ) - o, then oW.(w0) ■ 0 , * 0 *nd * °*
o o

and if cV(z ) * 0 , then also t#*(I_) ■ 0 , Of (— ) - 0 ando o z^
o

#  (=-) - o.

From the previous remarks it follows that, for any C > 0, 

there exibts a constant M' > 1 such that, for all M > M' and

every z e A,

(18) lzK" 1 ( <#*(z) - dT (si)I < E,

where A is any compact set of the open plane,' dC(z) is given 

by formula (16), while Is defined as follows:

K

(19) OCAz) - A.(K-1)K + u(N-1)H + X X! (K-m+1) 2 (z® * 1 + i) +
m=2 -w~, z

m* 2

We shall determine the zeros of the function Of (z) on theo
circle Izl = 1. Since

N N

ZZ(N-m+1 ) 2 z"m+1 
m=2 n" m=2

m+1) “ z “” 1 (N-m+1)2 zN"ra+1 “ n2 zn
z n«*1

’ M-1

(( /L zn ) 1 z) ' z 
n*u

- — 3 [(H-1) 2 z2 - (2N2-2N-1)z t N2 - z’ N+2 - z"N+1] ,
(z-1)

therefore, proceeding analogously with the remaining addends of

0CQ (z), we get:



• V z) K(z+1)2 (z-1) + z(z+1)<zK- ^ ( 4 -(a -1) I L

+ p[-N(z+1)2 (z-1) + z(z+1)(zN - •

V]

Henea, after some transformations, we have:

(2 0 )

where

( 2 1 ) '

<<*)' « (z+ ^  L0 (z) ,

L0 (z) - X

(z-1)

K-1
2

2  (z2m + -̂ ¡¡) - (K-1 )
m*1

N
T

E
m*1

(z2ra" 1 + 1
2m- 1) - N

Prom (21) it can be seen at once that the only zero of the func-

tion Lq (z) on the circle |z| - 1 is the point z « 1 which, 

in view of (19), is not a zero of 0CQ (z).

So, finally, it follows from (20) that the function ^ o ^  

has on the circle Izl » 1 one double zero z * -1 and K - 2 

zeros Inside as well as outside this circle.

Let us surround all zeros of the function ^(z) with suf-

ficiently small disjoint discs. From the Hurwitz theorem and con-

dition (18) we infer that there exists some Mq > M' such that, 

for all M > Mq, zeros of the function <X'(z) given by formula

(16) lie, respectively, in chosen neighbourhoods of zeros of 

the function df*0 (z), with that in each of these neighbourhoods 

the number of zeros of both those functions, considering multi-

plicities, is the same.

It is well known [2] that the function <V(z) has on the ci-

rcle |z| *= 1 at least one zero of even multiplicity. Let 'ï *

♦ 1, IÏI *• 1, be one of these zeros. Then, for M > Mq, it lies 

in the vicinity of the double zero z = -1 of the function

Since tX1 (z) is a non-negative function of the circlec*yz)



IzI - 1, the multiplicity of each a zero is at least 2 » more-

over, in the same neighbourhood there must lie a zero 2 of 

multiplicity at least 2 , which contradicts the fact that the 

function JC (z) must have exactly two zeros there, considering 

multiplicities. Consequently, 2 ■ -1 is the only zero of the 

function df(z) on the circle Isl - 1.
So, It resultB from the form of dP(z) that, for M > MQ , 

this function can be represented as follows!

2
( 2 2 )  0C(z) “  - }  f -  M z J ,

where L(z) is some polynomial of degree 2K-4, and L(z) ♦ 0

for I z I * 1.
From the properties of the function <V(z), given before, we 

know that, if U z Q) - 0 , then also U 2Q) «• 0 , M — ) - 0 and
o

L(i-) * 0 .

We infer from equation (14) that the images C - f(z) of ze-

ros z, |2 l < 1, of the function JT(z) are zeros of the func-

tion cM-(w) since f’ (z) # 0 , whereas from the very form of the

function 01 (w) it follows that: also the points 8 , — • —  are
w ®

its zeros. Besides, it Is well known that the function <H.(w) has

on the circle (wl «= 1 at least one double zero wQ . From. the

above properties of the function M(w) we deduce that, for M >

> M°' ; ' ■■■■•: •

2 - 
(w-w ) A

(23) M(w) = — —  L(w),

where w * -1 or v - 1, L(w) is some polynomial of degree
O J

2K-4, and L(w) + 0  for Iwl - I .

To sum up, we have shown that, for M > Mq , every function

w = f(z) = ~F(z), where F is an extremal function, satisfies 

equation ( 1 , where M ( w) and df(z) are given by formulae

(23) and (22), respectively.



3»2. Determination of extremal function

From the R o y d e n theorem [8 ] one knows that every 

function w ** f(z) ■ •j~F(z) satisfying equation (14) maps the 

disc E onto the disc . Iwl < 1 lacking a finite number of ana-

lytic arcs 1^,12> ..., 1.., j > 1, with the following properties 

([9 ] , parts III, IV)s

1° The arcs l^.lj, 1̂  lie in the disc Iwl < 1  except, at

most, their ends.

2° They are disjoint except, at most, their ends.

3° Each common point of the arc and the circle Iwl =1, or of 

two arcs, is a zero of the function tM,(w) given by formula 

.(IS); the number of arcs and their behaviour in the neigh-

bourhood of such coiranon point depend on the multiplicity of 

the 2ero (see L9], part III).

4° The union of the arcs *•*' *j and of the ?lrcle lw l *
■ 1 constitutes a continuum, 

o 1
5 Along each of the arcs,

(24) Re J  ySL("w7 ~  * const,

where M. (w) is a function defined by (15), and under the 

integral sign there occurs any branch of the root.
o

6 At least one of the ends of each arc is a zero of the func-

tion cAl(w) given by (15).

7° None of the arcs passes through the point w « 0.

We shall now prove that every function w ■ f(z) * ^F(z), 

where F is an extremal function in the class S_(M) for M > M ,
K  O

maps the disc E onto the dies Iwl < 1 lacking one analytic arc 

with end at the point wQ . Really, let us take any funotion F 

extremal in SR(M) for M > toQ. Then the function w » f(z) =>

* satisfies differential-functional equation (14), where

the functions cU(w) and cJT(z) are given by formulae (23) and 

(2 2), respectively, while the boundary of the image of the disc 

E under this mapping consists of the circle Iwl = 1  and a fi-

nite number of analytic arcs described above.

Note that at least one of these arcs must have a common end 

with the circle Iwl =1, or else, the arcs along with the cir-



cle would not constitute a continuum. Without loss of generality, 

assume that 11 is the arc. According to property 3°, the comm-

on point of the arc 1, and the circle Iwl - 1 i* a zero of , 

the function cU(w) given by (23). Since this function has on 

the circle * Iwl » 1 only one aero wQ , therefore 11 must issue 

.from the very point. The point w() is a double zero of the func-

tion gU, (w) , and it is well known (L9], P* <6) that at the doub- 

le zero four arcs of (24), equally spaced at an angle of ^  , 

meet. Two of them are arcs of the circle Iwl ■ 1, and conse-

quently, of the remaining two, only one may enter the interior 

of the circle. This must be the arc .

Note further that the union of the remaining arcs 12, •••» lj 

is an empty set. For otherwise, the following cases would be 

possibles a) one of the arcs 1-, ..., la has a common end ♦

* WQ  with the circle Iwl = 1, so, according to property 3 , WQ 

would have to be a zero of the function ctl(w) on the circlf 

Iwl = 1, which is impossible since the only zero of this func-

tion on Iwl - 1 is the point wq> b) any of the arc* lj, •••» lj 

has a common end with the circle Iwl • 1 at the point wQ , but 

then, at this point, more than four arcs of (24) would meet, 

which contradicts the fact tha£ wQ is a double zero of the 

function cU(w) on the circle Iwl - 1j c) the end if of the

arc 1-, lying in the dies Iwl < 1, is also an end of any of
,o .

the arcs 12, ___ lj and then, according to property 3 , such

point if is a zero of function (23); but, as was noted earlier, 

each zero v) of the function cU(w), lying in the disc Iwl <1, 

is the image of some zero 2 of the function clf(z), lying in 

the disc Izl < 1, so 8 is an interior point of the image of 

the disc E under the mapping f, and consequently, it cannot 

lie on the boundary of this domain; d) none of the arcs lj, ...» 

1  ̂ has common ends with the circle |w| * 1 and the arc 1 ;̂ 

this case is also impossible since, then, the union of the arcs 

l^lj, __, 1̂  along with the circle Iwl ** 1 would not consti-

tute a continuum, i.e., property 4° would not hold.

Consequently, we have proved that the point wQ , wQ * -1, is 

the end of the only cut 1, in the image of the disc E under the
■I *

mapping w * f(z) * F(z), where F is an extremal function in

the class for M > MQ.



It follows from the properties of the classes SR (M) consi-

dered that the Image f(E) of the disc E under the mapping w *»

* f(a) ■ F(z) 1s symmetric with respect to the real axis, i.e., 

if w e f(E), then also w e  f(E).

Making use of the -above fact, we shall show that the arc 

1^ with end at the point wQ ■ -1 (or wQ ■ 1), symmetric with

respect to the real axis, lies entirely on the real axis (cf. [4]). 

Without loss of generality, assume that w q » -1.

Let h(t) be a homeomorphism of the segment <0 ,1 > into the 

arc 1^, such that h(O) ■ -1. Suppose, despite of the announ-

cement, that there exists a point tQ e (0,1 > such that 

In h(tQ) ♦ O, say, Im h(tQ ) > O. Denote T «• {te<0,tQ )s 

Im h(t) >0}. Of course,

(25) t* * sup T « T and t* < tQ .

Besides, from the continuity of hi

r''
(26) Im h(t) > O for t e (t*, tQ > .

Since, for every point h(t) , t e < t*, tQ >, the point hit) 

belongs to the arc 1^, therefore there exists a continuous 

function

(27) t - £(t) - h’1 (hTt)), te < t \  tQ >,

whose values range over an interval with endpoints

£(t*) - h“ 1(h(t*)) * h“1(h(t*)) = t* 

and 1

(28) “ h_1(h(tQ)) = tQ .

From (26) and (27) it follows immediately that

(29) t 4 (t*, tQ >.

From this and (25):
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(30) tQ < t*

and, of course, Im h(tQ) < 0. •

Let now T - (t 6 < 0,t ) t Im h(t) «0). Of course,o

(31) t*» sup $ e and t* <

Prom the continuity of h:

(32) Im h(t) < 0  for t e (t*, £Q >.

Consider, as before, a continuous function

(33) t - l(t) * h~1 (h(t)), t e  <t*r iQ >- 

whose values now range over an interval with endpoints

t(t*) - h"1 (h(t*)) - h"1 (h(t*)) - t*

and

t(t0) » h~ 1 (h(tQ)) ** tQ.

From (32) and (33) it follows immediately that

A  A  u A
t * (t*, tQ >.

From this and (31)i

(34) tQ < i*.

In view of (28),

tQ h“1(h(t^)) - h~1(h(t0)) - tQ ,

and consequently, taking account of the inequalities in (34), 

(31), (30) and (25), we obtain a contradiction.

' To sum up, since the point w * 0 belongs to the image of

the disc E under the mapping f, therefore, for M > M , every
1function w * f(z) * F(z), where F is an extremal function, 

maps the disc Izi < t onto the disc tw| < 1 lacking a segment



on the real axis: a) with one end at the point wo « -1 and the 

other one at some point of the negative real half-axis between 

-1 and 0 , or b) with one end at the point wQ * 1 and the oth-

er one at some point of the positive real half-axi-s between 0 

and 1. Consequently, from the properties of the Pick function

Pu(z) as well as from the Riemann theorem it follows that the 
M 1

only such function is in case: a) the function PM (Z) “ m* '

whereas in case b) the function

where *s a Pick function. Since PN M > 0 for M > Mq ,

the inequality

Is self-evident, and finally, the only extremal function realiz-

ing the maximum of functional (8) in the family SR(M) for M >

* M is the Pick function w ■ P„(2) given by equation (3) and
O M

satisfying the condition PM <0) ■ 0 .
In the case when N > K, the proof 6f the theorem is analo-

gous.

Consider in the family SR (M), M > 1, a real functional

where m • is any fixed positive integer, N - an even positive in-

teger, K., j « 1,2, m, - odd positive untegers, > 0,

Prom the theorem we have just proved follows

corollary. There exists a constant Mq , Aq > 1, such that 

for every M > M, and every function Fe  S_(M), the estimation
O K

00

m

V i .  I

m

holds, where



w ■ PM (z) ■ z + Z j P. M z e E,
M n-2 n 'M

is a Pick function given by equation (3) and satisfying the condi-

tion Pu (0) - 0. It li the only function for which equality holds 

in the above estimation.

4. SUMMARY

The paper includes the following result«

Let S_(M)( M > 1, be the class of functions
K

00

F (z) - z + A p zn 
n-2 n*

•

holomorphic and univalent in the disc E * {z i |zl < 1), with 

real coefficients and such that, if F e SR (M), then IF(z)l < M  

for z e E. Let further K, N be any fixed positive integers, 

K - odd, N - even; X, p - any real numbers, X > 0, p > 0.

Then there exists a constant Mq , Mq > 1, such that, for all 

M > Mq and every function F a SR(M) * t*ie aBtin'ati011

<35> XAKF + F *NF < X P K,M + P PN,M

is true, where

oo

w « PM (z) = z + Pn M *n # z 6 E,
M n«2 n,M

is a Pick function given by the equation

and satisfying the condition P^(0) = 0. This function is the 

only one for which, with a given M, M > MQ , equality holds in 

estimation (35).
From the theorem proved here follows the estimation <



< pNfM' N * 2,4,6, in the family SR(M), for M suffi-

ciently large ([4], [5]).
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0CÓI.NE OSZACOWANIE WSPÓŁCZYNNIKÓW FUNKCJI SYMETRYCZNYCH 

OGRANICZONYCH I JEDNOKROTNYCH

Praca zawiera rastępujaęy rezultat. Niech SR(M), M> 1, będzie klas«
funkcji

CO

F(z) - z + 2  A_ z" 
n-2 nF

holomorficznych, jednokrotnych w kole E » (z : Izl < 1}, o rzeczywistych 

współczynnikach i takich, ¿e jeéli Fe SR(H), to |F(z)l < M dla z 6 E. 

Niech dalej K, N będą dowolnymi, ustalonymi liczbami naturalnymi, K‘- nie- 

{><łrzy3i<i, N - parzyste; X, p - dowolnymi liczbami rzeczywistymi, X > 0, ji >
> 0, Wówczas istnieje stała 'M , M > 1, taka, że dla wszystkich M > M î 

-tażdej funkcji F e ¡>r (h ) prawdziwe jest oszacowanie

XAkf + {ł A f̂ < M + f! PNiM,



gdzie
00

w - Pu(*) * .* t !Lj m z e E,M n-2 n,M

jest funkcją Ficka daną równaniem

Z--- , z 6 E,

('-*)’ " - ■ > 2

i spełniającą warunek PMW  * O* Funkcja ta jest jedyną, dla której przy da-

nym M, M > Mq, zachodzi równość w oszacowaniu (35).


