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TRANSVERSALITY CONDITIONS 

FOR CONTROLS WITH BOUNDED VARIATION

In the present paper there has been obtained a necessary condi-

tion for the existence of extremum for the following optimization
1

problem: find the extremum of the functional J J(x,u,t)dt under the

conditions x -<f>(x,u,t), G°(X(0)) • 0, G (x(D) “ 0, where x is 

an absolutely continuous function, while u is function with bounded 

variation, taking values from a given set P.
4,1 -**-•

INTRODUCTION

' ’ ’ *■
Let us consider the following problems

1

I(x,u) - J* $(x,u,t)dt -* min,

0

X * if (x,u,t) ,

G°(x(O)) * 0, G1(x(1)/ = 0, 

u(t) e p .

T h is  i s  an optimization problem with non-fixed e n ds , one o f  the 

fundamental problems in optimization theory. The aim of the p re -
sent paper is to give necessary conditions for the problem f o r -

mulated above, with an additional constraint: the control u 

Possesses a finite variation. Such conditions ' f o r  a p ro b le m  w ith



fixed ends were given by the author in paper [43* In paper* [4] 

and [5]# the purposefulness of investigating problems of this 

type was justified, as well as the literature concerning these% 

problems was given.

Since we are going to make use of the Dubovitskii-Milyutin 

.method, we shall briefly discuss its essence.

Let E be a linear-topological space, and Q^, i * 1, 2, ..., 

n, subsets of this space. By F we shall denote a functional

defined>on E. Consider the following

Problem. Determine the minimal value of the functional F on. 

a set

In order to be able to formulate the fundamental theorem od Du-

bovitskii-Milyutin, we shall give a few definitions and nota-

tions.

Definition o.l. A set Q c E is called an inequality con-

Q is called an equality constraint.

Definition 0.2. A vector h e E is called a direction of de-

crease of the functional F at the point xQ e E if there exist 

a neighbourhood U of the vector h and numbers £Q > 0, a < '0, 

such that, for any h e u and any £ e (0,£ ), the inequality

Definition 0.3. Let Q be an inequality constraint. The vector 

h e E is called a feasible direction for the set Q at the po-

int xQ if there exist a neighbourhood U of the vector h and 

some Eq > 0, such that, for any h e u and £ « (0,£o), we have 

xq + h e Q.

Q

straint if Q° ^ 0 (Q° - the interior of the set Q); otherwise

F(xQ + £ h) < F ( x q ) + £ a

holds.



Definition 0.4. Let 0 be an equality constraint. The vector 

h « E is called a direction tangent to Q at the point xQ if 

therfe exists EQ > 0 such that, for any £ * (°,£o* there ®xists 

x m x(£) e (J such that x(E) = xQ + E h + r(£), where ()/£) r'E)

—  0 as E -> 0+,
By Kd , Kf and Kt we shall denote, respectively, the set 

6f directions of decrease of the functional F at the point xQ , 

the set of feasible directions for the set Q and the set of di-

rections tangent to Q at the point xQ. It turns out that the 

sets Kd and are open cones with apices at 0, whereas Kfc

is a cone.

Definition 0.5. The functional F is called regularly de-

creasing at the point xQ <= £ if the cone is convex. Analog-

ously, an inequality (equality) constraint is called regular if

Kj (Kt) is a convex cone.
Let E* at/and for a space dual to E. The set of all func-

tionals f s E* such that f(x> £ 0 for x e  K will be denoted 

by k*. It is easily noticed that K * is a convex cone with apex 

at o. This cone will be called a cone dual to- K.

The basic theorem of the Dubovitskii-Milyutin method goes 

as follows:

Theorem 0.1. Let F be a functional defined on E, and C

C E, i « 1, ..., n+1, subsets of the space E. Let ^ 0 for 

i * 1, ..., n (Q̂  - inequality constraints), and Q°+1 * 0 <Qn+1

- an equality constraint). By KQ , K^, i = 1, • ••» n, Kn+1 we 

shall denote, successively: the cone of directions of decrease 

°f the functional F at the point xQ , the cones of feasible di-

rections and the cone of tangent directions. Assume that these 

cones are convex. If xQ an argument of the local minimum 

the functional F on the set

then there exist functionals fQ, f,..... f„+1 not vanishing si-

multaneously and such that



n+1
(0.1) J Z  - O'

i «0 1

(0.2) fi K^, i * 0# 11 «•*.i n+1*

Equation (0.1) is called the Euler-Lagrange equation.

1. FORMULATION OF THE PROBLEM

Denote by V([a,b]) a set of functions with finite variation 

on the interval [a,b]. In the case [a,b] * [0,1], the set 

V([0,1]) will be denoted by V. For any arbitrary function g « V, 

we shall define the functional by the following formula«

1
(1.1) IIgII - lg(o) i + y  g,

o

where ^ g stands for a variation of the function g . on the in-
0 " 1 : ,

terval [0,1]. It is to be proved that the functional . thus de-

fined is a norm in the space V, and that the space V with the

norm so defined is a Banach space (cf. [3], XII, § 3).
r  1 2Denote by V a space of vector functions g ■ (g , g , ...,

gr) defined on the interval [0,1] and such that g1 e V for

each i * 1, ..., r, that is, Vr « V » ... » V..

r times

The space Vr with the norm defined by the formula

(1.2) "gllr llgi"2V i=i

is a Banach space. s ,

Definition l.l. By vector of variation of the function g

*  (g1, • • • ,  gr) we shall mean the vector



1 1 i 1 o 1 -
V  g *  i (V ? » V  9 « V g ) •
O 0 0 o

»' 4 • ■ f f ' •*/ ‘

Let S be a compact subset of the positive cone of the

apace Rr. Let us recall that S is called normal with respect 
' 1 

to each axis if and only if, together with any point (s ,
r 1 i xr *
s ) belonging to S, also a point, (s , ..., Xs , ..., s ) for

each X 6 [o,1], 1 “ 1, r, belongs to S.

Let

U ■ {u e Vr * u(t) e P, V  u e s l*
0

Where P is a closed convex subset of Rr with non-empty inter-

ior, while S is.convex and compact in Rr, normal with respect to 

each axis.

The set U will be called a set of admissible controls, and 

its elements - admissible controls.

Prom the assumptions on the sets P and S, as well as from 

the fact that convergence in norm in the space vr implies uni-

form convergence, follows at once

Lemma 1.2. The set U of admissible controls is a closed con-

vex set with a non-empty interior U°,

Consider the following

Problem i. Find the minimum of the functional
m ■ I

. 1

(1.3) I(x,u) «= J* $(x(t) ,u(t) ,t)dt, 

under the conditions

(1.4) x(t) = (p(x(t) ,u(t) ,t) ,

<1.5) G°(x(0))*=0, G1(x(1)) =0,

(1.6) u (•) e U,



where $ : Rn * Rr » [0,1] ~ R» If i S11 « Rr < [0,1] • Rn# x(») «

e w"1f G° : Rn - Rk, G1 : Rn - R1, . k,1 < n. stands for a

space of absolutely continuous functions with norm

1
(1.7) 11*11 -4.X (0) I +^l£(t)ldti

On the functions $ and <p we shall assume:

1° $(x,u,•) - measurable with fixed (x,u) < Rn « Rr,

2° there exist Gâteaux derivatives with respect to x and u 

which will be denoted by V $ u#

3° for each compact set C3 contained in Rn * Rr, there exists 

an M > 0 such that the moduli of VJ X and V $ u are bound-

ed by M for each (x,u> « Q,

4° one of the following conditions is satisfied:

a) V $ x is continuous with respect to u for (x#u) s Rn * if,
t e [0,1],

b) V $u is continuous with respect to x for (x«u) e Rn * Rr ,

5° <j>(x,u,<) - measurable with fixed (x,y>) « Rn n Rr,

6° there exist Fréchet derivatives continuous in the set Rn * 

k Rr x[o,l] with respect to (x,u), with fixed t « [0,1],

7° there exist some E > 0 as well as an<* a **1?

such that

lcpx (x,u,t)l £ r1 (t), |<fu (x,u,t)l < r2(t)

for any t e [0,1] and any x and u satisfying the condi-

tions

Ix - x0 (t)l£E and lu - uQ (t) I £ E,

where XQ (') and are ^ixed functions,

8° G°(•) and G1(*) are regular mappings, i.e. of class ,
o' 1 '

and the rows of matrics G (x) and G (x) are linearly in-

dependent vectors for each * e Rn.



To the problem thus formulated we shall apply the Dubovit-

skii-Milyutin method.

All considerations will be carried out in the space E «

■ « Vr with norm

(1.8) II (x,u) II - + ,,ullw'
I

where Itxllw and 11uIIv are defined by formulas (1.7) and (1.2), 

respectively.

It turns out that if we adopted E » * L̂ ,, then the 

set of those (x,u) for which u satisfies condition (1.6), 

after replacing the space Vr by L* in the definition of the 

set U, would have no interior points. Constraint (1.6) would 

therefore be (besides constraint (1.4)) an equality one, where-

as the Dubovitskii-Milyutin method admits only one constraint 

of this type.

The adoption of the space E - W^1 * Vr with the topology 

defined by norm (1.8) allows us to find, on account of Lemma 

1~2, that constraint (1.6) is an inequality one, and so, to 

Problem I the Dubovitskii-Milyutin method may be applied. '

2. ANALYSIS OF THE FUNCTIONAL

Consider in the space E » * Vr a functional defined by 

the formula

1

(2.1) I(x,u) ■ $(x(t),u(t),t)dt.

We shall prove the following

Lemma 2.1. If assumptions 1°-4° are satisfied, then there 

exists the Gâteaux derivative of the functional I, expressed by 

the formula

1

(2-2) I(X0 ,U0 )<X,Û) = J[(7«x (x0 (t),u0 (t),t>,*(t>) +

0 •



+ CV$u (xQ {t) ,u0 (t) ,t) ,0(t) )] dt,

and the cone KQ of directions of decrease at the point (xo (*)»

uq ( •)) is convex and defined by

Kq •» { (x,ü) « E t V K x 0 ,u0) (x,u) < 0}(2.3)

P r o o f .  Consider the quotient

(2.4)
I(xQ + £x,uq + £u) - I(XQ iUQ )

f(t,£)dt,

where

5(xo (t) + £3S(t) ,uQ (t) + £u(t),t) - j5(xo (t) ,uQ (t) ,t)

We shall calculate the limit of the function f(t,£) as E -» Os

lim f(t,E) «*
£ -0

= lim 
£-»0

$(xQ (t) + £x(t)/UQ (t) + £u (t ),t ) - $(xQ (t)#uQ (t),t)

lim
£—0

$(xQ (t) + Ex(t),uQ (t) + £u(t),t) -$(xo (t) »uQ (t) + £u(t),t)

+ lim 
£ —O

$(xQ (t),u0 (t) +£u(t),t) - $(xo (t)#uQ (t) ,t)

lim 
£ -0

(V$x (x0 (t) ,uQ (t) + Eu(t) ,t) ,Ex(t) )
_  . + - y-

+ lim 
£ -0

(V$u <xo ( t ) , U o ( t ) , t ) , E u < t ) )  o(E)
£ ■ + ~ T ~

Making use of assumption 4 a) (the continuity of the function 

7Jx with respect to ,u) , we get



(2.5) lim f(t,£) « (Vfl (x (t),u (t),t),S(t)) +
E-0

+ (V$u (x0 (t),u0 (t),t),u(t)).

In the case when assumption 4°b) is satisfied, we would obtain 

formula (2.5) in an analogous way by adding and subtracting

4 ( x o-(t) + ER(t) ,uQ (t) ,t).
Let us still observe that, in virtue of the mean value theo-

rem, we have

1
If(t,£)I < 1c f <V$x(*o(t) + £s«(t),u0 (t) + £u(t),t),Ex(t))dsl +

I

+ 'e J  (V$u(xQ (t) + Ex(t),uQ (t) + £su(t),t),Eu(t))dsl

and, after successive application of the Schwarz inequality, as-

sumption 3° and the Cauchy inequality, we get

lf(t,E) I £ M v'S'llxM ,u(•) II .

Consequently, the assumptions of Lebesque's theorem on passing 

with a limit under the integral sign are satisfied. Performing 

this passing on the right-hand side of (2.4), we obtain a formu-

la for the directional derivative of the functional I in the 

direction (x,u).
This derivative is linear, therefore convex and continuous; 

it is a G&teaux derivative, which proves the verity of (2.2). 

^rom Lenina 7.1 and Theorem 7.2 [1] the convexity of the cone 

of directions of decrease of the functional I and formula (2.3) 

follow, which concludes the proof.



3. ANALYSIS OF EQUALITY CONSTRAINTS

Let the differential equation

(3.1) + B(t)u(t), t e  [0,1],

with the initial condition

(3.2) ; x(Q) - 0

, be given, where x(t) e Rn , u(t) « Rr, the matrices A(»), B(«) 

are integrable. With equation (3.1) we shall associate the set

D ■ {z « Rn iz * x(1),x(t) satisfies (3.1) with oondition (3.2),

u(«) - any element of VrJ.

Definition 3.1. System (3.1) with condition (3.2) is said to 

be fully controllable in the space Vr if D ■ Rn. The following 

assertion is true:

Assertion 3.2. If, for each non-zero function V(t) being a 

solution to the equation '>

(3.3) _ m ’** (t>

the condition B# (t) V (t) ♦ 0 (to be more precise, B*(t) Vf {t) 

is different from zero on the set of positive measure) is satis-

fied, then system (3.1) with condition,(3.2) is fully control-

lable in the space V1.

Consider in the space E * W ^  * Vr a set

(3.4) Q * {(x,u) e E t x(t) *

= íf»(x(t) ,u (t) ,t) , G° (x(0)) - 0, G1 (x(1)) - 0) .

We shall prove the following



Lemma 3.3. If assumptions 1°-8° are satisfied, and the sy-

stem

(3.5) - tpx (x(t) ,u(t) ,t)x(t) + cpu<x(t) ,u(t) ,t)u(t)

-Vtf.th the initial condition x(O) - 0 is fully controllable in 

the space Vr, then the cone K of directions tangent to the set 

Q at the point (X0 *UQ) is a subspace of the form

(3.6) K - {(x,u) e E t >* (px(x0 (t) ,uQ(t),t)3c(t) +

+ cpu (xo (t),uo (t),t)u(t), G°'(x0 (0))x(0) ■= 0,

G1*(xo (1))x(1) f  0).

P r o o f .  It can be shown that, under the assumptions im-

posed on the function (p, the mapping «p t * Vr -* defin-

ed by the formula

(3.7) C<jp(x(*) ,u(*)) ] (t) ■ cp(x(t) ,u(t) ,t) for each t s [0,1]

is Fr^chet differentiable at the point (x0 'u0  ̂ an<* its derl-vat~ 
Ive is expressed by

(3.8) • [cp (xQ ( •) ,uQ ( •)) (x(*) ,u( •))] (t) =

" <Px (xo (t) 'uo (t) « ^ ^ ( ^  + <Pu (*o(t) 'uo (t) •

Consider a mapping P s * Vr— ► L1̂ * Rk * R1 defined by

the formula

(3.9) [P(x(*),u(*))](t) =

* (x(t) - <p (x(t),u(t),t),G°(x(0)),G1(x(1)>).

this situation, the set Q defined by (3.4) may be written 

down as follows:

Q = {(x,u) e E s P(x,u) = 0).



Taking into account formula (3.8) as well a* those of §0.2 [2], 

it can be ascertained that the mapping P 1» Fr^chet differen-

tiable at the point (x0 *u0> an<* the derivative of this mapping 

is expressed by

(3.10) 0'<x0 (.),u0 (.>>(x<.)f5M>](t) «

- (5(t) - ipx(x0 (t) ,uQ (t) ,t)x(t) -

- <pu (xo (t),uo (t),t)u(t)/G°'(xo (0))x(0),G1'{xo (1))x(1)).

We shall now examine the regularity of the mapping P at the 

point (x ,u ) (i.e. we shall investigate whether the condition
O O n k 1

Im P'(x C*)#u0 (*)) (E) « l" * R » R is satisfied). Let (a(*)» 

A,B) be an arbitrary element of the space L? * Rk * R*. In vir-• *

tue of assumption 8°, for any A e Rk, there exists some A e R? 

such that G°*(xq (0))A 1 = A and, for any B p R1, there exists 

some B1 e Rn such that G1 (xQ (1))B1 » B. Consider a differen-

tial equation

(3.11) z (t) * tpx (x0 (t) ,uQ (t) ,t)z(t) + a(t)

with the initial condition

(3.12) z(0) - A1.

The function (f>x (xQ (t) ,uQ (t) ,t) is integrable by assumption 7°. 

Consequently, there exists a unique solution to equation (3.11), 

satisfying initial condition (3.12) (th. of § 0.4 [2]). Denote 

this solution by z(t).

By hypothesis, system (3.5) is fully controllable.* So, there 

exist functions u(*) e Vr and y(*) e W ^ , such that the equa-

tion

(3.13) = q>x(x0 (t),u0 (t),t)y(t) t <pu (x0 (t),u0*t).t)B(t)

• ' '( ■
with the boundary conditions

(3.14) y (0) » 0, y (1) » B1 - z(1)

is satisfied.



Let us now put x(t) » y(t) + z(t). Evidently, x( • ) s w ^i» 

After sonve easy transformations we get

(3.15) [P'(x0 (*),u0 (-)>(*(•>,ÜC*))](t) *=(a(t) ,A,B).

We have thus found the element (3Î,ü) « E which is the pre-image 

of the element (a(*),A,B)i that means the regularity of the 

mapping P at the point (*0 M  'u0 (*> > • BV the Lyusternik theor-

em, we obtain the proposition of the lemma.

4. THE INTEGRAL MAXIMUM CONDITION

Denote by H a Hamilton function

'(4.1) H(x,u, ip» k.t) * (H>(t) ,lf(x(t) ,u(t) ,t) ) - X® (x(t) ,u(t) ,t) ,

where vp(t) is an absolutely continuous function satisfying the 

conjugate equation

(4.2) - -Cj>*(x(t) ,u(t) ,t) V (t) + XV ®x (x(t),u(t)>t),

a^d X is 'some non-negative constant.

Under the assumptions imposed, on the functions ® and (f , 

there exists the Gâteaux derivative of the Hamilton function with 

Respect to u which is expressed by the formula

(4.3) VHu (x,u,V, X,t) = <p£(x(t) ,u(t) ,t)Y(t) -XV®u (x(t) ,u(t) ,t) . 

The following theorem holds:

Theorem 4.1. Let assumptions 1°-8° be satisfied. If (x0 'u0 ' 

is a solution to Problem I, then there exist

1) a constant XQ ;> 0,

2) vectors X° 6 V e, X1 e R1, and

3) an absolutely continuous function satisfying the 

Quation

dV (t)
(4.4) — Ja.—  = -(p*(x0 (t),u0 (tj,t)tp0 (t) + xo7®x (xo (t),uo ft),t)



with the transversality conditions

(4.5) VQ (0) - -G0 '*(x0 «»)A,VV0 (1> - Gr # (*0 (1)) A1,

such that there cannot be sipHjltanaously »0, X° » 0, A,1 » .

■ O, H> (t) ■ 0 for which the relationship

(4.6) • J (VHu (x0 ,u^V0 , XQ ,t) ,uQ (t))dt -

1

max^ J(VHu (xo .uo , VQ , Xp ,t)^Q(t) )dt

is satisfied.

P r o o f .  Let, us formerly, E - » Vr. Let us intro*

duce the notations

(4.7) Q1 ** { (x,u) 6 E : x< •) « W^1 f| u(*)'« U) ,

(4.8) Q2 * {(x,u) e E : - <f(x(t) ,u (t) ,t) ,G°(x(0)) - O,

r • *• ‘

G1(x(1)) - 0).

With these notations Problem i may be formulated as follows. 

Find the minimum of the functional

1 � ’ -

1

(4.9) I(x,u) = j*$(x(t),u(t),t)dt

on the set Q = Q1 r\ Q^.

We shall now proceed to a thorough analyses of the elements

of our problems.

1) Analysis cf the functional. It follows from lean* 2.1 that» 

if assumptions 1°-4° are satisfied, then the cone Kq of direc-

tions of decrease is convex and defined by formula (2.3). Ass-

ume additionally that K0 0 (the possibility of rejecting this



assumption will be discussed in (6)). Under this assumption, in 

virtue of theorem 10.2 [1], we obtain that any functional fQ 

belonging to K* is of the form

1
(4.10) f0 (x,vi).» -A0 J [(V$x (xQ (t) , uQ (t) ,t) ,x(t) ) +

0

+ (V $u (xQ (t),uQ (t),t),u(t) )] dt,

where \ Q > 0.

2) Analysis of the constraint Q^. It follows from Lemma 1.2 

that the set U is closed and convex, and U° 1- 0 in the space 

Vr. Thus, the set Q1 - * U is also a closed, convex set, 

and Q° - * U° ? 0 in the space E. Let Kx stand for the 

cone of feasible directions for Q1 at the point (xo ,uq). Then, 

if f1 « K*, then f, - (0,f'), where f' e Vr* is a functional 

supporting the set U at the point uQ . This follows from theor-

em 10.5 [13.

3) Analysis of the constraint Q2> Assume additionally that 

for the full controllability of system (3.5) is

from Lemma 3.3 that, if assumptions 1°-8° are 

system (3.5) is fully controllable, then the cone 

directions is a subspace given by (3.6), that 

L2 where

« {(x,ü) e E t - q>x(x0 (t) ,uQ (t) ,t)x(t) +

+ <pu (x0 (t),u0 (t),t)G(t)},

L2 - {(X,G) 6 E s G° * (XQ(0) ) x(0) = 0,

G1*< XQ (1))x (1) = 0 ) .

1̂ and L2 are closed subspaces, and therefore weakly closed 

Qr»es (Cf. [1], § 2).

Note that, if f21 e L*, then

the condition 

satisfied.

It follows 

satisfied and 

*2 of tangent 

is, K2 « L1 r>

<4.11) L,

(4.12)



(4.13) f21(x,u) * 0 for (x,u) « L1♦

It is easy to notice that, if f22 « L2, then it is of the form,

(4.14) f22(x,u) = (X°,G0 '(ko (0))x(0)) ♦ ( X1 »Q1‘(xo (1))x(1)),

where X° e Rk, X1 e R1 (1*2 is determined by K+1 linear func-

tionals). Hence, since L* and L2 are weakly «-closed, and 

L* - finite-dimensional, we get that

(4.15) K* - (L1 r. L2)# =■ L* + L^.

That is, finally, if f2 e K*, then

(4.16) f2(x,u) ■ f21(x,u) + f22(x.,u),

where f21 and f22 satisfy conditions (4.13) and (4.14), res-

pectively.

4) The Euler-Lagrange equation. It follows from the Dubovit- 

skii-Milyutin theorem that there exist functionals fQ , f1, 

f̂  e E* not all zero, such that, for any (S,u) e E, . the equa-

tion

(4.17) .f0 (x,u) + f.,(5?,u) + f2(x,u) = 0

is satisfied, where fQ and f2 are defined by formulas (4.10) 

and (4.16), respectively, and f1(x,u) = fj(u) is a functional 

supporting the set 0 at the point u (•') .

5) Analysis of the Euler-Lagrange equation. Let us take any 

u(*) e vr and find some x(*) such that (x,u) e L1. By formu-

las (4.10), (4.13) and (4.14), we may write down the . Euler- 

-Lagrange equation in the form

1

(4.18) fj'(u) = XQ J (V $x (xQ (t),uQ (t),t),x(t)) +

0

+ (V iu (xQ (t),uQ (t),t),u(t)) dt -



- a°,G°'(xo (0)>x(0)) - U 1,G1'(x0 (1))S(1)).

Let V Q (t) be a solution to conjugate system (4.4). with trans- 

versality conditions (4.5). After simple transformations we get

1

»4.1») f^(G) - j (-(p*(xo (t) ,uQ (t) ft)Ve (t) +

o

+ XQV $u (xQ(t),uQ (t),t),u(t))dt,

/
where u(») is an arbitrary element of Vr, and f’ is a func-

tional supporting the set U at the point uq (•), i.e.

(4.20) f̂  (u) £ f°(uQ) for each u(*) e u.

With the notations adopted, this inequality may be written down

in the form of (4.6). The case \ = 0, X° = 0, A.1 = 0 and

V t} * 0 is imPossible since all the functionals f. , i = 0, 
1* 2, would then be identically zero.

b) Analysis of singular cases. In the course of the proof we 

assumed, in addition, two things: 1° Kq ? 0 and 2° the condi-

tion for the full controllability of system (3.5) is satisfied. 

If K0 * 0» then

(4.21) (V®x (xQ (t) ,uQ (t) ,t) ,x(t)) + (\7$u(xo (t] ,uQ (t) ,t) ,u(t)) = 0

for each (x,u) e e .

Putting = 1 and (1) = 0 ( A,1 = 0) and choosing x

such that (x,u) 6 L1 and G° (x (0))x(0), one can easily check 
that



that is

1 •

(4.23) j (-(pJJ(xo (t),uQ (t) ,t) Vc (t) +

O

+ V ^ J(x0 (t) ,uQ(t) ,t) ,u(t) )dt - O

for each u(«) e Vr, and consequently, (4.6) is satisfied.

Let us now suppose that the condition for the full controll-

ability of system ()3.5) is not satisfied. Putting XQ " 0, we 

shall find some V (t) being a non-zero solution to equation

(4.4), such that <Pj(xo (t> ,uo (t) Vo(t> “ °' -An<S *°' alBO in 

this case, V Hu s O for each ü(*) « Vr, i.e. condition (4.6) 

is satisfied. This completes the proof of the theorem.

Remark l. Condition (4.6) of the proposition of theorem 4.1 

is also satisfied in the case when boundary conditions (1.5) in 

the formulation of the problem are replaced by the conditions 

x(0) e SQ, x(1) e S1, where SQ and S1 are smooth, manifolds. 

Transversality conditions are then as follows: ^0 (°) i* trans-

versal (orthogonal to a tangent space) to SQ at the point 

x (O), V <1) - transversal to S1 at the point x (1).

Remark 2. In particular, if the left end of the trajectory

is fixed x(0) = c e Rn and the right one non-^fixed, then the

boundary condition should be adopted only for V (1) and It has 

the form ^Q (1) * 0.

Remar* 3. One knows (cf. [1] and [2]) that, for the full 

class of admissible Pontryagin controls, the integral maximum 

principle is equivalent to the pointwise maximum principle. It 

'is easy to notice that the class of admissible controls under 

consideration is not admissible in the sense of Pontryagin. It 

can be shown that the pointwisé maximum principle is not satis-

fied in the class of controls considered.
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WARUNKI TRANSWERSALNOSCI DLA STEROWAŃ

0 OGRANICZONYM WAHANIU

W pracy uzyskany jest całkowity warunek konieczny istnienia ekstremum w 

^stępującym zadaniu optymalizacyjnym: znaleźć ekstremum funkcjonału

1

J j(x,u,t) dt
0

Pr*y warunkach i - <p(x,u,t), G°(x(0)) •" 0, g'(x(1)) - 0, gdzie x jest 

ûnkcją absolutnie ciągłą, a sterowanie u jest funkcją o wahaniu ograniczo-

ny«, przyjmującą wartości z danego zbioru P. Zadanie to jest rozważane bez 

*®lożeii wypukłości funkcji (f i $ . Dowód oparty jest na metodzie Dubowic- 

*'̂ego-Milutina.


