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A class of summability methods being deformations of ordinary
arithmetical means is discussed.

Let ¢ be a function defined on the interval [0, 1] and integrable in
the sense of Riemann with fol p(t)dt = 1.
We adopt the following definition

Definition 1. We say that a sequence z = {£;} is summable by the
method (¢) to a number « iff

n—1
5 (e e

We then write (¢) — limg o0 ¢ = a. Obviously, each method (p) is
regular (permanent), i.e. £, — ¢ always implies () —lim, o0 £n = €.
We shall say that the method () is generated by . The class of all
such methods will be denoted by (R).
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Theorem 1. Every Cesaro method (C,r) (with r > 1) belongs
to (R).

Proof. Putting ¢ =1 we get (C,1). Assume r > 1. Then the method
(C,r) is given by the matrix

0<k<n,

Gl

n,

(n=k)M(n+r+1)

ro!ll'(n — k + 1)
{ 0 k>n.

We have to show that there exists an R-integrable function ¢, with
[} ¢r(t)dt =1 and such that

k ()
‘P"(;)::nCn—l,k (k=07""n—1; n=1’2’)

Let us notice that if k, < n,, n, — 0o and ks/ny, — z as s — oo,
then

rn l(n, — ks —1+71)

K sc(") A . gt
sl{gon n,—1,k, sllll.lo (n, = ks oS 1)'[‘(713 3 'I‘) 'f'(]. :z:) g
We put
‘Pr(lf)‘—‘ nC,g’;)l,ka :E:%, k=0,...,’n,—1; ! o i
r(l—z)! elsewhere

The function ¢, is bounded in [0,1] and continuous almost every-
where, so R-integrable. Obviously, ¢, generates the method (C, ).

Definition 2. We say that the method of Toeplitz (ax,k) belongs to
(K) iff

Qn k =(1_$n)$§f(xfz)’ k,n=0,1,...,
where f is R-integrable on [0,1] with fol Hitldl = "1 g Y,

T, — 1.
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Theorem 2 (Karamata [1]). If a sequence {£;} is bounded and
summable by the Abel method to ¢ then, for every function f, R-
integrable on the interval [0,1], we have

2R 1
Jim (1—1) Y t*f(t*)en = ¢ /0 f(u)du.

k=0

From the above theorem it follows that all methods in (K) are
regular and that, for bounded sequences, they are not weaker than
Cesaro means and consistent with them.

Theorem 3. (R) C (K).

Proof. Let a method (¢) € (R) be given. Let us put z, =1 —~1/n
(n = 1,2,...). We shall show first that there exists a function ¢
bounded, R-integrable on the interval e! < z < 1 and such that
9[(1 = 1/n)*] = p(k/n), for k = 0,... ,n~-1; n =1,2,.... To
this end, let us remark that k¥ < n iff (1 — 1/n)¥ > e~! and that
the sequence 8, = (1 — 1/n,)* (ks < n,) is convergent iff the limit
lim,_, o ks/n, exists.
Let us put

o(k/n) for z=(1-1/n)*, k=0,...,n—-1;
glz) = meee 1o o
p(—logz), elsewhere

Clearly, the function ¢ is bounded and continuous almost everywhere.
We put
0, 0 et
f(z) = ==
g(z)/z R T

It is easy to check that the function f and the sequence z, =1—1/n
determine a method from (K), identical with ().

From the above theorem it follows that every method () € (R) is
not weaker than (C, 1), for bounded sequences. On the other hand,
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K. Knopp [2] proved that there exists a bounded sequence sum-
mable (C,1) but not summable by any Euler method (E,p). This
implies that the Euler methods (E,p) do not belong to (R). It is
worth noting here that there exist two equivalent Hausdorff methods
such that one of them belongs to (R) and the second one does not.
Namely, the Cesaro method (C,2) € (R) but the Holder method
(H,2) ¢ (R). Indeed, the (H,2)-transform of {k} is of the form
n Y A S S monea =T et ¥ = 00, which is im-
possible for the method from (R).

Now, we are going to show a fact which is a little bit paradoxical.
Namely, from the next theorem it will follow that there exist in (R)

two nonequivalent methods generated by two characteristic functions
(of sets of measure one).

Theorem 4. Let C denote the Cantor set on the interval [0,1] and
let ¢ be the indicator of the complement of C. Then there exists
a sequence {{;} (unbounded!) which is (C,1) summable and is not
(¢)-summable.

Proof. From the geometric construction of the Cantor set we can
deduce the following inequality

i [ _2_
3 13;3"\/%>M(\/§), M > 0.

k3~"ec
We divide the set N of positive integers into two parts. Namely, a
positive integer k belongs to {2y iff there exists a positive integer n
such that k37" € C. Let £2; = N—{2;. We arrange 2, into increasing
sequence:

IR e
We do the same with §2,:
R T
Then we set
Vv for v € 2y,
€y =< =k, for- v=ia Lk

0 for =l drxe ke
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Let n € N, and let k& < ky... < k,,(n) be all numbers from (2,
not greater than n. Similarly, let I} < 13... < lj = be all numbers

from {2, not greater than n and such that I, > k,. Then we have
0<pn—gqu <6 (n=1,2,...). The sequence {£{,} defined above is
(C,1)-summable to zero. Indeed,

1 n
5

=| > a+s Y &

1<v<n l<u<n
VE 1 llEﬂz

On the other hand,

%Z:ISO( ) ka'—— Z €.

1<k<n
k/n€C

We already know that L 370 £ — 0. But

Z €k=3—1n- Z Vk — oo.

1<k<3" 1<k<3™
g k3~"eC

Thus the sequence (£,) is not summable (), which ends the proof.
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Ryszard Jagte

O METODACH SUMOWALNOSCI GENEROWANYCH
PRZEZ FUNKCIJE R-CALKOWALNE

W pracy oméwiono pewng klase metod sumowalnosci wynikajaca
ze znieksztalcenia srednich arytmetycznych funkcjami calkowalnymi
w sensie Riemanna.
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