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A class of summability methods being deformations of ordinary 
arithmetical means is discussed.

Let ip be a function defined on the interval [0,1] and integrable in 
the sense of Riemann with (p(t)dt = 1 .

We adopt the following definition

D efinition 1 . We say that a sequence x =  {£*} is summable by the 
method (ip) to a number a  iff

I™ 1 i ; V ( - ) 6 - « -n—*oo n \ n )k= 0

We then write (ip) — limjt-»oo Zk = Obviously, each method (tp) is 
regular (permanent), i.e. £„ —► £ always implies (ip) — l im « -^  £n =  £. 
We shall say that the method (tp) is generated by tp. The class of all 
such methods will be denoted by (R).



Theorem  1. Every Cesaro method (C ,r) (with r > 1) belongs 
to (R ).

Proof. Putting tp = 1 we get (C, 1). Assume r  > 1. Then the method 
(C, r) is given by the matrix

{ rn\r (n -  k + r) n . . ,
(n — k)\r(n  +  r  +  1) ’ ~  ~

0 k > n.

We have to show that there exists an J?-integrable function (pT with 
Jo V>r(t)dt =  1 and such that

( z ) = n C . l h *  <* =  ° ........ n ~ 1' "  =  1 , 2 ,---)-

Let us notice that if k„ < n s, ns —+ oo and ka/ n a —> x as s —> oo, 
then

lim n,C<r| , . =  lim r "« ! r (n - ~  7..1 +  r > =  r(1 _  x y - l  
' ’ * i-^oo (ns -  ka -  l ) \ r ( n a +  r) ‘ '

We put

<̂ r (a:) =  /  x =  n ’ ^ =  ' ‘ ‘ ’n ~  1; ^  =  1 , 2 , . . . ,
( r ( l  — ar)r_1 elsewhere

The function ipr is bounded in [0,1] and continuous almost every-
where, so 7?-integrable. Obviously, tpr generates the method (C, r).

Definition 2, We say that the method of Toeplitz (a„ *) belongs to 
(K)  iff

an,k (1 • ^ n ^ n f i '^ n ) ’ Jl =  0, 1, ,

where /  is /?-integrable on [0 , 1] with /(i )d i =  1 ,  0 <  x„ < 1 ,  

—► 1.
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Theorem  2 (K aram ata [1]). I f a sequence {£*} is bounded and 
summahle by the Abel method to £ then, for every function f ,  R- 
integrable on the interval [0,1], we have

¿ m j 1 -  0  J 2  t kf ( t k)tk = t  f  f{u)du.  
k= 0 “'°

From the above theorem it follows that all methods in (K)  are 
regular and that, for bounded sequences, they are not weaker than 
Cesàro means and consistent with them.

Theorem  3. (R) C (K).

Proof. Let a method (9?) £ (R) be given. Let us put x n =  1 — 1 / n  
(n =  1 ,2 ,. . .) .  We shall show first that there exists a function g 
bounded, J?-integrable on the interval e-1  <  x < 1 and such that
#[(1 -  l/n)*] =  ip(k/n), for k =  0 ,. . .  ,n  — 1; n  =  1 ,2 ,___ To
this end, let us remark that k < n iff (1 — \ / n ) k >  e-1  and that 
the sequence /?, =  (1 -  l / n s)k• (ks < na) is convergent iff the limit 
lim^-Kjo ks/n„ exists.

Let us put

g{x) =
' tp(k/n) for x = (1 -  l / n ) k, k = 0 , . . .  ,n  -  1;

n =  1 , 2 , . . .  ,
<p(— logo;), elsewhere

Clearly, the function g is bounded and continuous almost everywhere. 
We put

0 , 0 < x < e-1 ,
g(x) /x  e-1  <  x <  1./ (^ )  =

It is easy to check that the function f  and the sequence x n =  1 — 1 f n  
determine a method from (K ), identical with (i/?).

From the above theorem it follows that every method (</?) € (R)  is 
not weaker than (C, 1), for bounded sequences. On the other hand,



K. Knopp [2] proved that there exists a bounded sequence sum- 
mable (C, 1) but not summable by any Euler method (E ,p ). This 
implies that the Euler methods (E , p ) do not belong to (R ). It is 
worth noting here that there exist two equivalent Hausdorff methods 
such that one of them belongs to (/?) and the second one does not. 
Namely, the Cesaro method (C, 2) G (R ) but the Holder method 
(H, 2) ^ (/?.). Indeed, the (H,  2 )-transform of {£&} is of the form

n_1  E !t=i ( E ”=* so nan,i = E ”=i v ~ x  °°> which is im'
possible for the method from (R).

Now, we are going to show a fact which is a little bit paradoxical. 
Namely, from the next theorem it will follow that there exist in (R) 
two nonequivalent methods generated by two characteristic functions 
(of sets of measure one).

Theorem  4. Let C denote the Cantor set on the interval [0,1] and 
let kp he the indicator of the complement of  C. Then there exists  
a sequence {£*} (unbounded!) which is (C, 1) summable and is not  
(<p)-summable.

Proof. From the geometric construction of the Cantor set we can 
deduce the following inequality

3_" £  M > 0 -
l < i t < 3 n
k3~nec

We divide the set N of positive integers into two parts. Namely, a 
positive integer k belongs to Q\ iff there exists a positive integer n 
such that G C. Let i? 2 =  N —i?i. We arrange Q\ into increasing 
sequence:

k\ < ¿2 . . .  .

We do the same with 1?2:

Then we set

6  =  <

' y/v for v € Q\ ,
- \Z k l  for v =  la, la >  ka,
0 for v — la, la < ka.
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Let n £ N, and let k\ < • • • < &p(n) be all numbers from 
not greater than n. Similarly, let l\ < 1'2 . . .  < V be all numbers 
from i?2 not greater than n and such that /,, > fc*. Then we have 
0 < pn — q„ < 6 (n =  1 ,2 , . . .  ). The sequence {£„} defined above is 
(C, l)-summable to zero. Indeed,

l< i/< n  1 < i/< n
v £ i7\ v G

=  V ^ l  < ^ 6 ^ - + o .
a=l s= l

On the other hand,

i 71 j i n i 
i 5 > ( i w  =  i £ 6 - i  £  6 .
n L—4 \ n / n 1' n '

*=1 *=1 1 <fc<n
fc/nGC

We already know that ^ ]C*=i £* 0. But

^  E  ^  ^ ^ O O .
l < * < 3 n l < f c < 3 n
f c 3 ~ " e C  f c 3 - " € C

Thus the sequence (£„) is not summable (</?), which ends the proof.
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O M ETO D A C H  SUM O W ALNO ŚC I G E N ER O W A N Y C H  
PRZEZ FU N K C JE 7?-CAŁKOWALNE

W pracy omówiono pewną klasę metod sumowalności wynikającą 
ze zniekształcenia średnich arytmetycznych funkcjami całkowalnymi 
w sensie Riemanna.
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