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ON ALMOST RIGID MATHEMATICAL
STRUCTURES

We discuss a concept of an almost rigid mathematical structure
and a concept of an almost rigid mathematical structure in the strong
sense.  We compare these two concepts with the usual notion of a
rigid mathematical structure. We also consider an application of the
introduced concepts to the theory of linearly ordered sets.

Let ¥ be a type of a mathematical structure in the usnal sense of
N.Bourbaki (see [1]). For example, © may be the type of a topological
structure, the type of a structure of a measurable space, the type of an
order structure and of many others.

Suppose that our type ¥ satisfies the following two conditions:

1) for the class of all structures of this type, a class of morphisms
(homomorphisms) is defined in such a way that we have a category in
the standard algebraic sense;

2) if [ is a basic set, S is a structure of the type ¥ defined on FE,
and X is an arbitrary subset of 2, then there exists a structure Sy of
the same type ¥ such that Sy is delined on X and is induced by the
original structure S,

Condition 2) can be called a hereditarility property of the given
strncture type ¥. Notice that topologies, measurable spaces and rela-
tion structures satisly condition 2). There are also many other struc-
tures for which this condition is fulfilled.
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Let £7 be again a basic set and let .S be some structure of the type
Y defined on [, Let us recall that the stracture S is rigid if the group
of all automorphisms of S is a one-element set. In other words, the
structure S is rigid if and only if the identity transformation of the
basic set £ is a unique antomorphism of S.

In a more general situation, we say that a structure S on £ is almost
rigid if, for every automorphism [ : (£,S5) — (£,5) of this structure
onto itself, the inequality

card({x € £ : [(x) # x}) < card(E)

holds. Further, we say that a struncture S on [ is almost rigid in the
strong sense if, for every monomorphism ¢ : (£,5) — (£,S) of this
structure into itself, the inequality

card({x € E : g(x) # x}) < card(E)

holds. Let us remark that il a basic set [ is finite, then the notion of an
almost rigid structure (on £) may rather frequently coincide with the
notion of an almost rigid structure in the strong sense. For instance,
suppose that ¥ is the type ol an algebraic structure or the type of a
structure of a linearly ordered set and let S be a structure of the type
¥ defined on a finite basic set £. Then it can easily be checked that S
is almost rigid if and only if 5 is alimost rigid in the strong sense.

Of course, any rigid structure is almost rigid, but the converse as-
sertion is not true. It is clear that any almost rigid structure in the
strong sense is almost rigid, too. The following simple example shows
us that there exists a graph strncture which is almost rigid in the strong
sense but is not rigid. ‘

Example 1. Let @ and y be any two distinet elements which do
not belong to the conntable set of integers {1,2,....n,...}. Let us pnt

Bi=da gl LR st b}

and let us define the graph structure S on the set £ by the following
edges:

thakdh vk {12}, 12,8} b4 i
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Then it is not difficult to check that S is not a rigid structure. At
the same time S is almost rigid in the strong sense. Moreover, here
every monomorphism of the structure S into itself moves at most two
elements of the basic set /.

Let us notice, in connection with Example 1, that a structure of
an infinite well ordered set without the last element gives us a simple
example of a rigid structure which is not almost rigid in the strong
sense,

Let £ be an infinite basic set and let S be a structure of the type
Y defined on E. The following two questions naturally arise:

Question 1. Does there exist a subset X of the set F with
card(X') = card( ') such that the structure Sy induced on X is rigid?

Question 2. Does there exist a subset X of the set £ with
card(X) = card(l) such that the strncture Sy induced on X is al-
most rigid (or is almost rigid in the strong sense)?

Notice that Question | was extensively investigated by several an-
thors for a topological structure and Question 2 was extensively inves-
tigated for a measurable space structure (see, e.g., the article of Shortt
[9] and references given in this article).

Let us remark also, in connection with the first question, that in
the most ol interesting and important situations the answer to this
question is negative. In particular, one of such sitnations is described
in the next simple example.

Example 2. Let us consider the type ¥ of a structure of a measur-
able space with the additional axiom which says that all one-element
subsets of a basic set are measurable. This type of a structure can
often be met in varions domains of mathematics, especially in modern
analysis and probability theory. Now, let I/ be an infinite basic set and
let S be a striuctnre of the type ¥ on . Then it is not difficult to see
that, for the pair (£.5), the answer to Question 1 is negative.

Another simple example of such a situation can be obtained if we
consider the type ¥ of a structure of a complete graph defined on an
inflinite basic set,
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Thus, we see that it is more perspective to investigate Question 2
concerning the existence ol almost rigid (respectively, almost rigid in
the strong sense) substructures induced by the original structure S.
We want to notice, in connection with Question 2, that it is possible to
establish some general conditions sufficient for the affirmative solution
of the above-mentioned question (see, for instance, Proposition 1 he-
low). Notice also that those general conditions are formulated in terms
of partial isomorphisms or in terms of partial monomorphisms of the
given strncture S (let us recall that e.g. a partial monomorphism is any
injective homomorphism of the form f: (Y, Sy ) — (£, S). where Y is a
subset of £ and Sy is the strneture on Y induced by the original strue-
ture S). Actually, we can say that one ol those sufficient conditions rep-
resents an abstract version ol the purely topological Lavrentiev’s the-
orem abont extensions of homeomorphisms of subsets of Polish spaces
to homeomorphisms of (/s-subsets of such spaces. This classical the-
orem with its various generalizations and applications is thoroughly
considered in the well known monograph of Kuratowski [2].

In order to formulate Proposition 1 we need a simple auxiliary no-
tion concerning partial homomorphisms. Namely, let

[ 4% = VB S0 g 2 1% 5 S A B8)

be any two partial homomorphisms. We shall say that the partial
homomorphism f majorates the partial homomorphism ¢ if [ is an
extension of g.

Proposition 1. Let S be a structure on an infinite basic set E and
suppose that. for cach subset ) of E with card(D) = card(E), there
exists a structure Sy on D induced by 8. Suppose also that there exists
a family © of partial monomorphisms (acting from subsets of E into
E) satislving the [ollowing two conditions:

1) card(®) < card(F):

2) for every partial monomorphism g : (Z,87) — (E.S). there is
a partial monomorphism [ € ¢ such that [ majorates g.

Then there exists a subset X of E satisfving the next two relations:

a) card(X) = card(EF):

b) for an arbitrary monomorphism h : (X, Sx) — (X, Sy), the
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cardinality of the set

{vreX : h(z)#2}

is strictly less than the cardinality of X.
Consequently, the structure Sy is almost rigid in the strong sense
(in particular, this structure is almost rigid).

Proof. Let o be the least ordinal number of cardinality card(E).
Obviously, we can represent the family @ in the form

D= {fe €< al.

Let us remark that the identity transformation of £ helongs to the fam-
ily ® and, withont loss of generality, we may assume that fy coincides
with this transformation. Now, let us define, applying the method of
transfinite recursion, an injective family

{og €<}

of elements of the basic set 2. Suppose that 4 < « and a partial
family {xg @ & < 4} of elements of [ has already been defined. Let
Y oure :

us consider two sets
A= felee) + € <R (LB,
B= {1 e 5 €< B 0% B
Evidently, we have the inequalities
card(AU B) < 2(card(3))* < card(E).
Consequently, the relation
EN(AUB)#0

is true. Let a; be an element of the set £\ (AU B).
[n such a way we are able to construct the required family {x¢ : € <
a} of elements of 2. Now, let us put

X ={e: : €£<al.
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Clearly, card(X) = card([2). From the assumptions of the proposition
it follows that there exists a structure Sy on X induced by the original
structure S. Take an arbitrary monomorphism

h : (X,Sy)— (X,Sx).
This monomorphism can be considered as a partial monomorphism
g : (X,5x)= (E,S)

According to condition 2). there exists a partial monomorphism f € ¢
such that f majorates g. Obviously, for some ordinal nnmber € < a,
we have [ = f;. Taking into account the construction of the set X, it
is not difficult to check that the inequality

card({v € X : [e(x)# a}) < card(X)
is Tulfilled. We also can write

{re X" fla)y2#={ne X : R # x}.
Hence, we obtain the inequality
card({x € X' : h(x)# x}) < card(X),

which shows ns that the strncture Sy is almost rigid in the strong
sense. Thus the proofl of Proposition 1 is complete.

Let (£,5) be again a set equipped with a structure ol the type T,
We say that a mapping of the lorm

£ %Y =)

is a partial isomorphism (acting from (£,.S5) into (£,5)) if Y and Z
are some subsets ol £, Sy and Sz are the structures on these subsets
induced by S, and [ is an isomorphism of the structure Sy onto the
structure Syz.

I'he next proposition is analogous to Proposition 1.

Proposition 2. Let S be a structure on an infinite basic set F
and suppose that. lor each subset D of E with card(D) = card(E),
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there exists a structure Sp on D induced by S. Suppose also that
there exists a family ® of partial isomorphisms (acting from (E,S)
into (I, 5)) satisfying the following two conditions:

1) card(®) < card(E);

2) for every partial isomorphism g acting from (I2,5) into (E,S),
there is a partial isomorphism [ € ® such that f majorates g.

Then there exists a subset X of E satislying the following relations:

a) card(X) = card(E); :

b) for an arbitrary isomorphism h : (X, Sx) — (X, Sx) the cardi-
nality of the set

{re X : he)#z}

is strictly less than the cardinality of X.
In particular, the structure Sx is almost rigid.

Notice that the prool of Proposition 2 is quite similar to the proof
of Proposition L.

Remark 1. The result of Proposition 1 sometimes can be generalized
to the case of partial morphisms which are not necessarily monomor-
phisms. For instance, a direct analogue of Proposition 1 can be true for
those partial morphisms which have small preimages (in the sense of
cardinality) of the one-element subsets of a basic set . More precisely,
if the cardinality of the set E is regular and all partial morphisms [ € ®
satisfy the inequality

card(f~(x)) < card(E),

for cach element € . then the analogue of Proposition 1 is true for
such partial morphisms, too.

Remark 2. The assumption that, for each subset D of [ with
card(D) = card(E). there exists a strncture Sp on D induced by S is
rather essential in the formulation of Proposition 1. This can be shown
by simple examples of algebraic strnetures. Indeed, let us consider the
set [ of all integers equipped with a natural group operation - addition
of numbers. It is not difficult to check that in such a case there exists
a family @ of partial monomorphisms satisfying conditions 1) and 2)
of Proposition 1. But there does not exist an infinite subgroup X of
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I satisfying relations a) and b) of the same proposition. Moreover, in
this case all infinite subgronps of the group £ are isomorphic to £ and
the group structure of /2 is not an almost rigid structure in our sense.

Remark 3. Let S e a structure on an infinite basic set £, Suppose
that, for every subset D of E, there exists a structure Sp on D induced
by 5. Suppose also that there is a family A of subsets of £ satisfying
the following conditions:

1) card(N') < card(l2);

2) for each set Z belonging to K, the cardinality of the family of
all monomorphisms from Z into £ is less or equal to eard(E);

3) for any partial monomorphism

gle¥o=nalt (Y C F)
there exists a partial monomorphism

Jorg S B (2 CE)
such that Z € K and [ majorates ¢.

Then it is easy to see that there exists a family ® of partial monomor-
phisms satislying the assumptions of Proposition 1. Consequently, we
can assert the existence ol a subset X of the basic set £ such that
card(X) = card(E) and the structure Sy on X induced by S is almost
rigid in the strong sense.

Let us notice that the family A" mentioned above is, as usual, an in-
ner object for the given structure S, i.e. an inner term for S, according
to the terminology of Bourbaki (see [1]). We want to notice also that
condition 3) may be considered as an abstract version of Lavrentiev's
theorem on extensions of homeomorphisms.

Remark . Let E be an infinite basic set, let S be a structure on
E and let & be a family of partial morphisms from (£, S) into (£, 5)
satislying the subsequent two conditions:

1) card(®) < card(E);

2) for every partial morphism g from (£..5) into (£, S), there is a
partial morphism [ € ¢ such that [ majorates g.

Then there exists a mapping

h: E—=FE

3
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having the following property: for every set X C I with card(X) =
card( ), the restriction of h to X is not a morphism from X into E.

The proof of this fact is analogous to the proof of Proposition 1.
Indeed, applying the method of transfinite recursion we can construct
amapping h : £ — F so that the inequality

card({x € E : h(x) = f(x)}) < card(F)

will be true for each partial morphism f € ¢.

Actually, this construction is due to Sierpinski. More precisely,
Sierpiniski applied the construction presented above in a partienlar sit-
nation where ¥ is the type of a topological structure and the class of
morphisms is the class of all continnons mappings. The corresponding
result (due to Sierpiiski and Zygmund) is formulated as follows: there
exists a function

L : R—R

such that its restriction to any subset X of R with card(X) = card(R)
is not a continons mapping (here R denotes the set of all real numbers
equipped with the standard order topology).

Notice that an analogons result is also true if we take the class of
all Borel mappings as a class of morphisms.

Remark 5. Let £ he an infinite basic set, let .J be an ideal of subsets
of I/ and let S be a strueture on 5.

We say that the structure S is J-rigid if, for every antomorphism

f & AN = B

of this structure onto itself, we have {x € £ : f(x) =t &
We say that the structure S is J-rigid in the strong sense if, for
every monomorphism

g ¢ (E,S)—=(E,S)

of this structure into itself, we have {x € E : g(x) # x} € J.
Obviously, the concept of a J-rigid structure and the concept of a .J-

rigid structure in the strong sense are generalizations of the concepts of

arigid structure, an almost rigid structure and an almost rigid structure
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in the strong sense. Also, it is easy to see that some generalizations of
Propositions 1 and 2 can he formulated and proved for J-rigid (.J-rigid
in the strong sense) mathematical structures. Moreover, if J satisfies
some natural conditions, then a set X can be taken so that X & .J.

Let us return to almost rigid structures and to Question 2 posed at
the heginning of the paper. Namely, we wish to discuss here a natural
application of Propositions 1 and 2 to the situation where the type ©
coincides with the type of a structure of a Dedekind complete linearly
ordered set with some additional properties. In this situation we take
the class ol all increasing mappings as a class of morphisms for onr
type ¥. Hence, in this case the class of all monomorphisms is the class
of all strictly increasing mappings.

A detailed information on lincarly ordered sets (and, in particular,
on Dedekind complete linearly ordered sets) can be found in the well
known monograph of Sierpiiski [7].

First let us consider a sitnation where we do not have infinite sub-
structures almost rigid in the strong sense. Indeed, let £ be the type
of a structure of an infinite well ordered set. Obviously, € is simul-
taneously the type of a structure of an infinite, Dedekind complete,
linearly ordered set. Let (£,S) be an arbitrary infinite set equipped
with a structure of the type . One can easily verify that there exists
a monomorphism

I (E.S) = (E,S)

such that the equality
card({r € IV : [(x) # x}) = card(E)

is fulfilled.  Similarly, for any infinite subset X of E, there exists a
monomorphism
g v (X,8%) ='(X.S%)

such that

card({x € X : g(x) #x}) = card(X).

Consequently, the structnre Sy induced on the set X is not almost
rigid in the strong sense.
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[Towever, we shall see below that some additional assumptions about
the type ¥ of a structure of an infinite, Dedekind complete, linearly
ordered set imply the existence of an infinite substructure almost rigid
in the strong sense,

Our further consideration needs two simple auxiliary assertions con-
cerning linearly ordered sets.

Lemma 1. Let (£, <) be a Dedekind complete dense linearly or-
dered set and let X be a subset of E dense in I (i.e. every nonempty
open subinterval of E intersects X' ). Then for each increasing mapping
g : X — E there exists an increasing mapping ¢* : I) — IV extending
g. Moreover, if the original mapping g is strictly increasing. then the
mapping ¢~ is strictly increasing, Loo.

This lemma is well known and its proof is not difficult. Actually,
the required extension ¢* can be directly defined by the formula

g (e) = sup{g(x): » € X and « < €},

where ¢ is an arbitrary element of the basic set £, Taking into account
the fact that (£, <) is a dense linearly ordered set, we see that if ¢ is
a strictly increasing mapping, then ¢ is a strictly increasing mapping,

=

too. We also want to remark that, in general, ¢* is not the unique

extension ol ¢.

Lemma 2. Let (L. <) be a Dedekind complete dense linearly or-
dered set. If the basic set I contains at least two distinet elements,
then card( ) > c. where ¢ denotes the cardinality of the continuum.

This lemma is well known and can easily be proved by the standard
method using a dyadic system of closed bounded subintervals of £.

Let (££.<) be an ordered set. We say that this set is isodyne if
the cardinality of cach nonempty open subinterval of £ is equal to the
cardinality of the basic set E. In other words, (£, <) is isodyne il and
only if the space [ is isodyne with respect to the order topology. For
example, the real line R is an isodyne linearly ordered set.

Let ns denote by the symbol Mon(E, ) the set of all strictly in-
creasing mappings rom the ordered set £ into itself.
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Lemma 3. Let (E, <) be an infinite isodyne ordered set, let v be
the least ordinal number corresponding to the cardinality of the basic
set I2 and let

Mon(E,E) = {ga: o <)}

Then there exists a subset
X = fay: o <d}

of E satislving the [ollowing relations:

(1) the [amily {wx, : o < v} is injective; in particular, card(X) =
card(I);

(2) X is dense evervwhere in I

(3) for each ordinal o < 5 and for any two ordinals < o, 0 < a,
we have & # ga(we) and @, # g5 (x0).

Proof. The argnment is very similar to the prool of Proposition 1.
Namely, we shall construct, by the method of transfinite recursion, an
imnjective y-sequence of points

f, e Ly (va € E).

For this purpose denote by {V, : o < 4} the family of all nonempty
open subintervals of £ and let {g, : a < 4} be the family of all
monomorphisms from F into E. Of conrse, without loss of generality,
we can assnme that g, is the identity transformation of the set FE.
Suppose now that, for an ordinal oo < 5, the partial a—sequence {xp :
A < a} has already been constructed. Let us define two sets:

A=A{gs(re): B<a, 0<al.

B={g;'(re): B<a.b<a).

Obviously, the cardinality of the set AU B is strictly less than the
cardinality of the set £, Since [ is isodyne, there exists an element
belonging to the set

Vo \ (AU B).
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Let us put &, = r. Therefore, using the method of transfinite recursion,
we are able to construet a certain y-sequence of elements of £. It is
clear that this sequence is injective, and if we put

X = fn 0 it 2,

then it is not difficult to check that the set X is a required one. Slightly
changing the above argument we can prove that the required set X
satisfies also the following relation:

(1) card(X NV) = card(E), for each nonempty open subinterval V
of E.

Of course, relation (4) is much stronger than relation (2). This ends
the proof.

Now, we can formulate one of many results dealing with the exis-
tence of almost rigid substructures of the original mathematical strue-
ture. Here we restrict our consideration to the theory of Dedekind
complete dense lincarly ordered sets. The classical example of such
a set is the real line R with its natural ordering. Another standard
example is the so called Suslin line (see Example 4 below).

Proposition 3. Let (12, <) be an infinite dense isodyne Dedekind
complete lincarly ordered set and let
card(Mon(E. ) < card(E).
In other words, we can write

Mon(E,E) = {ga = o <7},

where v is the least ordinal number corresponding to the cardinality
of the basic set E. Let X be a subset of E satislving relations (1), (2)
and (3) of Lemma 3. Then the structure (X, <) is almost rigid in the

strong sense.

Proof. Let ¢ be any monomorphism from X into X. By Lemma 1,
there exists a monomorphism ¢* which acts from £ into E and extends
g. Taking into acconnt the definition of the set X, we have

card({r € X @ g"(x) # x}) < card(X).
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Consequently, we also have
card({x € X : g(x) # a}) < card(X),

and the structure (X, <) is almost rigid in the strong sense.

Example 3. Let us put /£ = R and let us take as < the usunal
ordering of R. Then it is casy to see that Proposition 3 can directly be
applied in this case. Hence, there exists an everywhere dense subset X
of R such that card(X) is equal to the carvdinality of the continunum
and every strictly increasing mapping, acting from X into X, is al-
most identity transformation of .X. We can also assume that, for each
nonempty open subinterval Vo oof R, the interseetion X NV has the
cardinality of the continnum. Moreover, we can even assnume that X is
a Bernstein subset of R (for the definition of a Bernstein subset of the
real line and for the properties of such subsets, see [2], [3], [4] or [5]).

We also can consider a more general situation. Namely, let £ be an
infinite cardinal number such that, for every cardinal A < &, we have
the inequality

I

Then there are dense isodyne Dedekind complete linearly ordered sets
(F, <) satisfying the following conditions:

1}y eard(E) =2¢;

2) I contains a dense subset ) with card(D) = k.

For various examples of (£. <) with the above-mentioned proper-
ties, see e.g. the monograph of Sierpinski [7].

C'onsequently, for such (£, <) we have the inequality

card(Mon(E, E)) < card(F).

Thus, we may apply directly Proposition 3 to (£.<). Applying this
proposition we obtain that there exists a subset X of E such that

a) card(X) = card(E):

b) X is dense everywhere in E;

¢) X is isodyne with respect to the induced order;

d) X is almost rigid in the strong sense with respect to the induced
order.
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Example 4. Let us recall that a Suslin line is a nonempty Dedekind
complete dense lincarly ordered set (£, <), without the first and the
last elements, satisfying the Suslin condition (i.e. the countable chain
condition which says that every disjoint family of nonempty open subin-
tervals of /2 is at most conntable) and nonseparable in its order topol-
ogy. It is well known that the existence of a Suslin line is consistent
with the usunal axiomatic set theory ZFC and is not provable from
this theory (see, for instance, [6]). Let us consider briefly the question
about the cardinality of a Suslin line . On one hand, by Lemma 2,
we have the inequality card(F) > c. On the other hand, we have the
inequality card( ') < c. The latter fact can directly be deduced from
each of the following two well known results:

1) the Erdos-Rado theorem of the combinatorial set theory;

2) the Arhangelskii theorem abont the cardinality of a compact
topological space satislying the first countability axiom.

Notice also that, hy a classical result of D.Kurepa, any Suslin line £/
contains an evervwhere dense snbset whose cardinality is equal to the
first nnconntable cardinal number w; (the above-mentioned inequality
card(FF) < ¢ follows immediately from this result). Thus. we conclude
that the eqnality

card( ') = ¢

holds. and we can deduce that any Suslin line £ is an isodyne linearly
ordered set.

Let us remark that R.Jensen showed. assuming the Axiom of Con-
structibility, the existence of a rigid Suslin line £ (the mentioned
axiom with its varions consequences and applications is discussed in
detail, c.g.. in [6]). Furthermore, V.LFukson proved in [8] that if the
Axiom of Constructibility holds, then there exists a Suslin line £ such
that, for any continnous mapping

i S
at least one of the following two assertions is true:

a) [ is a constant mapping;

L) [ s the identity transformation of /2.
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Another interesting example (in ZFC) of a Dedekind complete
dense isodyne linearly ovdered set is the so called long line of Alexan-
drov. This line is a nonseparable one-dimensional connected manifold
containing an everywhere dense subset ol cardinality wy.

Example 5. Let w denote the first infinite cardinal number. It is
obvious that il the Continunm Hypothesis holds, then we have

L= 2% e iy

The Second Continunm Hypothesis is the following set-theoretical as-
sertion:
e =4 (SC'H).

This assertion was considered, many years ago, by N.Luzin who also
expected that it is consistent with the nsual axioms of Set Theory, likely
as the classical Continnum Hypothesis. Indeed, much later a number of
models of Set Theory were constructed in which the Second Continuum
Hypothesis holds (see, for instance, [6]). In particular, there are models
of Set Theory in which we have the following equalities:

— p

. W
2 = W =

Actually, if we start with an arbitrary countable transitive model of
ZFC, satisfying the Generalized Continnum Hypothesis, and apply
the Cohen forcing to it, then we obtain a model of ZFC in which the
above-mentioned equalities are fulfilled (for details, see [6]).

Assume now that the Second Continnum Hypothesis holds.

Let (£,<) be an arbitrary Dedekind complete dense isodyne lin-
early ordered set containing an everywhere dense subset of cardinality
wy. Then we have \

cavil ) =3 sigt =8

Also, it is not difficult to verify that
card({Mon(E,E)) < 2" = 2% = ¢.

Therefore, in this situation we can apply Proposition 3 again and we
conclude that, in theory (ZF(') & (SCH), each linearly ordered set
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(E, <) with the properties formulated above contains an everywhere
dense subset X satisfying the following relations:

a) card(X) = card(E);

b) X is almost rigid in the strong sense (with respect to the induced
order).

In addition, we see that the reqnired subset X of E can be con-
structed so that, for an arbitrary nonempty open subinterval V of F,
we have the eqnality

card(X NV) = card( ).

Moreover, we can even assume that X is a Bernstein type subset of [,
ie.

card(X N P) = card((E \ X) N P) = card(E),
for every nonempty perfect subset P of E.

Example 6. The preceding example can be generalized to some
situations where we have a Dedekind complete dense isodyne linearly
ordered set (£, <) with

card(E) > c.
More precisely, let £ and A be any two infinite cardinal numbers satis-
fying the equality
9A

D= R,

Further, let (£, <) be a Dedekind complete dense isodyne linearly or-
dered set satisfying the next two conditions:

1) card(l)) = k;

2) I contains a dense subset D with card(D) = A.

Then there exists a dense subset X of £ such that

a) card(X) = card(E);

h) X is almost rigid in the strong sense (with respect to the induced
order).

Moreover, we may assume that, for any nonempty open subinterval
Vool the set [, the equality

card(VN X) = card(E)

holds; in particular, X is an isodyne linearly ordered set.
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