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Semientwining structures are proposed as concepts simpler than entwining structures, yet they are shown to have interesting
applications in constructing intertwining operators and braided algebras, liing functors, �nding solutions for Yang-Baxter systems,
and so forth. While for entwining structures one can associate corings, for semientwining structures one can associate comodule
algebra structures where the algebra involved is a bialgebra satisfying certain properties.

1. Introduction and Preliminaries

Quantum groups appeared as symmetries of integrable sys-
tems in quantum and statistical mechanics in the works
of Drinfeld and Jimbo. ey led to intensive studies of
Hopf algebras from a purely algebraic point of view and
to the development of more general categories of Hopf-
type modules (see [1] for a recent review). ese serve
as representations of Hopf algebras and related structures,
such as those described by the solutions to the Yang-Baxter
equations.

Entwining structures were introduced in [2] as gen-
eralized symmetries of noncommutative principal bundles
and provide a unifying framework for various Hopf-type
modules. ey are related to the so-called mixed distributive
laws introduced in [3].

e Yang-Baxter systems emerged as spectral-parameter
independent generalization of the quantum Yang-Baxter
equation related to nonultra-local integrable systems [4, 5].
Interesting links between the entwining structures and Yang-
Baxter systems have been established in [6, 7]. Both topics
have been a focus of recent research (see, e.g., [8–13]).

In this paper, we propose the concepts of semientwining
structures and cosemientwining structures within a generic

framework incorporating results of other authors along-
side ours. e semientwining structures are some kind of
entwining structures between an algebra and amodule which
obey only one-half of their axioms, while cosemientwin-
ing structures are kind of entwining structures between a
coalgebra and a module obeying the other half of their
axioms. e main motivations for this terminology are the
new constructions which require only the axioms selected
by us (constructions of intertwining operators and Yang-
Baxter systems of type II or liings of functors), our new
examples of semientwining structures, simpli�cation of the
work with certain structures (Tambara bialgebras, liing
of functors, braided algebras, and Yang-Baxter systems of
type I), the connections of the category of semientwining
structures with other categories, and so forth. Let us observe
that while for entwining structures one can associate corings,
for semientwining structures one can associate comodule
algebra structures provided the algebra involved is a bialgebra
with certain properties (see eorem 9).

e current paper is organised as follows. Section 2
contains the newly introduced terminology with examples,
new results, and comments. Section 3 is about some of the
applications of these concepts, namely, new constructions of
intertwining operators and braided algebras, liing functors,
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and the presentations of Tambara bialgebras and of (new
families of) Yang-Baxter systems (of types I and II).

e main results of our paper are eorems 19, 22, 24,
40, and 41.eorems 29 and 31 are mentioned in the context
of stating some of our results. eorem 34 is used to prove
eorem 40, while eorem 37 is related toeorem 38.

Unless otherwise stated,wework over a commutative ring
𝑅𝑅. Unadorned tensor products mean tensor products over 𝑅𝑅.

For any 𝑅𝑅-module 𝑉𝑉, 𝑇𝑇𝑇𝑉𝑉𝑇 denotes tensor algebra of 𝑉𝑉.
In section 3.5, we work over a �eld𝕂𝕂. For𝑉𝑉 an𝑅𝑅-module, we
denote by 𝐼𝐼 𝐼 𝑉𝑉 𝐼 𝑉𝑉 the identity map. For any 𝑅𝑅-modules
𝑉𝑉 and𝑊𝑊 we denote by 𝜏𝜏 𝜏 𝜏𝜏𝑉𝑉𝑉𝑊𝑊 𝐼 𝑉𝑉 𝑉 𝑊𝑊 𝐼 𝑊𝑊 𝑉 𝑉𝑉 the
twistmap, de�ned by 𝜏𝜏𝑉𝑉𝑉𝑊𝑊𝑇𝑣𝑣 𝑉 𝑣𝑣𝑇 𝜏 𝑣𝑣 𝑉 𝑣𝑣. Let 𝜙𝜙 𝐼 𝑉𝑉 𝑉 𝑉𝑉 𝐼
𝑉𝑉 𝑉 𝑉𝑉 be an 𝑅𝑅-linear map. We use the following notations:
𝜙𝜙12 𝜏 𝜙𝜙 𝑉 𝐼𝐼, 𝜙𝜙23 𝜏 𝐼𝐼 𝑉 𝜙𝜙, 𝜙𝜙13 𝜏 𝑇𝐼𝐼 𝑉 𝜏𝜏𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝜙𝜙 𝑉 𝐼𝐼𝑇𝑇𝐼𝐼 𝑉 𝜏𝜏𝑉𝑉𝑉𝑉𝑉𝑇.

�e�nition �. An invertible𝑅𝑅-linear map 𝜙𝜙 𝐼 𝑉𝑉𝑉𝑉𝑉 𝐼 𝑉𝑉𝑉𝑉𝑉
is called a Yang-Baxter operator if it satis�es

𝜙𝜙12 ∘ 𝜙𝜙23 ∘ 𝜙𝜙12 𝜏 𝜙𝜙23 ∘ 𝜙𝜙12 ∘ 𝜙𝜙23. (1)

Remark 2. Equation (1) is usually called the braid equation. It
is a well-known fact that the operator𝜙𝜙 satis�es (1) if and only
if 𝜙𝜙 ∘ 𝜏𝜏𝑉𝑉𝑉𝑉𝑉 satis�es the quantum Yang-Baxter equation (if and
only if 𝜏𝜏𝑉𝑉𝑉𝑉𝑉 ∘ 𝜙𝜙 satis�es the quantum Yang-Baxter equation):

𝜙𝜙12 ∘ 𝜙𝜙13 ∘ 𝜙𝜙23 𝜏 𝜙𝜙23 ∘ 𝜙𝜙13 ∘ 𝜙𝜙12. (2)

2. Semientwining Structures and
Related Structures

�e�nition � (Semientwining Structures). Let 𝐴𝐴 be an 𝑅𝑅-
algebra, and let 𝐵𝐵 be an 𝑅𝑅-module, then the 𝑅𝑅-linear map
𝜓𝜓 𝐼 𝐵𝐵 𝑉 𝐴𝐴 𝐼 𝐴𝐴 𝑉 𝐵𝐵 is called a (right) semientwining
map if it satis�es the following conditions for all 𝑎𝑎𝑉 𝑎𝑎′ ∈ 𝐴𝐴,
𝑏𝑏 ∈ 𝐵𝐵 (where we use a Sweedler-like summation notation
𝜓𝜓𝑇𝑏𝑏 𝑉 𝑎𝑎𝑇 𝜏 𝑎𝑎𝛼𝛼 𝑉 𝑏𝑏

𝛼𝛼):

𝜓𝜓 𝑏𝑏 𝑉 1𝐴𝐴 𝜏 1𝐴𝐴 𝑉 𝑏𝑏𝑉

𝜓𝜓 𝑏𝑏 𝑉 𝑎𝑎𝑎𝑎′ 𝜏 𝑎𝑎𝛼𝛼𝑎𝑎
′
𝛽𝛽 𝑉 𝑏𝑏

𝛼𝛼𝛽𝛽.
(3)

If 𝐵𝐵 is also an 𝑅𝑅-algebra, and a semientwining map satis�es
additionally

𝜓𝜓 1𝐵𝐵 𝑉 𝑎𝑎 𝜏 𝑎𝑎 𝑉 1𝐵𝐵𝑉 𝜓𝜓 𝑏𝑏𝑏𝑏′ 𝑉 𝑎𝑎 𝜏 𝑎𝑎𝛼𝛼𝛽𝛽 𝑉 𝑏𝑏
𝛽𝛽𝑏𝑏′

𝛼𝛼
𝑉

∀𝑎𝑎 ∈ 𝐴𝐴𝑉 ∀𝑏𝑏𝑉 𝑏𝑏′ ∈ 𝐵𝐵𝑉
(4)

then the semientwiningmap is called an algebra factorization
(in the sense of [14]).

If 𝐵𝐵 is a coalgebra and satis�es

𝑎𝑎𝛼𝛼𝜀𝜀 𝑏𝑏
𝛼𝛼 𝜏 𝑎𝑎𝜀𝜀 𝑇𝑏𝑏𝑇 𝑉

𝑎𝑎𝛼𝛼 𝑉 𝑏𝑏
𝛼𝛼
𝑇1𝑇 𝑉 𝑏𝑏

𝛼𝛼
𝑇2𝑇 𝜏 𝑎𝑎𝛼𝛼𝛽𝛽 𝑉 𝑏𝑏𝑇1𝑇

𝛽𝛽 𝑉 𝑏𝑏𝑇2𝑇
𝛼𝛼𝑉 ∀𝑎𝑎 ∈ 𝐴𝐴𝑉 ∀𝑏𝑏 ∈ 𝐵𝐵𝑉

(5)

then 𝜓𝜓 is called a (le-le) entwining map [2].

Remark 4. Let 𝑞𝑞 ∈ 𝑅𝑅. e following are examples of
semientwining structures. Note that they do not have natural
algebra factorization structures in general.

(1) Let𝐴𝐴 be an𝑅𝑅-algebra, then the𝑅𝑅-linear map 𝛾𝛾𝑞𝑞 𝐼 𝐴𝐴𝑉
𝐴𝐴 𝐼 𝐴𝐴𝑉𝐴𝐴, 𝛾𝛾𝑞𝑞𝑇𝑏𝑏 𝑉 𝑎𝑎𝑇 𝜏 1 𝑉 𝑏𝑏𝑎𝑎 𝑏 𝑞𝑞𝑏𝑏𝑎𝑎 𝑉 1 𝑏 𝑞𝑞𝑏𝑏 𝑉 𝑎𝑎 is a
semientwining map. Notice that 𝛾𝛾𝑞𝑞 is a Yang-Baxter
operator (according to [15]).

(2) Let𝐴𝐴 be an𝑅𝑅-algebra, then the𝑅𝑅-linear map 𝜂𝜂𝑞𝑞 𝐼 𝐴𝐴𝑉
𝐴𝐴 𝐼 𝐴𝐴 𝑉 𝐴𝐴, 𝜂𝜂𝑞𝑞𝑇𝑏𝑏 𝑉 𝑎𝑎𝑇 𝜏 𝑞𝑞𝑇𝑏𝑏𝑎𝑎 𝑏 𝑎𝑎𝑏𝑏𝑇 𝑉 1 𝑏 𝑎𝑎 𝑉 𝑏𝑏 is a
semientwining map. Notice that 𝜂𝜂𝑞𝑞 is a Yang-Baxter
operator related to Lie algebras (see, e.g., [16]).

(3) Let𝐴𝐴 be an𝑅𝑅-algebra, and let𝑀𝑀 be a right𝐴𝐴-module.
en the 𝑅𝑅-linear map 𝜙𝜙 𝐼 𝑀𝑀𝑉𝐴𝐴 𝐼 𝐴𝐴𝑉𝑀𝑀, 𝜙𝜙𝑇𝜙𝜙 𝑉
𝑎𝑎𝑇 𝜏 1 𝑉 𝜙𝜙𝑎𝑎 is a semientwining map.

e proof of the next lemma is direct; the second
statement is a well-known result.

Lemma 5. If 𝜓𝜓 𝐼 𝐵𝐵 𝑉 𝐴𝐴 𝐼 𝐴𝐴 𝑉 𝐵𝐵 is a semientwining map,
then

(i) 𝐴𝐴 𝑉 𝐵𝐵 becomes a right 𝐴𝐴-module with the operation
𝑇𝑎𝑎 𝑉 𝑏𝑏𝑇 𝑎 𝑎𝑎′ 𝜏 𝑎𝑎𝑎𝑎′𝛼𝛼 𝑉 𝑏𝑏

𝛼𝛼;
(ii) moreover, if 𝐵𝐵 is an algebra, we can de�ne a bilinear

operation

⋅ 𝐼 𝑇𝐴𝐴 𝑉 𝐵𝐵𝑇 𝑉 𝑇𝐴𝐴 𝑉 𝐵𝐵𝑇⟶ 𝑇𝐴𝐴 𝑉 𝐵𝐵𝑇 𝑉

𝑇𝑎𝑎 𝑉 𝑏𝑏𝑇 𝑉 𝑎𝑎′ 𝑉 𝑏𝑏′⟼ 𝑎𝑎𝑎𝑎′𝛼𝛼 𝑉 𝑏𝑏
𝛼𝛼𝑏𝑏′𝑉

(6)

and ⋅ is an associative and unital multiplication on𝐴𝐴𝑉𝐵𝐵 if and
only if 𝜓𝜓 is an algebra factorization.

Remark 6. Some authors call the above map 𝜓𝜓 a twisting
map; see, for example, [17], where a unifying framework for
various twisted algebras is provided.

Remark 7. Suppose that 𝐴𝐴 is a right 𝐻𝐻-comodule algebra
(where𝐻𝐻 is a bialgebra), and 𝐵𝐵 is a right𝐻𝐻-module. en

𝜓𝜓𝐻𝐻 𝐼 𝐵𝐵 𝑉 𝐴𝐴⟶𝐴𝐴𝑉 𝐵𝐵𝑉 𝑏𝑏 𝑉 𝑎𝑎⟼ 𝑎𝑎𝑇0𝑇 𝑉 𝑏𝑏𝑎𝑎𝑇1𝑇 (7)

is a semientwining map. Moreover, if 𝐵𝐵 is an 𝐻𝐻-module
algebra, then 𝜓𝜓𝐻𝐻 thus de�ned is an algebra factorization.
Finally, if𝐵𝐵 is an𝐻𝐻-module coalgebra, then𝜓𝜓 is an entwining
map, and 𝑇𝐴𝐴𝑉𝐻𝐻𝑉 𝐵𝐵𝑇 is called a Doi-Koppinen structure (see
[13]).

Remark 8. Let 𝐴𝐴 be an 𝑅𝑅-algebra. We de�ne the category of
semientwining structures over 𝐴𝐴, whose objects are triples
𝑇𝐵𝐵𝑉 𝐴𝐴𝑉 𝜙𝜙𝑇, and morphisms 𝑓𝑓 𝐼 𝑇𝐵𝐵𝑉 𝐴𝐴𝑉 𝜙𝜙𝑇 𝐼 𝑇𝐵𝐵′𝑉 𝐴𝐴𝑉 𝜙𝜙′𝑇 are 𝑅𝑅-
linear maps 𝑓𝑓 𝐼 𝐵𝐵 𝐼 𝐵𝐵′ satisfying the relation 𝑇𝐼𝐼𝐴𝐴 𝑉𝑓𝑓𝑇 ∘ 𝜙𝜙 𝜏
𝜙𝜙′ ∘ 𝑇𝑓𝑓 𝑉 𝐼𝐼𝐴𝐴𝑇. en, there exist the following functors.

(1) 𝐹𝐹: Mod 𝐴𝐴 𝐼 SemiEntwining Str 𝐴𝐴.
𝑀𝑀𝑀 𝑇𝑀𝑀𝑉𝐴𝐴𝑉 𝜙𝜙𝑇, where 𝜙𝜙 𝐼 𝑀𝑀𝑉𝐴𝐴 𝐼 𝐴𝐴𝑉𝑀𝑀𝑉 𝜙𝜙𝑇𝜙𝜙𝑉
𝑎𝑎𝑇 𝜏 1 𝑉 𝜙𝜙𝑎𝑎;
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(2) 𝐺𝐺: SemiEntwining Str𝐴𝐴 𝐴 Mod 𝐴𝐴.
(𝐵𝐵𝐵 𝐴𝐴𝐵 𝐵𝐵𝐵 𝐵 𝐴𝐴 𝐵 𝐵𝐵, where 𝐴𝐴 𝐵 𝐵𝐵 is a right 𝐴𝐴-module
with the operation (𝑎𝑎 𝐵 𝑎𝑎𝐵 𝑎 𝑎𝑎′ = 𝑎𝑎𝑎𝑎′𝛼𝛼 𝐵 𝑎𝑎

𝛼𝛼.

ese two functors do not form an equivalence of cate-
gories in general, because 𝐹𝐹 𝐹 𝐺𝐺 𝐹 𝐴𝐴 𝐵 𝐹 and 𝐺𝐺 𝐹 𝐹𝐹 𝐹 𝐴𝐴 𝐵 𝐹.

eorem 9. If 𝐵𝐵 𝜓 𝐵𝐵 𝐵 𝐴𝐴 𝐴 𝐴𝐴 𝐵 𝐵𝐵 is a semientwining map,
and 𝐴𝐴 is bialgebra, then

(1) 𝐵𝐵 is an 𝐴𝐴-bimodule with the following actions:

𝑎𝑎 𝐹 𝑎𝑎 = 𝑎𝑎 (𝑎𝑎𝐵 𝑎𝑎𝐵 𝑎𝑎 𝑎 𝑎𝑎 = 𝑎𝑎 𝑎𝑎𝛼𝛼 𝑎𝑎
𝛼𝛼𝐵 ∀𝑎𝑎 𝑎 𝐴𝐴𝐵 ∀𝑎𝑎 𝑎 𝐵𝐵𝑎 (8)

(2) 𝐵𝐵𝐵𝐴𝐴 is an algebra with the unit (0𝐵 1𝐵 and the product

(𝑎𝑎𝐵 𝑎𝑎𝐵 𝑎𝑎′𝐵 𝑎𝑎′ = 𝑎𝑎 𝑎 𝑎𝑎′ + 𝑎𝑎 𝐹 𝑎𝑎′𝐵 𝑎𝑎𝑎𝑎′ 𝐵 (9)

and a right𝐴𝐴-comodule with the coaction 𝑎𝑎 𝐵 𝑎𝑎 𝐵 𝑎𝑎 𝐵
1 + (∑𝑎𝑎1 𝐵 𝑎𝑎2𝐵.

(3) If 𝐴𝐴 has a bilateral integral (i.e.,𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎 = 𝑎𝑎(𝑎𝑎𝐵𝑎𝑎
∀𝑎𝑎 𝑎 𝐴𝐴) which is a group-like element (i.e., Δ(𝑎𝑎𝐵 =
𝑎𝑎 𝐵 𝑎𝑎𝐵 𝑎𝑎(𝑎𝑎𝐵 = 1), then 𝐵𝐵 𝐵𝐴𝐴 is an𝐴𝐴-comodule algebra
with the coaction

𝑎𝑎 𝐵 𝑎𝑎𝑏 𝑎𝑎 𝐵 𝑎𝑎 + 𝑎𝑎1 𝐵 𝑎𝑎2 𝑎 (10)

Proof. (1𝐵 Follows from the linearity of 𝑎𝑎 and 𝐵𝐵.
(2𝐵 Follows from the previous statement and from direct

computations as follows: 𝑎𝑎 𝐵 𝑎𝑎 𝐵 𝑎𝑎 𝐵 1 + (∑𝑎𝑎1 𝐵 𝑎𝑎2𝐵 maps
to either 𝑎𝑎 𝐵 (1 𝐵 1𝐵 + (∑ 𝑎𝑎1 𝐵 (𝑎𝑎21 𝐵 𝑎𝑎22𝐵𝐵 (if we apply the
comultiplication of the algebra), or to (𝑎𝑎 𝐵 1𝐵 𝐵 1 + (∑ 0𝐵 0𝐵 𝐵
1 + 0 𝐵 1 + (∑(𝑎𝑎11 𝐵 𝑎𝑎12𝐵 𝐵 𝑎𝑎2) (if we apply the coaction).

We observe that the two outputs are equal.
(3𝐵 Is a generalisation of (2𝐵 and is le to the reader.

Similarly we have the dual notion as follows.

�e�nition 1� (cosemientwining structures). Let 𝐶𝐶 be an 𝑅𝑅-
coalgebra, and let𝐷𝐷 be an𝑅𝑅-module. A𝑅𝑅-linearmap𝐵𝐵 𝜓 𝐷𝐷𝐵
𝐶𝐶 𝐴 𝐶𝐶 𝐵 𝐷𝐷 is called a cosemientwining map if it satis�es
the following conditions for all 𝑐𝑐, 𝑐𝑐′ 𝑎 𝐶𝐶, 𝑑𝑑 𝑎 𝐷𝐷 (where we
use a Sweedler-like summation notation 𝐵𝐵(𝑑𝑑 𝐵 𝑐𝑐𝐵 = 𝑐𝑐𝛼𝛼 𝐵 𝑑𝑑𝛼𝛼):

𝜀𝜀 𝑐𝑐𝛼𝛼 𝑑𝑑𝛼𝛼 = 𝜀𝜀 (𝑐𝑐𝐵 𝑑𝑑𝐵

𝑐𝑐𝛼𝛼(1𝐵 𝐵 𝑐𝑐
𝛼𝛼
(2𝐵 𝐵 𝑑𝑑𝛼𝛼 = 𝑐𝑐(1𝐵

𝛼𝛼 𝐵 𝑐𝑐(2𝐵
𝛽𝛽 𝐵 𝑑𝑑𝛼𝛼𝛽𝛽𝑎

(11)

If𝐷𝐷 is also a coalgebra, and 𝐵𝐵 satis�es additionally

𝑐𝑐𝛼𝛼𝜀𝜀 𝑑𝑑𝛼𝛼 = 𝑐𝑐𝜀𝜀 (𝑑𝑑𝐵 𝐵

𝑐𝑐𝛼𝛼 𝐵 𝑑𝑑𝛼𝛼(1𝐵 𝐵 𝑑𝑑𝛼𝛼(2𝐵 = 𝑐𝑐
𝛼𝛼𝛽𝛽 𝐵 𝑑𝑑(1𝐵𝛽𝛽 𝐵 𝑑𝑑(2𝐵𝛼𝛼

∀𝑑𝑑 𝑎 𝐷𝐷𝐵 ∀𝑐𝑐 𝑎 𝐶𝐶𝐵

(12)

then 𝐵𝐵 is called a coalgebra factorization.

If, on the other hand, 𝐷𝐷 is an algebra, and 𝐵𝐵 satis�es
additionally

𝐵𝐵 1𝐷𝐷 𝐵 𝑐𝑐 = 𝑐𝑐 𝐵 1𝐷𝐷𝐵 𝑐𝑐𝛼𝛼 𝐵 𝑑𝑑𝑑𝑑′
𝛼𝛼
= 𝑐𝑐𝛼𝛼𝛽𝛽 𝐵 𝑑𝑑𝛽𝛽𝑑𝑑

′
𝛼𝛼𝐵

∀𝑑𝑑𝐵 𝑑𝑑′ 𝑎 𝐷𝐷𝐵 ∀𝑐𝑐 𝑎 𝐶𝐶𝐵
(13)

then 𝐵𝐵 is called a (right-right) entwining map.

e next result is dual to Lemma 5.

Lemma 11. Suppose that 𝐵𝐵 𝜓 𝐷𝐷 𝐵 𝐶𝐶 𝐴 𝐶𝐶 𝐵 𝐷𝐷 is a
cosemientwining map, and𝐷𝐷 is a coalgebra. �e�ne a map

Δ𝐷𝐷𝐵𝐶𝐶 𝜓 (𝐷𝐷 𝐵 𝐶𝐶𝐵⟶ (𝐷𝐷 𝐵 𝐶𝐶𝐵 𝐵 (𝐷𝐷 𝐵 𝐶𝐶𝐵 𝐵

𝑑𝑑 𝐵 𝑐𝑐𝑏 𝑑𝑑(1𝐵 𝐵 𝑐𝑐(1𝐵
𝛼𝛼 𝐵 𝑑𝑑(2𝐵𝛼𝛼 𝐵 𝑐𝑐(2𝐵 𝑎

(14)

en Δmakes𝐷𝐷𝐵𝐶𝐶 a coalgebra if and only if 𝐵𝐵 is a coalgebra
factorization.

Proof. For 𝐷𝐷 𝐵 𝐶𝐶 to be a coalgebra it must satisfy the counit
property, that is, (𝜀𝜀𝐷𝐷𝐵𝐶𝐶𝐵 id𝐵𝐹Δ𝐷𝐷𝐵𝐶𝐶 = (id𝐵𝜀𝜀𝐷𝐷𝐵𝐶𝐶𝐵𝐹Δ𝐷𝐷𝐵𝐶𝐶 = id
and the coassociativity property. To check a counit property
note that for all 𝑑𝑑 𝑎 𝐷𝐷 and 𝑐𝑐 𝑎 𝐶𝐶:

id 𝐵 𝜀𝜀𝐷𝐷𝐵𝐶𝐶 𝐹 Δ𝐷𝐷𝐵𝐶𝐶 (𝑑𝑑 𝐵 𝑐𝑐𝐵 = 𝑑𝑑(1𝐵 𝐵 𝑐𝑐
𝛼𝛼𝜀𝜀 𝑑𝑑(2𝐵𝛼𝛼 𝑎 (15)

Now, if 𝑑𝑑 𝐵 𝑐𝑐 = 𝑑𝑑(1𝐵 𝐵 𝑐𝑐𝛼𝛼𝜀𝜀(𝑑𝑑(2𝐵𝛼𝛼𝐵, then applying 𝜀𝜀 𝐵 id to
both sides of this equation yields 𝑐𝑐𝜀𝜀(𝑑𝑑𝐵 = 𝑐𝑐𝛼𝛼𝜀𝜀(𝑑𝑑𝛼𝛼𝐵. Similarly,
we prove the other half of the counit property. Conversely,
𝑐𝑐𝜀𝜀(𝑑𝑑𝐵 = 𝑐𝑐𝛼𝛼𝜀𝜀(𝑑𝑑𝛼𝛼𝐵 implies the counit property.

Using the fact that 𝐵𝐵 is a cosemientwining map, it is easy
to prove that the coassociativity implies that for all 𝑐𝑐 𝑎 𝐶𝐶 and
𝑑𝑑 𝑎 𝐷𝐷

𝑐𝑐(1𝐵
𝛼𝛼 𝐵 𝑑𝑑𝛼𝛼(1𝐵 𝐵 𝑐𝑐(2𝐵

𝛽𝛽 𝐵 𝑑𝑑𝛼𝛼(2𝐵𝛽𝛽 = 𝑐𝑐(1𝐵
𝛼𝛼𝛼𝛼 𝐵 𝑑𝑑(1𝐵𝛼𝛼 𝐵 𝑐𝑐(2𝐵

𝛽𝛽 𝐵 𝑑𝑑(2𝐵𝛼𝛼𝛽𝛽𝑎
(16)

Applying 𝜀𝜀 to the third leg and using the fact that 𝐵𝐵 is a
cosemientwining map yields

𝑐𝑐𝛼𝛼 𝐵 𝑑𝑑𝛼𝛼(1𝐵 𝐵 𝑑𝑑𝛼𝛼(2𝐵 = 𝑐𝑐
𝛼𝛼𝛼𝛼 𝐵 𝑑𝑑(1𝐵𝛼𝛼 𝐵 𝑑𝑑(2𝐵𝛼𝛼𝑎 (17)

We leave the rest of the proof to the reader.

Remark 12. Suppose that 𝐶𝐶 is a right𝐻𝐻-comodule coalgebra
(where𝐻𝐻 is a bialgebra), and𝐷𝐷 is a right𝐻𝐻-module. en

𝐵𝐵 𝜓 𝐷𝐷 𝐵 𝐶𝐶⟶ 𝐶𝐶𝐵𝐷𝐷𝐵 𝑑𝑑 𝐵 𝑐𝑐𝑏 𝑐𝑐(0𝐵 𝐵 𝑑𝑑𝑐𝑐(1𝐵 (18)

is a cosemientwiningmap. Furthermore, if𝐷𝐷 is an𝐻𝐻-module
coalgebra, then𝐵𝐵 is a coalgebra factorization. Otherwise, if𝐷𝐷
is an 𝐻𝐻-module algebra, then 𝐵𝐵 is a le-le entwining map.
Moreover, in this last case, (𝐶𝐶𝐵𝐻𝐻𝐵𝐷𝐷𝐵 is called an alternative
Doi-Koppinen structure.

Let 𝑋𝑋, 𝑌𝑌 be any 𝑅𝑅-modules. Any 𝑎𝑎𝑎 𝑎 𝑋𝑋𝑎 can be viewed
as the map

𝑎𝑎𝑎 𝜓 𝑋𝑋 𝐵 𝑌𝑌⟶ 𝑌𝑌𝐵 𝑎𝑎 𝐵 𝑋𝑋𝑏 𝑎𝑎𝑎 (𝑎𝑎𝐵 𝑋𝑋𝑎 (19)
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Also any tensor ∑𝑖𝑖 𝑥𝑥
∗
𝑖𝑖 ⊗ 𝑦𝑦𝑖𝑖 ∈ 𝑋𝑋∗ ⊗ 𝑌𝑌 can be considered as

a map 𝑋𝑋 𝑋 𝑥𝑥 𝑋 ∑𝑖𝑖 𝑥𝑥
∗
𝑖𝑖 (𝑥𝑥𝑥𝑦𝑦𝑖𝑖 ∈ 𝑌𝑌. Finally, if 𝑋𝑋 is �nitely

generated and projective, then Hom𝑅𝑅(𝑋𝑋𝑋 𝑌𝑌𝑥 𝑋 𝑋𝑋∗ ⊗ 𝑌𝑌. For
any 𝑦𝑦 ∈ 𝑌𝑌, an 𝑅𝑅-module map Ψ ∶ 𝑌𝑌 ⊗ 𝑋𝑋 𝑌 𝑋𝑋 ⊗ 𝑌𝑌 de�nes a
map

Ψ𝑦𝑦 = Ψ 𝑦𝑦 ⊗ 𝑦 ∶ 𝑋𝑋𝑋𝑋𝑋⊗ 𝑌𝑌𝑋 (20)

We de�ne a dual of Ψ∗𝑋𝑋 ∶ 𝑌𝑌 ⊗ 𝑋𝑋∗ 𝑌 𝑋𝑋∗ ⊗ 𝑌𝑌 with respect
to the 𝑋𝑋-part as Ψ∗𝑋𝑋(𝑦𝑦 ⊗ 𝑥𝑥∗𝑥 = Ψ∗

𝑦𝑦(𝑥𝑥
∗𝑥, where Ψ∗

𝑦𝑦 ∶ 𝑋𝑋
∗ 𝑌

𝑋𝑋∗ ⊗ 𝑌𝑌 is de�ned by

𝑥𝑥∗ Ψ𝑦𝑦 (𝑥𝑥𝑥 = 𝜓𝜓
∗
𝑦𝑦 𝑥𝑥

∗ (𝑥𝑥𝑥 𝑋 ∀𝑥𝑥 ∈ 𝑋𝑋𝑋 𝑥𝑥∗ ∈ 𝑋𝑋∗𝑋 𝑦𝑦 ∈ 𝑌𝑌𝑋
(21)

Similarly, one de�nes a dual Ψ∗𝑌𝑌 ∶ 𝑌𝑌∗ ⊗ 𝑋𝑋 𝑌 𝑋𝑋 ⊗ 𝑌𝑌∗ of Ψ
with respect to the 𝑌𝑌-part.

e next lemma is a standard result.

Lemma 13. Suppose that𝐶𝐶 is a �nitely generated pro�ective𝑅𝑅-
coalgebra, and (𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶𝑋 𝑐𝑐

∗
𝑖𝑖 𝑥 is a dual basis. Let𝜓𝜓 ∶ 𝜓𝜓⊗𝐶𝐶 𝑌 𝐶𝐶⊗

𝜓𝜓 be a cosemientwining map. en 𝜓𝜓∗𝐶𝐶 ∶ 𝜓𝜓 ⊗ 𝐶𝐶∗ 𝑌 𝐶𝐶∗ ⊗𝜓𝜓
is a semientwining map for the convolution algebra 𝐶𝐶∗.

Explicitly,

𝜓𝜓∗𝐶𝐶 𝑑𝑑 ⊗ 𝑐𝑐∗ = 
𝑖𝑖
𝑐𝑐∗𝑖𝑖 ⊗ 𝑐𝑐

∗ 𝑐𝑐𝛼𝛼𝑖𝑖  𝑑𝑑𝛼𝛼𝑋 (22)

�e�nition 1� (semientwined modules and comodules). Let
𝐴𝐴 be an algebra, and let 𝑉𝑉 be a vector space. Suppose that
𝜓𝜓 ∶ 𝑉𝑉 ⊗ 𝐴𝐴 𝑌 𝐴𝐴 ⊗ 𝑉𝑉 is a semientwining map, and𝑀𝑀 a right
𝐴𝐴module.

(1) Let ◁ ∶ 𝑀𝑀⊗𝑉𝑉 𝑌 𝑀𝑀 be a right measuring, such that
for all𝑚𝑚 ∈ 𝑀𝑀, 𝑎𝑎 ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉,

𝑚𝑚𝑎𝑎𝛼𝛼 ◁ 𝑣𝑣𝛼𝛼 = (𝑚𝑚 ◁ 𝑣𝑣𝑥 𝑎𝑎𝑋 (23)

en𝑀𝑀 is called a (𝐴𝐴𝑋𝑉𝑉𝑋 𝜓𝜓𝑥 semientwined module.
(2) Let 𝜌𝜌 ∶ 𝑀𝑀 𝑌 𝑀𝑀 ⊗ 𝑉𝑉, 𝑚𝑚 𝑌 𝑚𝑚(0𝑥 ⊗ 𝑚𝑚(1𝑥 be a right

comeasuring, such that for all𝑚𝑚 ∈ 𝑀𝑀, 𝑎𝑎 ∈ 𝐴𝐴,

𝜌𝜌 (𝑚𝑚𝑎𝑎𝑥 = 𝑚𝑚(0𝑥𝜓𝜓 𝑚𝑚(1𝑥 ⊗ 𝑎𝑎 𝑋 (24)

en𝑀𝑀 is called a (𝐴𝐴𝑋𝑉𝑉𝑋 𝜓𝜓𝑥 semientwined comodule.

Remark 15. e following are examples of semientwining
modules related to Remark 4:

(1) let𝐴𝐴 be an 𝑅𝑅-algebra, let𝑀𝑀 be a right𝐴𝐴module,𝑉𝑉 =
𝐴𝐴, 𝜓𝜓 = 𝜓𝜓𝑞𝑞, and the right measuring the regular action
of 𝐴𝐴 on𝑀𝑀;

(2) let𝐴𝐴 be an 𝑅𝑅-algebra, let𝑀𝑀 be a right𝐴𝐴module,𝑉𝑉 =
𝐴𝐴, 𝜓𝜓 = 𝜓𝜓1, and the right measuring the regular action
of 𝐴𝐴 on𝑀𝑀.

Remark 16. e following are examples of semientwining
comodules related to Remark 4:

(1) let𝐴𝐴 be an 𝑅𝑅-algebra, let𝑀𝑀 be a right𝐴𝐴module,𝑉𝑉 =
𝐴𝐴, 𝜓𝜓 = 𝜓𝜓1, and the right comeasuring 𝜌𝜌(𝑚𝑚𝑥 = 𝑚𝑚 ⊗ 1;

(2) let𝐴𝐴 be an 𝑅𝑅-algebra, let𝑀𝑀 be a right𝐴𝐴module,𝑉𝑉 =
𝐴𝐴, 𝜓𝜓 = 𝜓𝜓𝑞𝑞, and the right comeasuring 𝜌𝜌(𝑚𝑚𝑥 = 𝑚𝑚 ⊗ 1.

�e�nition 1� (cosemientwined modules and comodules).
Let 𝐶𝐶 be a coalgebra, and let 𝑉𝑉 be a vector space. Suppose
that 𝜓𝜓 ∶ 𝑉𝑉 ⊗ 𝐶𝐶 𝑌 𝐶𝐶 ⊗ 𝑉𝑉 is a cosemientwining map, and
𝑀𝑀 a le 𝐶𝐶-comodule, with a coaction 𝐶𝐶𝜌𝜌 ∶ 𝑀𝑀 𝑌 𝐶𝐶 ⊗ 𝑀𝑀,
𝑚𝑚 𝑋 𝑚𝑚(−1𝑥 ⊗ 𝑚𝑚(0𝑥.

(1) Let ▷ ∶ 𝑉𝑉 ⊗ 𝑀𝑀 𝑌 𝑀𝑀 be a le measuring, such that
for all𝑚𝑚 ∈ 𝑀𝑀, 𝑣𝑣 ∈ 𝑉𝑉,

𝐶𝐶𝜌𝜌 (𝑣𝑣 ▷ 𝑚𝑚𝑥 = 𝑚𝑚(−1𝑥𝛼𝛼 ⊗ 𝑣𝑣
𝛼𝛼 ▷ 𝑚𝑚(0𝑥𝑋 (25)

en 𝑀𝑀 is called a (𝐶𝐶𝑋𝑉𝑉𝑋 𝜓𝜓𝑥 cosemientwined mod-
ule.

(2) Let 𝑉𝑉𝜌𝜌 ∶ 𝑀𝑀 𝑌 𝑉𝑉 ⊗ 𝑀𝑀, 𝑚𝑚 𝑋 𝑚𝑚−1 ⊗ 𝑚𝑚0 be a le
comeasuring, such that for all𝑚𝑚 ∈ 𝑀𝑀,

id𝐶𝐶 ⊗
𝑉𝑉 𝜌𝜌 ∘𝐶𝐶𝜌𝜌 (𝑚𝑚𝑥 = 𝑚𝑚0(−1𝑥𝛼𝛼 ⊗ 𝑚𝑚−1

𝛼𝛼 ⊗ 𝑚𝑚0(0𝑥𝑋 (26)

en 𝑀𝑀 is called a (𝐶𝐶𝑋𝑉𝑉𝑋 𝜓𝜓𝑥 cosemientwined
comodule.

Note that if 𝑉𝑉 is a coalgebra, and 𝜓𝜓 ∶ 𝑉𝑉 ⊗ 𝐴𝐴 𝑌 𝐴𝐴 ⊗ 𝑉𝑉
is an entwining map, then a semientwined module 𝑀𝑀 is an
entwined module.

e following result is standard, but we provide a partial
proof for completeness.

Lemma 18. Suppose that (𝐴𝐴𝑋 𝐴𝐴𝑋 𝜓𝜓𝑥 is an algebra factorization,
and 𝑀𝑀 is a (𝐴𝐴𝑋 𝐴𝐴𝑋 𝜓𝜓𝑥 semientwined module, such that the 𝐴𝐴
measuring is an action. en𝑀𝑀 is a right 𝐴𝐴 ⊗ 𝐴𝐴-module, with
an algebra structure on𝐴𝐴⊗𝐴𝐴 as in Lemma 5, and𝐴𝐴⊗𝐴𝐴 action
on 𝑀𝑀 given by 𝑚𝑚(𝑎𝑎 ⊗ 𝑚𝑚𝑥 = (𝑚𝑚𝑎𝑎𝑥 ◁ 𝑚𝑚. Conversely, any right
𝐴𝐴 ⊗ 𝐴𝐴module is a semientwined (𝐴𝐴𝑋 𝐴𝐴𝑋 𝜓𝜓𝑥module with 𝐴𝐴 and
𝐴𝐴 actions given by 𝑚𝑚𝑎𝑎 = 𝑚𝑚(𝑎𝑎 ⊗ 1𝐴𝐴𝑥 and 𝑚𝑚 ◁ 𝑚𝑚 = 𝑚𝑚(1𝐴𝐴 ⊗ 𝑚𝑚𝑥,
respectively.

Proof. It is enough to verify that the de�nition of𝐴𝐴⊗𝐴𝐴 action
agrees with the algebra relations, that is, that

𝑚𝑚((1 ⊗ 𝑚𝑚𝑥 (𝑎𝑎 ⊗ 1𝑥𝑥 = (𝑚𝑚 (1 ⊗ 𝑚𝑚𝑥𝑥 (𝑎𝑎 ⊗ 𝑚𝑚𝑥 𝑋 (27)

Both sides of the above equation equal 𝑚𝑚𝑎𝑎𝛼𝛼 ◁ 𝑚𝑚𝛼𝛼-le one
because of algebra relations, and the right one because𝑀𝑀 is a
(𝐴𝐴𝑋 𝐴𝐴𝑋 𝜓𝜓𝑥 semientwined module. We prove similarly the rest
of the lemma.

3. Applications

3.1. Intertwining Operators. We give a brief introduction to
the intertwining operators below.

Let𝐴𝐴 be an𝑅𝑅-algebra. Given two algebra representations,
say 𝜌𝜌 ∶ 𝑉𝑉 ⊗ 𝐴𝐴 𝑌 𝑉𝑉 and 𝜌𝜌′ ∶ 𝑉𝑉′ ⊗ 𝐴𝐴 𝑌 𝑉𝑉′, we de�ne an
intertwining operator 𝑓𝑓 ∶ 𝑉𝑉 𝑌 𝑉𝑉′ to be a linear operator,
such that 𝑓𝑓 ∘ 𝜌𝜌 = 𝜌𝜌′ ∘ (𝑓𝑓 ⊗ 𝑓𝑓𝑥.

With this de�nition we can de�ne the category of �nite-
dimensional representations of 𝐴𝐴, in which the morphisms
are intertwining operators (see [18]).
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e following theorem provides a connection between
semientwining structures and intertwining operators.

eorem 19. Let 𝐴𝐴 be an 𝑅𝑅-algebra, let 𝐵𝐵 be an 𝑅𝑅-module,
and let 𝜓𝜓 𝜓 𝐵𝐵 𝜓 𝐴𝐴 𝜓 𝐴𝐴 𝜓 𝐵𝐵 be a semientwining map. en,
the following statements are true:

(i) 𝐵𝐵 𝜓 𝐴𝐴 is a right 𝐴𝐴-module in a trivial way, with the
right action 𝜌𝜌 𝜓 𝜌𝐵𝐵𝜓𝐴𝐴𝜌𝜓 𝐴𝐴 𝜓 𝜌𝐵𝐵𝜓𝐴𝐴𝜌𝜌 𝜌𝜌𝜌𝜓𝜌𝜌𝜌𝜓𝜌𝜌′ ↦
𝜌𝜌 𝜓 𝜌𝜌𝜌𝜌′.

(ii) 𝐴𝐴 𝜓 𝐵𝐵 is a right 𝐴𝐴-module in the following way: 𝜌𝜌′ 𝜓
𝜌𝐴𝐴 𝜓 𝐵𝐵𝜌 𝜓 𝐴𝐴 𝜓 𝜌𝐴𝐴 𝜓 𝐵𝐵𝜌𝜌 𝜌𝜌𝜌 𝜓 𝜌𝜌𝜌 𝜓 𝜌𝜌′ ↦ 𝜌𝜌𝜌𝜌′𝛼𝛼 𝜓 𝜌𝜌

𝛼𝛼.

(iii) With the above actions, 𝜓𝜓 𝜓 𝐵𝐵 𝜓 𝐴𝐴 𝜓 𝐴𝐴 𝜓 𝐵𝐵 is an
intertwining operator (i.e., 𝜓𝜓 satis�es the relation 𝜓𝜓 𝜓
𝜌𝜌 𝜌 𝜌𝜌′ 𝜓 𝜌𝜓𝜓 𝜓 𝜓𝜓𝜌).

Proof. e proof of (i) is direct, and (ii) follows from Lemma
5(i).e relation𝜓𝜓𝜓𝜌𝜌 𝜌 𝜌𝜌′ 𝜓𝜌𝜓𝜓𝜓𝜓𝜓𝜌 is equivalent to the second
relation of (3).

3.2. Braided Algebras. Many algebras obtained by quantiza-
tion are commutative braided algebras, and all super-com-
mutative algebras are automatically commutative braided
algebras (see [19]).

�e�nition 2�. An algebra 𝜌𝐴𝐴𝜌𝐴𝐴𝜌 𝐴𝐴𝜌 for which there exists a
Yang-Baxter operator𝜓𝜓 𝜓 𝐴𝐴𝜓𝐴𝐴 𝜓 𝐴𝐴𝜓𝐴𝐴 such that 𝜓𝜓𝜌𝜌𝜌𝜓𝜓𝜌 𝜌
𝜓 𝜓 𝜌𝜌𝜌 𝜓𝜓𝜌𝜓 𝜓 𝜌𝜌𝜌 𝜌 𝜌𝜌 𝜓 𝜓𝜌 𝜓𝜓𝜌𝜌𝜌 𝜓 𝜌𝜌𝑎𝑎𝜌 𝜌 𝜌𝐴𝐴 𝜓 𝜓𝜓𝜌 𝜓 𝜌𝜓𝜓 𝜓 𝜓𝜓𝜌 𝜓 𝜌𝜓𝜓 𝜓
𝜓𝜓𝜌𝜌𝜌𝜌 𝜓 𝜌𝜌 𝜓 𝑎𝑎𝜌𝜌 and 𝜓𝜓𝜌𝜌𝜌𝜌𝜌 𝜓 𝑎𝑎𝜌 𝜌 𝜌𝜓𝜓 𝜓𝐴𝐴𝜌 𝜓 𝜌𝜓𝜓 𝜓 𝜓𝜓𝜌 𝜓 𝜌𝜓𝜓 𝜓 𝜓𝜓𝜌𝜌𝜌𝜌 𝜓
𝜌𝜌 𝜓 𝑎𝑎𝜌 for all 𝜌𝜌𝜌 𝜌𝜌𝜌 𝑎𝑎 𝑎 𝐴𝐴 is called a braided algebra.

Moreover, if𝐴𝐴 𝜓 𝜓𝜓𝜌𝜌𝜌 𝜓 𝜌𝜌𝜌 𝜌 𝐴𝐴𝜌𝜌𝜌 𝜓 𝜌𝜌𝜌 for all 𝜌𝜌𝜌 𝜌𝜌 𝑎 𝐴𝐴,
we call 𝜌𝐴𝐴𝜌𝐴𝐴𝜌 𝐴𝐴𝜌 𝜓𝜓𝜌 a commutative braided algebra or an 𝑟𝑟-
commutative algebra (see [20]).

�e�nition 2�. Given braided algebras 𝜌𝐴𝐴𝜌𝐴𝐴𝜌 𝐴𝐴𝜌 𝜓𝜓𝜌 and
𝜌𝐵𝐵𝜌𝐴𝐴𝜌 𝐴𝐴𝜌 𝜓𝜓′𝜌, we say that 𝑓𝑓 𝜓 𝐴𝐴 𝜓 𝐵𝐵 is a braided algebra
morphism if it is a morphism of algebras and 𝜌𝑓𝑓 𝜓 𝑓𝑓𝜌 𝜓 𝜓𝜓 𝜌
𝜓𝜓′ 𝜓 𝜌𝑓𝑓 𝜓 𝑓𝑓𝜌 (see [20]).

eorem 22. (i) Any algebra 𝜌𝐴𝐴𝜌𝐴𝐴𝜌 𝐴𝐴𝜌 becomes a commuta-
tive braided algebra 𝜌𝐴𝐴𝜌𝐴𝐴𝜌 𝐴𝐴𝜌 𝜓𝜓𝜌 with 𝜓𝜓𝜌𝜌𝜌 𝜓 𝜌𝜌𝜌 𝜌 𝜓𝜓𝐴𝐴𝜌𝜌𝜌 𝜓 𝜌𝜌𝜌 𝜌
𝜓 𝜓 𝜌𝜌𝜌𝜌 𝑎 𝜌𝜌𝜌𝜌 𝜓 𝜓 𝑎 𝜌𝜌 𝜓 𝜌𝜌.

(ii) If 𝜌A𝜌M𝜌 u𝜌 𝜓𝜓A𝜌 and 𝜌B𝜌M𝜌 u𝜌 𝜓𝜓B𝜌 are two braided
algebras as in (i), and f 𝜓 A 𝜓 B is an algebra morphism,
then it is also a braided algebra morphism.

(iii) If 𝛿𝛿 𝜓 A 𝜓 A is a derivation (i.e., 𝛿𝛿𝜌ab𝜌 𝜌 𝛿𝛿𝜌a𝜌b 𝑎
a𝛿𝛿𝜌b𝜌 and 𝛿𝛿𝜌𝜓𝜌 𝜌 𝛿), then there exists a morphism of braided
algebras f 𝜓 𝜌A𝜌M𝜌 u𝜌 𝜓𝜓A𝜌 𝜓 𝜌A ⊕ A𝜌m𝜌 𝜂𝜂𝜌 𝜓𝜓A⊕A𝜌, a ↦
a ⊕ 𝛿𝛿𝜌a𝜌, where 𝑚𝑚𝜌𝜌𝜌𝜌 ⊕ 𝜌𝜌𝜌 𝜓 𝜌𝜌𝜌′ ⊕ 𝜌𝜌′𝜌𝜌 𝜌 𝜌𝜌𝜌𝜌𝜌′𝜌 ⊕ 𝜌𝜌𝜌𝜌𝜌′ 𝑎
𝜌𝜌𝜌𝜌′𝜌 and 𝜓A⊕A 𝜌 𝜓A ⊕ 𝛿A.

Proof. (i) Notice that𝜓𝜓𝜌𝜌𝜌𝜓𝜌𝜌𝜌 𝜌 𝜓𝜓𝜌𝜌𝜌𝜌𝑎𝜌𝜌𝜌𝜌𝜓𝜓𝑎𝜌𝜌𝜓𝜌𝜌 is a self-
inverse Yang-Baxter operator which was studied in [16, 21].

𝜓𝜓𝜌𝜌𝜌 𝜓 𝜓𝜌 𝜌 𝜓 𝜓 𝜌𝜌, 𝜓𝜓𝜌𝜓 𝜓 𝜌𝜌𝜌 𝜌 𝜌𝜌 𝜓 𝜓 (directly)
𝜓𝜓𝜌𝜌𝜌 𝜓 𝜌𝜌𝑎𝑎𝜌 𝜌 𝜌𝐴𝐴𝜓 𝜓𝜓𝜌 𝜓 𝜌𝜓𝜓 𝜓𝜓𝜓𝜌 𝜓 𝜌𝜓𝜓𝜓 𝜓𝜓𝜌𝜌𝜌𝜌 𝜓 𝜌𝜌 𝜓 𝑎𝑎𝜌 (from
Remark 4 (i) with 𝑞𝑞 𝜌 𝜓)
𝜓𝜓𝜌𝜌𝜌𝜌𝜌 𝜓 𝑎𝑎𝜌 𝜌 𝜓 𝜓 𝜌𝜌𝜌𝜌𝑎𝑎 𝑎 𝜌𝜌𝜌𝜌𝑎𝑎 𝜓 𝜓 𝑎 𝜌𝜌𝜌𝜌 𝜓 𝑎𝑎 𝜌
𝜌𝜓𝜓 𝜓 𝐴𝐴𝜌𝜓𝜌𝜓𝜓 𝜓 𝜓𝜓𝜌𝜓 𝜌𝜓𝜓 𝜓 𝜓𝜓𝜌𝜌𝜌𝜌 𝜓 𝜌𝜌𝜓 𝑎𝑎𝜌 = 𝜌𝜓𝜓 𝜓 𝐴𝐴𝜌𝜓
𝜌𝜓𝜓 𝜓 𝜓𝜓𝜌𝜌𝜌𝜌 𝜓 𝜓 𝜓 𝜌𝜌𝑎𝑎 𝑎 𝜌𝜌 𝜓 𝜌𝜌𝑎𝑎 𝜓 𝜓 𝑎 𝜌𝜌 𝜓 𝜌𝜌 𝜓 𝑎𝑎𝜌 𝜌
𝜌𝜓𝜓 𝜓 𝐴𝐴𝜌𝜌𝜓 𝜓 𝜌𝜌 𝜓 𝜌𝜌𝑎𝑎 𝑎 𝜌𝜌𝜌𝜌𝑎𝑎 𝜓 𝜓 𝜓 𝜓 𝑎 𝜓 𝜓 𝜌𝜌𝜌𝜌𝑎𝑎 𝜓
𝜓𝑎𝜌𝜌 𝜓 𝜌𝜌𝑎𝑎𝜓𝜓𝑎𝜓𝜓 𝜌𝜌𝜌𝜌𝜓𝑎𝑎𝑎𝜌𝜌𝜌𝜌 𝜓 𝜓𝜓𝑎𝑎𝑎 𝜌𝜌𝜓 𝜌𝜌𝜓𝑎𝑎𝜌 𝜌
𝜓 𝜓 𝜌𝜌𝜌𝜌𝑎𝑎 𝑎 𝜌𝜌𝜌𝜌𝑎𝑎 𝜓 𝜓 𝑎 𝜓 𝜓 𝜌𝜌𝜌𝜌𝑎𝑎 𝜓 𝜓 𝑎 𝜌𝜌 𝜓 𝜌𝜌𝑎𝑎 𝑎 𝜓 𝜓
𝜌𝜌𝜌𝜌𝑎𝑎𝑎𝜌𝜌𝜌𝜌 𝜓 𝑎𝑎𝑎𝜌𝜌 𝜓 𝜌𝜌𝑎𝑎 𝜌 𝜌𝜌𝜌𝜌𝑎𝑎 𝜓 𝜓𝑎 𝜓𝜓 𝜌𝜌𝜌𝜌𝑎𝑎𝑎𝜌𝜌𝜌𝜌 𝜓 𝑎𝑎
𝐴𝐴𝜓𝜓𝜓𝜌𝜌𝜌𝜓𝜌𝜌𝜌 𝜌 𝜓𝜓𝜌𝜌𝜌𝜌𝑎𝜌𝜌𝜌𝜌𝜓𝜓𝑎𝜌𝜌𝜓𝜌𝜌 𝜌 𝜌𝜌𝜌𝜌 𝜌 𝐴𝐴𝜌𝜌𝜌𝜓𝜌𝜌𝜌

(ii) is follows from Proposition 3.𝜓 of [15]. Also, refer
to [16].

(iii) e proof is direct and is le to the reader.

Remark 23. In the above example 𝜓𝜓 𝜓 𝜓𝜓 𝜌 𝜓𝜓 𝜓 𝜓𝜓; so, the above
algebra is “strong.” All sorts of noncommutative analogs
of manifolds are commutative braided algebras: quantum
groups, noncommutative tori, quantum vector spaces, the
Weyl and Clifford algebras, certain universal enveloping
algebras, super-manifolds, and so forth. It seems that the ones
with direct relevance to quantum theory in 4 dimensions are
“strong,” while the nonstrong ones, like quantum groups, are
primarily relevant to 2- and 3-dimensional physics (see [19]).

3.3. Liings of Functors. e semientwining structures can
be understood as liings of functors from one category to
another. is goes back as far back as [22]. is situation
is reviewed in [11]: the semientwining case is dealt with in
general in item 3.3 (which is transferred from [22]); how
this general case is translated to our situation is clear from
the discussion in item 5.8 of [11]. is is also presented
in Section 3.𝜓 of [23], where the axioms of semientwining
structures are given by formula (3.1).

We give a general de�nition of liings of functors. 𝐹𝐹 is a
liing of 𝐺𝐺 if the following diagram commutes

𝔘

ℭ

𝔅

𝔇

𝑈

𝐹

𝐺

𝑈 (28)

where𝑈𝑈 and𝑈𝑈′ are forgetful functors.
We now present examples of liings of functors related to

semientwining structures.

eorem24. Let𝐴𝐴 be an𝑅𝑅-algebra, and let𝐵𝐵 be an𝑅𝑅-module.
e functor 𝑎 𝜓 𝐵𝐵 can be lied from the category of 𝑅𝑅-modules
to the category of right 𝐴𝐴-modules ⇔ there exists a 𝑅𝑅-linear
map 𝜓𝜓 𝜓 𝐵𝐵 𝜓 𝐴𝐴 𝜓 𝐴𝐴 𝜓 𝐵𝐵 which is a semientwining map.

Proof. Assume that there exists a semientwining 𝜓𝜓 𝜓 𝐵𝐵 𝜓
𝐴𝐴 𝜓 𝐴𝐴 𝜓 𝐵𝐵, then 𝑎 𝜓 𝐵𝐵 lis to a functor which associates
to a right 𝐴𝐴-module𝐴𝐴 the 𝐴𝐴-module𝐴𝐴𝜓 𝐵𝐵 with a right 𝐴𝐴
action given by

𝜌𝑚𝑚 𝜓 𝜌𝜌𝜌 𝜌𝜌 𝜓𝜌 𝑚𝑚𝜌𝜌𝛼𝛼 𝜓 𝜌𝜌
𝛼𝛼. (29)
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It remains to check that for any right 𝐴𝐴-module function 𝑓𝑓 𝑓
𝑀𝑀 𝑀 𝑀𝑀′, the map 𝑓𝑓 𝑓 id 𝑓 𝑀𝑀 𝑓 𝑀𝑀 𝑀 𝑀𝑀′ 𝑓 𝑀𝑀 is a right
𝐴𝐴 -module map as follows:

𝑓𝑓 𝑓 id (𝑚𝑚 𝑓 𝑚𝑚) 𝑎𝑎 𝑎 𝑓𝑓 (𝑚𝑚) 𝑓 𝑚𝑚 𝑎𝑎 𝑎 𝑓𝑓 (𝑚𝑚) 𝑎𝑎𝛼𝛼 𝑓 𝑚𝑚
𝛼𝛼

𝑎 𝑓𝑓 𝑚𝑚𝑎𝑎𝛼𝛼 𝑓 𝑚𝑚
𝛼𝛼 𝑎 𝑓𝑓 𝑓 id ((𝑚𝑚 𝑓 𝑚𝑚) 𝑎𝑎) .

(30)

On the other hand, suppose that − 𝑓 𝑀𝑀 lis to a functor in
the category of right 𝐴𝐴-modules. In particular, it follows that
𝐴𝐴 𝑓 𝑀𝑀 is a right 𝐴𝐴-module. De�ne the linear map

Ψ 𝑓 𝑀𝑀 𝑓 𝐴𝐴𝐵𝐴𝐴𝑓 𝑀𝑀𝐵 𝑚𝑚 𝑓 𝑎𝑎𝐵 𝑎𝑎𝛼𝛼 𝑓 𝑚𝑚
𝛼𝛼 (31)

by the formula

Ψ (𝑚𝑚 𝑓 𝑎𝑎) 𝑓𝑎 (1 𝑓 𝑚𝑚) 𝑎𝑎. (32)

We shall prove that this is a semientwining map. Indeed, by
de�nition we have

Ψ (𝑚𝑚 𝑓 1) 𝑎 1 𝑓 𝑚𝑚. (33)

Any element 𝑎𝑎 𝑎 𝐴𝐴 de�nes a right 𝐴𝐴-module map

𝑓𝑓 𝑓 𝐴𝐴𝐵 𝐴𝐴𝐵 𝑎𝑎′ 𝐵 𝑎𝑎𝑎𝑎′. (34)

It follows that for any 𝑎𝑎′ 𝑎 𝐴𝐴, we have from the𝐴𝐴-linearity of
𝑓𝑓 𝑓 id as follows:

(𝑎𝑎 𝑓 𝑚𝑚) 𝑎𝑎′ 𝑎 𝑓𝑓 (1) 𝑓 𝑚𝑚 𝑎𝑎′ 𝑎 𝑓𝑓 𝑓 id (1 𝑓 𝑚𝑚) 𝑎𝑎′

𝑎 𝑓𝑓 𝑎𝑎′𝛼𝛼 𝑓 𝑚𝑚
𝛼𝛼 𝑎 𝑎𝑎𝑎𝑎′𝛼𝛼 𝑓 𝑚𝑚

𝛼𝛼.
(35)

Hence (𝑎𝑎𝑎𝑎′)𝛼𝛼 𝑓 𝑚𝑚
𝛼𝛼 𝑎 (1 𝑓 𝑚𝑚)(𝑎𝑎𝑎𝑎′) 𝑎 (𝑎𝑎𝛼𝛼 𝑓 𝑚𝑚

𝛼𝛼)𝑎𝑎′ 𝑎 𝑎𝑎𝛼𝛼𝑎𝑎
′
𝛽𝛽 𝑓

𝑚𝑚𝛼𝛼𝛽𝛽.

Remark 25. Let𝐴𝐴 be an𝑅𝑅-algebra, and let𝑀𝑀 be an𝑅𝑅-module.
Using our terminology (given in Remark 8) and the results
of [23], we conclude that the category of semientwining
structures over 𝐴𝐴 is isomorphic to the category of liing of
functors from the category of 𝑅𝑅-modules to the category of
right 𝐴𝐴-modules.

Remark 26. We now give a more general de�nition than that
given in Remark 8.

We de�ne the category of semientwining structures,
whose objects are triples (𝑀𝑀𝐵 𝐴𝐴𝐵 𝐵𝐵), and morphisms are pairs
(𝑓𝑓𝐵 𝑓𝑓) 𝑓 (𝑀𝑀𝐵 𝐴𝐴𝐵 𝐵𝐵) 𝑀 (𝑀𝑀′𝐵 𝐴𝐴′𝐵 𝐵𝐵′) where 𝑓𝑓 𝑓 𝑀𝑀 𝑀 𝑀𝑀′ is an
𝑅𝑅-linear map, 𝑓𝑓 𝑓 𝐴𝐴 𝑀 𝐴𝐴′ is an algebra morphism, and they
satisfy the relation (𝑓𝑓 𝑓 𝑓𝑓) 𝑔 𝐵𝐵 𝑎 𝐵𝐵′ 𝑔 (𝑓𝑓 𝑓 𝑓𝑓).

In a dual manner, let us de�ne the category of cosemien-
twining structures, whose objects are triples (𝐷𝐷𝐵 𝐷𝐷𝐵 𝐵𝐵), and
morphisms are pairs (𝑓𝑓𝐵 𝑓𝑓) 𝑓 (𝐷𝐷𝐵 𝐷𝐷𝐵 𝐵𝐵) 𝑀 (𝐷𝐷′𝐵 𝐷𝐷′𝐵 𝐵𝐵′) where
𝑓𝑓 𝑓 𝐷𝐷 𝑀 𝐷𝐷′ is an 𝑅𝑅-linear map, 𝑓𝑓 𝑓 𝐷𝐷 𝑀 𝐷𝐷′ is a coalgebra
morphism, and they satisfy the relation (𝑓𝑓 𝑓 𝑓𝑓) 𝑔 𝐵𝐵 𝑎
𝐵𝐵′ 𝑔 (𝑓𝑓 𝑓 𝑓𝑓).

e duality functor from the category of coalgebras to
the category of algebras can be lied to a functor from the
category of cosemientwining structures to the category of
semientwining structures (by Lemma 13).

is fact is described in the following diagram:

Cosemientw str Semientwining str

𝑈 𝑈

𝑘-coalg 𝑘-alg

()∗

()∗

(36)

Remark 27. A braided coalgebra is a structure dual to
De�nition 20 (see, e.g. [24]).

e duality between �nite-dimensional algebras and
�nite-dimensional coalgebras can be lied to a duality
between the categories of �nite-dimensional-braided alge-
bras and �nite- dimensional braided coalgebras. is fact is
described in the following diagram:

f.d. braided alg f.d. braided coalg

()
f.d. 𝑘-alg f.d. 𝑘-colag

𝑈𝑈

()∗

()∗

∗

()∗

(37)

3.4. Tambara Bialgebras.

�e�nition 2� (Tambara bialgebra [25]). Let 𝐴𝐴 be a �nitely
generated and projective 𝑅𝑅-algebra (which implies that 𝐴𝐴∗ is
a coalgebra), and let 𝑎𝑎𝑖𝑖, 𝑎𝑎

∗
𝑖𝑖 , 𝑖𝑖 𝑎 1𝐵𝑖 𝐵𝑖𝑖 be a dual basis of 𝐴𝐴.

Let 𝐼𝐼 𝐼 𝐼𝐼(𝐴𝐴∗ 𝑓 𝐴𝐴) be an ideal generated by elements

𝑎𝑎∗ 1𝐴𝐴 − 𝑎𝑎
∗ 𝑓 1𝐴𝐴𝐵

𝑎𝑎∗ 𝑓 𝑎𝑎𝑎𝑎′ − 𝑎𝑎∗(1) 𝑓 𝑎𝑎 𝑓 𝑎𝑎
∗
(2) 𝑓 𝑎𝑎

′𝐵
(38)

for all 𝑎𝑎 𝑎 𝐴𝐴, 𝑎𝑎∗ 𝑎 𝐴𝐴∗. en𝐻𝐻(𝐴𝐴) 𝑎 𝐼𝐼(𝐴𝐴∗ 𝑓 𝐴𝐴)𝐴𝐼𝐼 is called
a Tambara bialgebra. Denoting by [𝑎𝑎∗ 𝑓 𝑎𝑎𝑎 the class of 𝑎𝑎 𝑓 𝑎𝑎∗
in𝐻𝐻(𝐴𝐴), the comultiplication Δ and counit 𝜀𝜀 is given by

Δ 𝑎𝑎∗ 𝑓 𝑎𝑎 𝑎 
𝑖𝑖
𝑎𝑎∗ 𝑓 𝑎𝑎𝑖𝑖 𝑓 𝑎𝑎

∗
𝑖𝑖 𝑓 𝑎𝑎 𝐵

𝜀𝜀 𝑎𝑎∗ 𝑓 𝑎𝑎 𝑎 𝑎𝑎∗ (𝑎𝑎) .

(39)

𝐴𝐴 is a right𝐻𝐻(𝐴𝐴)-comodule algebra with coaction

𝜚𝜚 (𝑎𝑎) 𝑎 
𝑖𝑖
𝑎𝑎𝑖𝑖 𝑓 𝑎𝑎

∗
𝑖𝑖 𝑓 𝑎𝑎 . (40)

eorem 29 (see [25]). Suppose that 𝐴𝐴 is a �nitely generated
projective 𝑅𝑅-algebra, and 𝑀𝑀 is an 𝑅𝑅-module. en semien-
twining structures 𝜓𝜓 𝑓 𝑀𝑀 𝑓 𝐴𝐴 𝑀 𝐴𝐴 𝑓 𝑀𝑀 are in one-to-
one correspondence with right 𝐻𝐻(𝐴𝐴)-module structures on 𝑀𝑀.
Similarly, if 𝑀𝑀 is an algebra, then algebra factorizations are in
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one to one correspondence with right 𝐻𝐻𝐻𝐻𝐻𝐻-module algebra
structures on 𝐵𝐵. Finally if 𝐵𝐵 is a coalgebra, then entwining
structures𝜓𝜓 𝜓 𝐵𝐵𝜓𝐻𝐻 𝜓 𝐻𝐻𝜓𝐵𝐵 are in one to one correspondence
with right𝐻𝐻𝐻𝐻𝐻𝐻-module coalgebra structures on 𝐵𝐵. Explicitly,
given right𝐻𝐻𝐻𝐻𝐻𝐻-module structure on 𝐵𝐵, we de�ne 𝜓𝜓 𝜓 𝜓𝜓𝐻𝐻𝐻𝐻𝐻𝐻
(7). Conversely, given a semientwining 𝜓𝜓 𝜓 𝐵𝐵 𝜓 𝐻𝐻 𝜓 𝐻𝐻 𝜓 𝐵𝐵,
we de�ne a right𝐻𝐻𝐻𝐻𝐻𝐻module action on 𝐵𝐵 by

𝑏𝑏 𝑎𝑎∗ 𝜓 𝑎𝑎 𝜓 𝑎𝑎∗ 𝑎𝑎𝛼𝛼 𝑏𝑏
𝛼𝛼. (41)

Remark 30. Let 𝑞𝑞 𝑞 𝑞𝑞. e examples of semientwining
structures presented in Remark 4 generate the following
structures:

(1) a right𝐻𝐻𝐻𝐻𝐻𝐻module action on 𝐻𝐻 by

𝑏𝑏 𝑎𝑎∗ 𝜓 𝑎𝑎 𝜓 𝑎𝑎∗ 𝐻1𝐻 𝑏𝑏𝑎𝑎 𝑏 𝑞𝑞𝑎𝑎∗ 𝐻𝑏𝑏𝑎𝑎𝐻 1𝐻𝐻 − 𝑞𝑞𝑎𝑎
∗ 𝐻𝑏𝑏𝐻 𝑎𝑎𝑎 (42)

(2) a right𝐻𝐻𝐻𝐻𝐻𝐻module action on 𝐻𝐻 by

𝑏𝑏 𝑎𝑎∗ 𝜓 𝑎𝑎 𝜓 𝑞𝑞𝑎𝑎∗ 𝐻𝑏𝑏𝑎𝑎 − 𝑎𝑎𝑏𝑏𝐻 1𝐻𝐻 𝑏 𝑞𝑞𝑎𝑎
∗ 𝐻𝑎𝑎𝐻 𝑏𝑏𝑎 (43)

(3) a right 𝐻𝐻𝐻𝐻𝐻𝐻 module action on 𝑀𝑀, for any right 𝐻𝐻-
module𝑀𝑀, by

𝑚𝑚𝑎𝑎∗ 𝜓 𝑎𝑎 𝜓 𝑎𝑎∗ 1𝐻𝐻𝑚𝑚𝑎𝑎. (44)

Let 𝐶𝐶 be a �nitely generated and pro�ective 𝑞𝑞 coalgebra.
Let 𝑐𝑐𝑖𝑖, 𝑐𝑐

∗
𝑖𝑖 , 𝑖𝑖 𝜓 1𝑖𝑖 𝑖𝑖𝑖 be a dual basis of 𝐶𝐶. Note that

𝐻𝐻𝐻𝐶𝐶∗𝐻cop 𝜓 𝑇𝑇𝐻𝐶𝐶∗ 𝜓 𝐶𝐶𝐻𝐶𝐶𝐶′ where 𝐶𝐶′ ⊂ 𝑇𝑇𝐻𝐶𝐶∗ 𝜓 𝐶𝐶) is an ideal
generated by elements

𝜀𝜀𝐶𝐶 𝐻𝑐𝑐𝐻 − 𝜀𝜀𝐶𝐶 𝜓 𝐶𝐶𝑖

𝑐𝑐∗ ∗ 𝑑𝑑∗ 𝜓 𝑐𝑐 − 𝑐𝑐∗ 𝜓 𝑐𝑐𝐻1𝐻 𝜓 𝑑𝑑
∗ 𝜓 𝑐𝑐𝐻2𝐻 𝑖

(45)

for all 𝑐𝑐∗, 𝑑𝑑∗ 𝑞 𝐶𝐶∗, 𝑐𝑐 𝑞 𝐶𝐶, with explicit coaction and counit
given by

Δ 𝑐𝑐∗ 𝜓 𝑐𝑐 𝜓 
𝑖𝑖
𝑐𝑐∗ 𝜓 𝑐𝑐𝑖𝑖 𝜓 𝑐𝑐

∗
𝑖𝑖 𝜓 𝑐𝑐 𝑖

𝜀𝜀 𝑐𝑐∗ 𝜓 𝑐𝑐 𝜓 𝑐𝑐∗ 𝐻𝑐𝑐𝐻 .

(46)

eorem 31 (see [25]). Suppose that 𝐶𝐶 is a �nitely gen-
erated projective 𝑞𝑞-coalgebra, and 𝐷𝐷 is an 𝑞𝑞-module. en
cosemientwining structures 𝜓𝜓 𝜓 𝐷𝐷 𝜓 𝐶𝐶 𝜓 𝐶𝐶 𝜓 𝐷𝐷 are
in one-to-one correspondence with right 𝐻𝐻𝐻𝐶𝐶∗𝐻cop module
structures on 𝐷𝐷. Similarly if 𝐷𝐷 is a coalgebra, then coalgebra
factorizations are in one to one correspondence with𝐻𝐻𝐻𝐶𝐶∗𝐻cop-
module coalgebra structures on 𝐷𝐷. Finally, if 𝐷𝐷 is an algebra,
then (right-right) entwining structures 𝜓𝜓 𝜓 𝐷𝐷 𝜓 𝐶𝐶 𝜓 𝐶𝐶 𝜓 𝐷𝐷
are in one to one correspondence with right𝐻𝐻𝐻𝐶𝐶∗𝐻cop-module
algebra structures on 𝐷𝐷. Explicitly, given right 𝐻𝐻𝐻𝐶𝐶∗𝐻cop-
module structures on 𝐷𝐷, we de�ne 𝜓𝜓 𝜓 𝜓𝜓𝐻𝐻𝐻𝐶𝐶

∗𝐻cop (18).
Conversely, given a cosemientwining 𝜓𝜓 𝜓 𝐷𝐷𝜓𝐶𝐶 𝜓 𝐶𝐶𝜓𝐷𝐷, we
de�ne a right𝐻𝐻𝐻𝐶𝐶∗𝐻cop-module structures on𝐷𝐷 by

𝑑𝑑 𝑐𝑐∗ 𝜓 𝑐𝑐 𝜓 𝑐𝑐∗ 𝑑𝑑𝛼𝛼 𝑐𝑐
𝛼𝛼. (47)

3.5. Yang-Baxter Systems. From now on we work over a �eld
𝕂𝕂. It is convenient to introduce the constant Yang-Baxter
commutator of the linear maps 𝑞𝑞 𝜓 𝑅𝑅 𝜓 𝑅𝑅′ 𝜓 𝑅𝑅 𝜓 𝑅𝑅′𝑖 𝑆𝑆 𝜓
𝑅𝑅 𝜓 𝑅𝑅′′ 𝜓 𝑅𝑅 𝜓 𝑅𝑅′′𝑖 𝑇𝑇 𝜓 𝑅𝑅′ 𝜓 𝑅𝑅′′ 𝜓 𝑅𝑅′ 𝜓 𝑅𝑅′′ by

[𝑞𝑞𝑖 𝑆𝑆𝑖 𝑇𝑇] 𝜓𝜓 𝑞𝑞12𝑆𝑆13𝑇𝑇23 − 𝑇𝑇23𝑆𝑆13𝑞𝑞12. (48)

In this notation, the quantum Yang-Baxter equation reads
[𝑞𝑞𝑖 𝑞𝑞𝑖 𝑞𝑞] 𝜓 𝑅.

�e�nition 3� (Yang-Baxter systems of type I). A system of
linear maps of vector spaces 𝑊𝑊 𝜓 𝑅𝑅 𝜓 𝑅𝑅 𝜓 𝑅𝑅 𝜓 𝑅𝑅𝑖 𝑊𝑊 𝜓
𝑅𝑅′ 𝜓𝑅𝑅′ 𝜓 𝑅𝑅′ 𝜓𝑅𝑅′𝑖 𝑋𝑋 𝜓 𝑅𝑅𝜓𝑅𝑅′ 𝜓 𝑅𝑅𝜓𝑅𝑅′ is called a𝑊𝑊𝑋𝑋𝑊𝑊
system (or a Yang-Baxter system of type I) if

[𝑊𝑊𝑖𝑊𝑊𝑖𝑊𝑊] 𝜓 𝑅𝑖 [𝑊𝑊𝑖𝑋𝑋𝑖𝑋𝑋] 𝜓 𝑅𝑖 (49)

[𝑊𝑊𝑖 𝑊𝑊𝑖𝑊𝑊] 𝜓 𝑅𝑖 [𝑋𝑋𝑖𝑋𝑋𝑖𝑊𝑊] 𝜓 𝑅. (50)

A system of linear maps𝑊𝑊,𝑋𝑋 satisfying (49) is called a semi
Yang-Baxter system. One can associate a 𝑊𝑊𝑋𝑋𝑊𝑊 system to a
semi Yang-Baxter system by setting 𝑊𝑊 𝜓 𝐶𝐶 𝜓 𝐶𝐶.

Remark 33. From a Yang-Baxter system of type I, one can
construct a Yang-Baxter operator on 𝐻𝑅𝑅 𝑉 𝑅𝑅𝐻 𝜓 𝐻𝑅𝑅 𝑉 𝑅𝑅𝐻,
provided that the map𝑋𝑋 is invertible (see [6]).

Let 𝐻𝐻 be an algebra, and the map

𝑊𝑊 𝜓 𝑞𝑞𝐻𝐻𝑟𝑟𝑖𝑟𝑟 𝜓 𝐻𝐻 𝜓 𝐻𝐻𝐴 𝐻𝐻𝜓𝐻𝐻𝑖

𝑎𝑎 𝜓 𝑏𝑏𝑎 𝑟𝑟𝑏𝑏𝑎𝑎 𝜓 1 𝑏 𝑟𝑟1 𝜓 𝑏𝑏𝑎𝑎 − 𝑟𝑟𝑏𝑏 𝜓 𝑎𝑎𝑖
(51)

for some arbitrary 𝑟𝑟𝑖 𝑟𝑟 𝑞 𝕂𝕂 (see [15]). en, [𝑊𝑊𝑖𝑊𝑊𝑖𝑊𝑊] 𝜓 𝑅.
e following is an enhanced version of eorem 2.3 of

[6].

eorem 34 (see [6]). Let 𝐻𝐻 be an algebra, let 𝐵𝐵 be a vector
space, and 𝑝𝑝𝑖 𝑞𝑞𝑖 𝑟𝑟𝑖 𝑟𝑟 𝑞 𝕂𝕂.

Let W 𝜓 RA
r𝑖s, and let X 𝜓 A 𝜓 B 𝜓 A 𝜓 B be a linear map,

such that X𝐻1A 𝜓 b𝐻 𝜓 1A 𝜓 b, for all b 𝑞 B.

(i) en W𝑖X is a semi Yang-Baxter system if and only if
𝜓𝜓 𝜓 X ∘ 𝜏𝜏B𝑖A is a semientwining map.

(ii) Similarly, if B is an algebra, Z 𝜓 RB
p𝑖q, and X𝐻a 𝜓

1B𝐻 𝜓 a 𝜓 1B, for all a 𝑞 A, then W𝑖X𝑖Z is a Yang-
Baxter system of type I if and only if 𝜓𝜓 is an algebra
factorization.

�e�nition 35 (Yang-Baxter systems of type II). A system of
linear maps of vector spaces𝔸𝔸𝑖𝔸𝔸𝑖𝔸𝑖𝔸𝔸 𝜓 𝑅𝑅 𝜓𝑅𝑅 𝜓 𝑅𝑅𝜓𝑅𝑅 is
called a Yang-Baxter system of type II if

[𝔸𝔸𝑖𝔸𝔸𝑖𝔸𝔸] 𝜓 𝑅𝑖 [𝔸𝔸𝑖𝔸𝔸𝑖𝔸𝔸] 𝜓 𝑅𝑖

[𝔸𝔸𝑖𝔸𝑖𝔸] 𝜓 𝑅𝑖 [𝔸𝔸𝑖𝔸𝔸𝑖 𝔸𝔸] 𝜓 𝑅𝑖

𝔸𝔸𝑖𝔸𝔸𝑏𝑖 𝔸𝔸𝑏 𝜓 𝑅𝑖 𝔸𝔸𝑖𝔸𝑏𝑖 𝔸𝑏 𝜓 𝑅𝑖

𝔸𝔸𝑖𝔸𝑖𝔸𝔸𝑏 𝜓 𝑅𝑖 𝔸𝔸𝑖𝔸𝔸𝑖𝔸𝑏 𝜓 𝑅𝑖

(52)

where𝑋𝑋𝑏 𝜓 𝜏𝜏𝑋𝑋𝜏𝜏 (and 𝜏𝜏 is the twist map).
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Remark 36. Yang-Baxter systems of type II are related to the
algebras considered in [4], which include (algebras of func-
tions on) quantum groups, quantum super-groups, braided
groups, quantized braided groups, re�ection algebras, and
others.

e following theorems present solutions for the Yang-
Baxter systems.

eorem 37 (see [9]). Let 𝐴𝐴 be a commutative algebra, and
𝜆𝜆𝜆 𝜆𝜆′ ∈ 𝕂𝕂. en,𝔸𝔸𝜆𝔸𝔸𝜆𝔸𝜆𝔸𝔸 𝔸 𝐴𝐴 𝔸 𝐴𝐴 𝔸 𝐴𝐴 𝔸 𝐴𝐴,𝔸𝔸𝔸𝔸𝔸 𝔸 𝔸𝔸𝔸 𝔸
𝜆𝜆𝜆 𝔸 𝔸𝔸𝔸𝔸 𝜆 𝔸𝔸𝔸𝔸 𝔸 𝜆 𝜆 𝔸𝔸 𝔸 𝔸𝔸, 𝔸𝔸𝔸𝔸𝔸 𝔸 𝔸𝔸𝔸 𝔸 𝔸𝔸𝔸𝔸 𝔸 𝔸𝔸𝔸 𝔸 𝜆 𝔸 𝔸𝔸𝔸𝔸 𝜆
𝔸𝔸𝔸𝔸 𝔸 𝜆 𝜆 𝔸𝔸 𝔸 𝔸𝔸 and𝔸𝔸𝔸𝔸𝔸 𝔸 𝔸𝔸𝔸 𝔸 𝜆𝜆′𝜆 𝔸 𝔸𝔸𝔸𝔸 𝜆 𝔸𝔸𝔸𝔸 𝔸 𝜆 𝜆 𝔸𝔸 𝔸 𝔸𝔸 is
a Yang-Baxter system of type II.

eorem 38. Let𝑊𝑊 𝔸 𝔸𝔸, 𝑋𝑋 𝔸 𝔸𝔸 𝔸 𝔸𝜆 𝑋𝑋 𝔸 𝔸𝔸 in the above
theorem. It turns out that𝑊𝑊,𝑋𝑋,𝑋𝑋 is also a Yang-Baxter system
of type I.

Proof. First, let us observe that the result holds even for 𝐴𝐴 a
noncommutative algebra. One way to prove the theorem is by
direct computations.

Alternatively, one can observe that

𝜓𝜓 𝔸𝔸𝔸 𝔸 𝔸𝔸𝔸 𝔸 𝜆 𝔸 𝔸𝔸𝔸𝔸 𝜆 𝔸𝔸𝔸𝔸 𝔸 𝜆 𝜆 𝔸𝔸 𝔸 𝔸𝔸 (53)

is an algebra factorization, and apply Remark 2.4 of [6].
Also, refer to eorem 5.2 of [8].

Remark 39. One can combine the proof of the eorem 38
with Remark 2.4 and Proposition 2.9 of [6] to obtain a large
class of Yang-Baxter operators de�ned on 𝑉𝑉 𝔸 𝑉𝑉, where 𝑉𝑉 𝔸
𝐴𝐴 𝐴 𝐴𝐴. See also Remark 33.

eorem 40. Let A be an algebra; p𝜆 q𝜆 s𝜆 r ∈ 𝕂𝕂; 𝜓𝜓𝜆 𝜓𝜓′ 𝔸 A 𝔸
A 𝔸 A 𝔸 A semientwining maps; 𝔸𝔸𝜆𝔸𝔸𝜆𝔸𝜆𝔸𝔸 𝔸 A 𝔸 A 𝔸
A𝔸A𝜆 𝔸𝔸 𝔸 RA

r𝜆s,𝔸𝔸 𝔸 𝜓𝜓𝔹𝔹𝔹,𝔸 𝔸 𝜓𝜓′𝔹𝔹𝔹,𝔸𝔸 𝔸 RA
p𝜆q. If𝜓𝜓

′ 𝔸 𝔹𝔹𝔹𝜓𝜓𝔹𝔹𝔹,
then𝔸𝔸𝜆𝔸𝔸𝜆𝔸𝜆𝔸𝔸 is a Yang-Baxter system of type II.

Proof. Use eorem 34 (i) to check the �rst-four equations.
en, observe that 𝔸𝔸 𝔸 𝔸𝜆 ⇔ 𝜓𝜓′ 𝔸 𝔹𝔹 𝔹 𝜓𝜓 𝔹 𝔹𝔹. e last-four
equations then follow.

eorem 41. Let A be an algebra, and 𝜓𝜓 𝔸 A 𝔸 A 𝔸 A 𝔸 A a
semientwining map.

en, there exists a semientwining map 𝜓𝜓′ 𝔸 A 𝔸 A 𝔸
A 𝔸 A, such that 𝜓𝜓′ 𝔸 𝔹𝔹 𝔹 𝜓𝜓 𝔹 𝔹𝔹 if and only if 𝜓𝜓, viewed as
𝜓𝜓 𝔸 Aop 𝔸 A 𝔸 A 𝔸 Aop, is an algebra factorization.

Proof. Assume that there exists a semientwining map 𝜓𝜓′ 𝔸
𝔹𝔹 𝔹 𝜓𝜓 𝔹 𝔹𝔹. Denote 𝜓𝜓′𝔸𝔸𝔸 𝔸 𝔸𝔸𝔸 𝔸 𝔸𝔸𝛼𝛼′ 𝔸 𝔸𝔸

𝛼𝛼′, for all 𝔸𝔸𝜆 𝔸𝔸 ∈ 𝐴𝐴, that is,
𝔸𝔸𝛼𝛼 𝔸 𝔸𝔸

𝛼𝛼 𝔸 𝔸𝔸𝛼𝛼′ 𝔸 𝔸𝔸𝛼𝛼′. Also denote by ⋅op the multiplication in
𝐴𝐴op, that is, for all 𝔸𝔸𝜆 𝔸𝔸 ∈ 𝐴𝐴, 𝔸𝔸⋅op𝔸𝔸 𝑏 𝔸𝔸𝔸𝔸. en we must check
conditions (4). For all 𝔸𝔸𝜆 𝔸𝔸𝜆 𝑎𝑎 ∈ 𝐴𝐴,

𝜓𝜓 𝜆𝐴𝐴op 𝔸 𝑎𝑎 𝔸 𝔹𝔹 𝔹 𝜓𝜓′ 𝔹 𝔹𝔹 𝜆𝐴𝐴op 𝔸 𝑎𝑎

𝔸 𝔹𝔹 𝔹 𝜓𝜓′ 𝑎𝑎 𝔸 𝜆𝐴𝐴op 𝔸 𝑎𝑎 𝔸 𝜆𝐴𝐴op 𝜆

𝜓𝜓 𝔸𝔸⋅op𝔸𝔸 𝔸 𝑎𝑎 𝔸 𝔹𝔹 𝔹 𝜓𝜓′ 𝔹 𝔹𝔹 𝔸𝔸𝔸𝔸𝔸 𝔸 𝑎𝑎𝔸

𝔸 𝔹𝔹 𝔹 𝜓𝜓′ 𝔸𝑎𝑎 𝔸 𝔸𝔸𝔸𝔸𝔸 𝔸 𝔹𝔹 𝔸𝔸𝛼𝛼′𝔸𝔸𝛽𝛽′ 𝔸 𝑎𝑎
𝛼𝛼′𝛽𝛽′

𝔸 𝑎𝑎𝛼𝛼
′𝛽𝛽′ 𝔸 𝔸𝔸𝛽𝛽′ ⋅ op𝔸𝔸𝛼𝛼′ 𝔸 𝑎𝑎𝛼𝛼𝛽𝛽 𝔸 𝔸𝔸

𝛽𝛽⋅ op𝔸𝔸
𝛼𝛼.

(54)

Similarly one can prove the converse.

Remark 42 (example of algebra factorization foreorem 41).
We consider the algebra𝐴𝐴 𝔸 𝐴𝐴op 𝔸 𝕂𝕂𝕂𝑋𝑋𝕂𝕂𝔸𝑋𝑋2 𝜆 𝑝𝑝𝔸, where 𝑝𝑝
is a scalar.en𝐴𝐴 has the basis {𝜆𝜆 𝑥𝑥𝑥, where 𝑥𝑥 is the image of
𝑋𝑋 in the factor ring, so 𝑥𝑥2 𝔸 𝑝𝑝.

If 𝑞𝑞 is a scalar, then 𝜓𝜓 𝔸 𝐴𝐴 op 𝔸 𝐴𝐴 𝔸 𝐴𝐴𝔸𝐴𝐴 op , de�ned as
follows

𝜓𝜓 𝔸𝜆 𝔸 𝜆𝔸 𝔸 𝜆 𝔸 𝜆𝜆

𝜓𝜓 𝔸𝜆 𝔸 𝑥𝑥𝔸 𝔸 𝑥𝑥 𝔸 𝜆𝜆

𝜓𝜓 𝔸𝑥𝑥 𝔸 𝜆𝔸 𝔸 𝜆 𝔸 𝑥𝑥𝜆

𝜓𝜓 𝔸𝑥𝑥 𝔸 𝑥𝑥𝔸 𝔸 𝑞𝑞𝜆 𝔸 𝜆 𝜆 𝑥𝑥 𝔸 𝑥𝑥𝜆

(55)

is an algebra factorization.
Notice that if 𝑞𝑞 𝔸 2𝑝𝑝, then 𝜓𝜓 is the same algebra

factorization with (53).

eorem 43. Let 𝐴𝐴 be an algebra, let 𝐵𝐵 and 𝑀𝑀 be vector
spaces, 𝑧𝑧 ∈ 𝐵𝐵 𝔸𝑧𝑧 𝑧 𝑧𝔸, 𝜓𝜓 𝔸 𝐵𝐵 𝔸 𝐴𝐴 𝔸 𝐴𝐴 𝔸 𝐵𝐵 a semientwining,
and let𝑀𝑀 be an 𝔸𝐴𝐴𝜆 𝐵𝐵𝜆 𝜓𝜓𝔸 semientwined module with the right
measuring 𝜙𝜙. We consider the maps as follows:

X 𝔸 𝜓𝜓 𝔹 𝔹𝔹B𝜆A 𝔸 B 𝔸 A ⟶ B 𝔸 A𝜆

𝜂𝜂 𝔸 M 𝔸 A ⟶ M 𝔸 A𝜆 m 𝔸 a ⟼ ma 𝔸 𝜆A𝜆

𝜁𝜁 𝔸 M 𝔸 B ⟶ M 𝔸 B𝜆 m 𝔸 b ⟼𝜙𝜙𝔸m 𝔸 b𝔸 𝔸 z.

(56)

en, the following equation holds

𝜁𝜁𝜆 𝜂𝜂𝜆X 𝔸 𝑧. (57)

Proof. e proof follows by direct computations.

Remark 44. e relation 𝕂𝜁𝜁𝜆 𝜂𝜂𝜆𝑋𝑋𝕂 𝔸 𝑧 from the above
theorem is related to Section 3.6 of [23].
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