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Abstract
RNases H are involved in the removal of RNA from RNA/DNA hybrids. Type I RNases H

are thought to recognize and cleave the RNA/DNA duplex when at least four ribonucleo-

tides are present. Here we investigated the importance of RNase H type I encoding genes

for model organismMycobacterium smegmatis. By performing gene replacement through

homologous recombination, we demonstrate that each of the two presumable RNase H

type I encoding genes, rnhA and MSMEG4305, can be removed fromM. smegmatis ge-
nome without affecting the growth rate of the mutant. Further, we demonstrate that deletion

of both RNases H type I encoding genes inM. smegmatis leads to synthetic lethality. Final-

ly, we question the possibility of existence of RNase HI related alternative mode of initiation

of DNA replication inM. smegmatis, the process initially discovered in Escherichia coli. We

suspect that synthetic lethality of double mutant lacking RNases H type I is caused by for-

mation of R-loops leading to collapse of replication forks. We reportMycobacterium smeg-
matis as the first bacterial species, where function of RNase H type I has been found

essential.

Introduction
RNases H are ubiquitous enzymes present is eukaryotes, prokaryotes, archaeons and viruses.
They are involved in the removal of RNA from RNA/DNA hybrids during DNA replication,
repair and transcription. Based on the differences in their amino acid sequences, RNases H
have been divided into two types and three classes. Prokaryotic RNase HI or eukaryotic H1
represent RNases H type 1, while prokaryotic RNases HII and HIII or eukaryotic RNases H2
represent RNases H type 2.

Type 1 RNases H require at least four ribonucleotides as a substrate for a cleavage to occur
[1,2] and they do not prefer any consensus sequence to perform this reaction [1]. In vitro stud-
ies showed that introducing various modifications that decrease DNA flexibility in RNA/DNA
duplex abrogates cleavage by RNase H1 [3]. Thus, the enzyme must recognize both RNA and
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DNA strands. This observation was confirmed by obtaining co-crystal structure of RNase HI
of Bacillus halodurans in complex with RNA/DNA [4]. In contrast, RNases H type II recognize
and cleave single ribonucleotides within RNA/DNA duplex and are thought to recognize the
transition from deoxiribonucleotides to ribonucleotides on a single strand [5,6] (Fig 1).

RNases H type I recognize two substrate types. The first type is RNA primers generated dur-
ing DNA synthesis. The second type is R-loops: a three strand nucleic acid structures consisting
of an RNA/DNA hybrid and a displaced DNA strand. It is thought that such loops occur as a
consequence of transcription, when a nascent transcript anneals to the matrix DNA. The pres-
ence of R-loops has been reported in several processes, including DNA replication [7–9], tran-
scription termination [10], regulation of gene expression [11,12] and other processes specific
to eukaryotes [13–15]. R-loops can achieve considerable length, as they for example exceed 1
kbp at immunoglobulin class switch region [15]. In fact, RNases H type I are thought to be like-
ly to act on relatively stable, transcription associated R-loops [16,17].

To date, higher eukaryotes have been shown to possess one RNase H type 1 and one RNase
H type 2 (composed of three subunits). Both have been shown essential for survival, even at the
stage of embryogenesis [18,19]. Saccharomyces cerevisiae also possesses two RNases H–one
RNase H type 1 and one RNase H type 2 composed of three subunits–but both are dispensable
for growth [20]. In contrast, the number of RNases H encoded in bacterial genomes is more
variable [21], and more complicated in terms of being essential for viability. For example,
Escherichia coli possesses one RNase HI and one RNase HII [22], while the genome of Bacillus
subtilis contains two RNase H type 2- RNase HII and RNase HIII [23]. In both of these species,
there are contradictory reports regarding essentiality of RNase H enzymes [24–31], however,
most recent studies show that they are dispensable under certain conditions [25–27,30,31].
RNase HI has also been shown dispensable inHaemophilus influenzae [32]. The genome of
Mycobacterium tuberculosis contains one gene encoding an RNase H type II, rnhB [33], and
one gene encoding a bifunctional protein, Rv2228c. Its N-terminal domain is homologous with
eukaryotic and prokaryotic RNases H type I, while C-terminal domain is homologous with
alpha ribazole phosphatase (CobC) involved in cobalamin (vitamin B12, B12) biosynthesis
[34]. Recombinant protein expression confirmed the activity of both domains in vitro (in an ar-
tificially set up reaction between the enzyme and the substrate) [34]. In turn, the genome of
Mycobacterium smegmatis seems to encode four RNases H. Two of them belong to RNases H
type I. The first one is encoded by rnhA and the RNase HI activity of the derived protein has
been confirmed in vitro [35]. The second is a homolog of Rv2228c ofM. tuberculosis,
MSMEG4305. Further, the genome ofM. smegmatis encodes an RNase H type II, through gene
rnhB. Additionally, the gene MSMEG5849 ofM. smegmatis encodes a protein which presents
RNase HII activity through domain Duf429 (until recently referred to as a domain of unknown
function) [36]. A protein with limited homology to Duf429 can be found inM. tuberculosis.
The summary of presumable RNase H encoding genes in E. coli,M. tuberculosis andM. smeg-
matis is presented in Table 1.

The aim of this study was to understand the importance of RNases H type I forM. smegma-
tis.M. smegmatis is a model organism to studyMycobacterium genus, which includesM. tuber-
culosis. We demonstrate that deletion of both RNases H type I encoding genes leads to
synthetic lethality. Further, we demonstrate that deletion of each RNase H type I did not alter
growth rates of the mutants. Finally, we question the possibility of existence of RNase HI relat-
ed alternative mode of initiation of DNA replication inM. smegmatis, the process initially dis-
covered in E. coli. We suspect that RNases H type I may be essential for the survival ofM.
smegmatis due to formation of R-loops, which when unresolved, collapse replication forks.
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Materials and Methods

In silico analysis
Genes presumably encoding RNases H inM. smegmatismc2 155, E. coli K12_MG1655 andM.
tuberculosisH37Rv were identified and obtained from National Center for Biotechnology In-
formation (NCBI) database. The span of the domains was defined using Simple Modular Ar-
chitecture Research Tool (SMART) [37]. The homology between the domains was estimated
using Basic Local Alignment Search Tool (BLAST) of NCBI. The alignments were visualized
using MultiAlin [38] and ESPript 3.0 [39].

Bacteria and culture conditions
Cultures of E. coli T10 were carried out at 37°C for 18–20 h in liquid Luria-Bertani broth, and
when necessary supplemented with antibiotics or other supplements or both at the following
concentrations: kanamycin (Bioshop) 50 μg/ml; ampicillin (Bioshop) 100 μg/ml; X-gal (Sigma)
40 μg/ml, IPTG 0.4 mM (Sigma). Cultures ofM. smegmatis during gene replacement were car-
ried out in nutrient broth (NB) (Difco) or 7H9 broth (Becton, Dickinson and Company) with
or without oleic albumin dextrose catalase growth supplement (OADC) (Becton- Dickinson)
and 0.05% Tween 80 (Sigma) at 37°C or 28°C. When necessary, media were supplemented
with antibiotics or other supplements or both at the following concentrations: kanamycin
(Sigma) 25 μg/ml; X-gal (Sigma) 40 μg/ml, 0.4% succinate (Sigma), sucrose 2% (Sigma), vita-
min B12 10 μg/ml (Sigma). A list ofM. smegmatis strains used in this study is presented in
Table 2.

For determination of growth rates bacterial cells were transferred to fresh NB medium and
cultured until the cultures reached OD600 between 0.6 and 0.9. Aliquots of these seed cultures
were inoculated in fresh 7H9 broth supplemented with OADC at starting OD600 = 0.05. The
cultures were incubated at 37°C with vigorous shaking for 48 h. At desired intervals of time
samples of cultures were harvested and analyzed using spectrophotometer (Pharmacia Biotech

Fig 1. Schematic representation of a mode of action of RNases H. RNases H cleave RNA from the RNA/DNA duplex. RNases H type I recognize two
strands of the heteroduplex and cleave RNA when at least four ribonucleotides are present. In contrast, RNases H type II cleave even single ribonucleotides
and recognize transition from DNA to RNA on a single strand.

doi:10.1371/journal.pone.0126260.g001

Table 1. Summary of presumable RNases H of E. coliK12_MG1655,M. tuberculosisH37Rv andM. smegmatismc2 155.

Type of
RNase H

E. coli K12_MG1655 M. tuberculosis H37Rv M. smegmatis mc2

155

I RnhA Homolog is absent RnhA

I Homolog with RNase HI domain is absent; CobC (homology with acid
phosphatase domain)

Rv2228c MSMEG4305

II RnhB RnhB RnhB

II Homolog is absent MT0800 (homology with Duf429
domain)

MSMEG5849

doi:10.1371/journal.pone.0126260.t001
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Ultrospec 2000). To assess the number of the colony forming units, samples were serially dilut-
ed in fresh NB broth and plated on non-selective NB medium, which were incubated at 37°C
until obtaining visible colonies. Each experiment was performed at least in triplicate. For deter-
mination of cell length drops, the cultures harvested from 24h cultures were placed on glass
slides, fixed in flames and analyzed on Nikon Eclipse TE2000 microscope.

M. smegmatis mutants
The mutants were obtained by using gene replacement protocol as previously described [40–
42]. The procedure required construction of gene replacement plasmids and complementation
plasmids. Primers used for obtaining the mutants are listed in Table 3.

Briefly, for gene replacement purpose, the sequences flanking desired deletion were ampli-
fied by PCR and consecutively introduced into p2NIL plasmid, followed by introduction of
PacI suicidal cassette excised from pGOAL17 vector. For complementation under an acetamide
promoter, a native copy of the gene of interest was amplified by PCR and introduced into
pJAM2. The gene was next excised from the pJAM2 together with an acetamide promoter and
introduced into pMV306Hyg. All cloning was performed in E. coli Top10 cells (Invitrogen). A
plasmid allowing deletion in dnaA, previously used in [43], was modified by addition of genta-
mycin resistance cassette within BstBI restriction site. Plasmids were introduced into mycobac-
terial cells, which were further subjected to multistep selection process allowing detection of
the mutants. Presence of intact copy of the dnaA gene within the ΔrnhA/ΔdnaAattB::dnaA
strain at the attB site was confirmed by sequencing.

Exchange of complementation vectors with genetic cassettes for an
empty vector
Conditional mutants carrying a copy of a presumably essential gene were electroporated with
an empty pMV306Km plasmid. For exchange of complementation vectors with genetic cas-
settes for an empty vector (ExEV) on rich medium, bacteria after transformation were inocu-
lated in NB broth and cultivated overnight at 37°C with vigorous shaking. Afterwards, bacteria
were plated on NB selective medium supplemented with Km and cultivated up to one week at
37°C. For ExEV on minimal medium, bacteria after transformation were inoculated in 7H9
broth without the addition of OADC and cultivated overnight at 28°C with vigorous shaking.
Afterwards, bacteria were plated on 7H10 medium without the addition of OADC supple-
mented with Km and cultivated for up to three weeks at 28°C. In case of ExEV on cassettes

Table 2. List ofM. smegmatis strains used in this study.

Strain Characteristics

M. smegmatis mc2 155 Reference strain

ΔrnhA rnhA deletion mutant of M. smegmatis mc2 155

Δ4305 MSMEG4305 deletion mutant of M. smegmatis mc2 155

ΔrnhA/Δ4305attB::
Pami-rnhA

derivative of M. smegmatis mc2 155 carrying deletions within rnhA and
MSMEG4305 complemented with full rnhA gene under acetamide promoter at
attB site, HygRx0

ΔrnhA/Δ4305attB::Pami-
4305

derivative of M. smegmatis mc2 155 carrying deletions within rnhA and
MSMEG4305 complemented with full MSMEG4305 gene under acetamide
promoter at attB site, HygR

ΔrnhA/ΔdnaAattB::dnaA derivative of M. smegmatis mc2 155 carrying deletions within rnhA and dnaA
complemented with full dnaA gene under natural promoter at attB site, GmR,
HygR

doi:10.1371/journal.pone.0126260.t002
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Table 3. Primers used in this study.

Construction of plasmids used for gene replacement

Name Sequence Primer pair Template intro-duced
res-triction
sites

Purpose

MsGR1rnhA TCGAGGGCAAGCTGCGCGAC MsGR2rnhA mc2 155 - gene replacement
rnhA

MsGR2rnhA CGTAGCACCGCACCCCAGCC MsGR1rnhA mc2 155 - gene replacement
rnhA

MsGR3rnhA CGGGATCCGTGCGCGCGCCACCAGGTC MsGR4rnhA mc2 155 BamHI gene replacement
rnhA

MsGR4rnhA GAAGCTTCCGCGAGGGGCCGAACACC MsGR3rnhA mc2 155 HindIII gene replacement
rnhA

GR1MsRnhAII-KpnI GGTACCCCGCCGACGATGATGCTGTC GR2MsRnhAII-BamH mc2 155 KpnI gene replacement
MSMEG4305

GR2MsRnhAII-BamH CAAGCGGCGCAACGGGATC GR1MsRnhAII-KpnI mc2 155 - gene replacement
MSMEG4305

GR3MsRnhAII-BamH CGGGATCCTACACAACCGCGCCGTAGCC GR4MsRnhAII-Hind mc2 155 BamHI gene replacement
MSMEG4305

GR4MsRnhAII-Hind GCAAGCTTTCGCTGCTGGGTGCCGTGAC GR3MsRnhAII-BamH mc2 155 HindIII gene replacement
MSMEG4305

GmBstBs CTTCGAAGGCTGACGGAATTTATGCCTCTTC GmBstBr pINT3 BstBI gentamycin
resistance cassette

GmBstBr CTTCGAACAGGAATCGAATGCAACCGG GmBstBs pINT3 BstBI gentamycin
resistance cassette

MsA1-5562-BglIIs CAGATCTGTGAACCACCGGCACCACGCC MsA1-5562-XbaI mc2 155 BglII complementation
rnhA

MsA1-5562-XbaI CTCTAGATGGTGGTCGGCCTGGCGGG MsA1-5562-BglIIs mc2 155 XbaI complementation
rnhA

MsrnhAIIPace-sBglII CAGATCTGTGAAGGTTCTCGTCGAGGCCGAC MsrnhAII-rev-Xba mc2 155 BglII complementation
MSMEG4305

MsrnhAII-rev-Xba CTCTAGATGCACTCGTGAGCTACAGGTACGC MsrnhAIIPace-sBglII mc2 155 XbaI complementation
MSMEG4305

MsdnaA+PrHindIIInat CTGTCGATCAGACGCGCCCAC MsrnhAII-rev-Xba mc2 155 - complementation
dnaA

MsdnaA+PrXbaIrev CTCTAGATCTCCGAGCTCAGCGTTTGGC MsdnaA+PrHindIIInat mc2 155 XbaI complementation
dnaA

Construction of plasmid for recombinant protein expression

Name Sequence Primer pair Template intro-duced
res-triction
sites

purpose

RnhA-f CGAATTCGTGAACCACCGGCACCACGCC RnhA-r mc2 155 EcoRI recombinant protein

RnhA-r CAAGCTTGGTGGTCGGCCTGGCGGG RnhA-f mc2 155 HindIII recombinant protein

Southern blotting

gene name primer name Sequence primer pair restriction enzyme

rnhA before comple-
menta-tion

coDCOH1s GTGAACCACCGGCACCACGCC coDCOH1r PvuI

rnhA before comple-
menta-tion

coDCOH1r GGCGGGCAACAAGCTCAACGG coDCOH1s PvuI

rnhA after comple-
menta-tion

MsGR3rnhA CGGGATCGGTGCGCGCGCCACCAGGTC MsRnhA1probe-r-
delikom

BamHI, PvuI, XbaI

rnhA after comple-
menta-tion

MsRnhA1probe-r-delikom TGTGGGCCGGTGCGGTGG MsGR3rnhA BamHI, PvuI, XbaI

MSMEG4305 Ms4305-probe-s GACAACGACGCCAGGTCCAGG Ms4305-probe-r PvuI

MSMEG4305 Ms4305-probe-r GTGAAGGTTCTCGGTCGAGGCCG Ms4305-probe-s PvuI

dnaA Msdnaprobe-s GCAAGAAGGCGCAGATGGATCG MsdnaAprobe-r ClaI, HindIII

dnaA MsdnaAprobe-r GCGGATCTTCTTCTCGGCGTACATC Msdnaprobe-s ClaI, HindIII

doi:10.1371/journal.pone.0126260.t003
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containing MSMEG4305, an additional variant of the experiment was performed which includ-
ed supplementation of both rich and poor media with B12. Clones growing on Km containing
media were screened in search of an intact version of the gene of interest. Encountering a clone
devoid of an intact version of the gene would mean that the gene is non-essential. On the other
hand, inability to find such clones would confirm the essentiality of the gene.

Southern blotting
Primers used for production of hybridization probes and restriction enzymes used for digestion
of genomic DNA are listed in Table 3.

Recombinant RnhA expression and purification
Sequence encoding RnhA, identified in NCBI database, was amplified by PCR (primers listed
in Table 3) and introduced into pHIS2 expression plasmid. Cloning was performed in E. coli
Top10 cells (Invitrogen). The plasmid was further introduced into E. coli BL21. Expression of
the protein was performed at 37°C overnight in the presence of 0.4 mM IPTG. The pellet was
resuspended in 10 ml of Binding Buffer (50 mM Tris-HCl pH 8 (Sigma); 6–8M urea (Sigma))
and sonicated in short bursts (Bioblock Scientific Vibracell). The addition of urea was neces-
sary to denature and solubilize otherwise insoluble protein. Next, the sample was incubated for
2 h with mild shaking. The sample was centrifuged at 17000 x g at 12°C for 30 min. The super-
natant was transferred through filtered syringe (0.45 μm, Millex) and placed on affinity column
containing Ni-NTA resin (ThermoScientific). Following binding of the protein to the Ni-NTA
resin, the column was washed with Binding Buffer and Wash Buffer (60 mM imidazole
(Sigma), 0,4 M NaCl (Sigma), 20 mM Tris- HCl pH 8 (Sigma)). Next, the recombinant protein
was washed out with Elution Buffer (1M imidazole (Sigma), 0.5 M NaCl (Sigma), 20 mM Tris-
HCl pH 8 (Sigma)). The sample containing recombinant protein was concentrated on a Nova-
gen concentrator until achieving the final concentration of 1 mg/ml. The protein was used to
immunize rabbits and for production of polyclonal antibodies.

Production of anti- RnhA antibodies
Laboratory New Zealand rabbits were raised under standard conventional conditions in the ap-
proved by Polish Ministry of Science and Higher Education animal facility of the Institute Mi-
crobiology, Biotechnology and Immunology, Faculty of Biology and Environmental
Protection, University of Lodz and were used for the immunization experiments. The experi-
mental procedures were approved and conducted according to guidelines of the appropriate
Polish Local Ethics Commission for Experiments on Animals No. 9 in Lodz (Agreement 54/
ŁD1/2011).

Western blotting
Bacteria were cultured in NB medium until OD600 reached between 0.6 and 0.9. Aliquots of
these seed cultures were inoculated in fresh 7H9 broth starting OD600 = 0.05. The cultures were
incubated at 37°C with vigorous shaking overnight. The following morning 5 ml of each cul-
ture were spun down at 4°C at 8000 x g and the pellet was resuspended in 1 ml TE (10 mM Tris
(Sigma), 1 mM EDTA; pH 8) with the addition of 100 mM phenylmethylsulfonyl fluoride
(Sigma) and 2% SDS (Sigma). The sample was then transferred to MP tube and homogenized
using FastPrep-24 MP homogenizer. Subsequently the sample incubated for 30 min at 55°C
and centrifuged at 14000 x g at room temperature for 15 min. The supernatant containing pro-
teins was transferred to a new Eppendorf tube and sample was immediately used.

RNase HI Is Essential inM. smegmatis
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Cell extracts or recombinant protein solutions were subjected to acrylamide electrophoresis.
Following protein electrophoresis, the gel (12% Mini-Protean Precast Gel BioRad) was placed
in a plastic container and covered with PVDF membrane (ThermoScientific) washed before-
hand in methanol and Transfer Buffer (0,2 M glycine (Sigma); 25 mM Tris (Sigma); 20%
methanol (Sigma)). The transfer was performed overnight at 4°C at 50 mA in an electrophore-
sis container filled with transfer buffer. Next the membrane was blocked for 1.5 h at room tem-
perature in PBS (137 mMNaCl (Sigma); 2.7 mM KCl (Sigma); 10 mMNa2HPO4 • 2 H2O
(Sigma); 2M KH2PO4 (Sigma) pH 7.4) containing 10% milk (Gostynin, fat- free powdered
milk). Subsequently, the membrane was incubated in PBS containing 5% milk, 0.05% Tween
20 (Sigma) and primary antibodies (rabbit anti- RnhA, obtained at Department of Immuno-
parasitology, University of Lodz or rabbit anti- LigA, described previously [44]) at 4°C over-
night. Afterwards, the membrane was washed three times in PBS with 0.05% Tween 20
(Sigma). The membrane was then placed in PBS containing 5% milk and a secondary antibody
(anti-rabbit goat IgG conjugated with peroxidase (Sigma)). The membrane was incubated for
1 h at room temperature and washed three times with PBS containing 0.05% Tween 20. The
membrane was then placed in a dry plastic container and covered with mixture of ECL reagent.
Following a 2 minutes incubation the membrane was covered in Saran wrap and exposed to an
X- ray film (ThermoScientific) for 2 minutes. The film was developed using Kodak Medical X-
ray Processor.

Statistical analysis
In order to determine growth rates of the analysed strains, we fitted logistic or quadratic curves
to the collected measurements of optical density of the liquid cultures. We fitted logistic curves
of the form OD = A/[1 + B�exp(-KT)], where OD is optical density at the time T, A is an as-
ymptotic value, B is a constant of integration, and K is the growth rate constant. Parameter K
from the fitted curves was used as an indicator of growth rate for each strain. A T-test was used
to test for the differences in growth rates between the strains. All statistical analyses were per-
formed with Statistica 10.0 (StatSoft, Tulsa, OK, USA).

Results and Discussion

The genome ofM. smegmatis encodes two predicted RNases H type I
Through performing an in silico analysis we identified two genes ofM. smegmatismc2 155
which encode proteins containing RNase HI domain- rnhA and MSMEG4305. BLAST analysis
of RNase HI domains of RnhA and MSMEG4305 ofM. smegmatismc2 155 revealed that with
50% of query cover of RnhA, they share 36% of protein sequence identity. Next, MSMEG4305
was shown to be homologous to Rv2228c ofM. tuberculosisH37Rv. Both proteins share 72%
sequence identity with 100% query cover of MSMEG4305. RNase HI domains of MSMEG4305
and Rv2228c share 72% identity with 97% of MSMEG4305 query cover, while acid phosphatase
domains share 75% sequence identity with 100% query cover of MSMEG4305. The alignment
between protein sequences between RNases H type I of E. coli K12_MG1655,M. smegmatis
mc2 155 andM. tuberculosis H37Rv is presented in Fig 2.

A possible reason for the coexistence of two RNase H type I encoding genes within the ge-
nome ofM. smegmatis is the neofunctionalization of MSMEG4305. Apart from encoding
RNase HI domain it also encodes CobC domain involved in vitamin B12 biosynthesis. Such
neofunctionalization is thought to increase retention of RNase H type I genes [21]. The coexis-
tence of MSMEG4305 and rnhAmight be expected to lead to future inactivation of RNase HI
domain in one of them and generation of a pseudogene [45]. In fact, the genome ofM.
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tuberculosis, which is thought to have undergone genome reduction when compared with free-
living mycobacteria, contains only a homolog of MSMEG4305.

Essentiality of RNases H type I inM. smegmatis
We used the technique of gene replacement through homologous recombination to construct a
series of genetic mutants with large deletions introduced within the sequence of predicted
RNase H type I encoding genes. We were able to identify single mutants of both rnhA and
MSMEG4305 (Fig 3). The ability to obtain the mutants signifies that none of these genes itself
is essential for survival ofM. smegmatis.

We were unable to identify a mutant deficient in ΔrnhA/Δ4305. Therefore, we introduced a
functional copy of either MSMEG4305 or rnhA at the attB site of ΔrnhA/SCOMSMEG4305 or

Fig 2. Comparison of protein sequences of RNases H type I. Sequence alignment between RNases H type I of E. coli K12_MG1655 (RnhA),M.
smegmatismc2 155 (MSMEG4305 and RnhA) andM. tuberculosis H37Rv (Rv2228c) was performed using MultiAlin and visualized with ESPript 3.0. Highly
similar or identical residues between protein sequences are written in bold. Identical residues across all analyzed sequences are shown in white on a black
background. Similarities between protein sequences are marked by framing. The span of RNase H domains in each protein sequence, as defined by
SMART, is highlighted in yellow.

doi:10.1371/journal.pone.0126260.g002
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SCOrnhA/ΔMSMEG4305, respectively. Following selection, we generated two strains ΔrnhA/
Δ4305attB::Pami-rnhA and ΔrnhA/Δ4305attB::Pami-4305 deficient for both native versions of
RNase HI encoding genes, but complemented with either rnhA or MSMEG4305 at the attB site
(Fig 4). We used these strains to perform ExEV. This experiment greatly increases the number
of analyzed cells. It is therefore used as a final confirmation of the essentiality of the gene [46–
48]. It also limits drawbacks of gene replacement technique. In our case it was the enrichment
of the medium by the substances used as selection markers. Enrichment of medium might be a
source of confusion between contradictory reports regarding RNase HI essentiality in E. coli
[29–31]. The authors that have obtained RNase HI deficient mutants stated that the mutants
were rich broth sensitive [30,31]. This is thought to be related to high speed of metabolism.
High metabolism requires efficient transcription, which leads to generation of many R-loops.
R-loops, in turn, cannot be efficiently resolved in the absence of RNase HI and lead to replica-
tion fork collapse. In minimal medium, however, the accumulation of R-loops is limited by a
slowed down metabolism. Hence they can be either tolerated in the genome or efficiently

Fig 3. Southern blots confirming deletions in single RNase H type I mutants ofM. smegmatis.We used gene replacement through homologous
recombination to obtain mutants deficient in either rnhA or MSMEG4305. Briefly, recombinant plasmids containing genomic regions of either rnhA or
MSMEG4305 with large deletions within each gene were introduced intoM. smegmatismc2 155 cells. Following multistep selection we were able to identify
clones where the native version of each gene has been replaced with manipulated sequence. Intermediate steps of gene replacement procedure are
denoted SCO. For more information regarding plasmid construction and gene replacement procedure please refer to the text. Schematic representation of
analyzed genomic regions, including enzymes used for digestion, size of restriction fragments following digestion and the site of hybridization of hybridization
probe, is presented in the upper part of the figure. Photographic films presenting results of Southern blot analysis are presented in lower part of the figure.
Bands corresponding to wild type genotype (wt) and mutant genotype (mut) are marked on the right side of each photograph.

doi:10.1371/journal.pone.0126260.g003
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removed by proteins other than RNase HI [49]. Even after performing ExEV we did not identi-
fy any clones devoid of both genes encoding RNases H type I.

The difference between the essentiality of RNase H type I inM. smegmatis and E. colimay
be explained by genetic background of these species. In E. coli, rnhA encoding RNase H type I
has been shown to be synthetically lethal with a number of genes, namely polA [50], recB [51],
recC [51] and recG [52]. These genes can be found in mycobacterial genome. However, the mu-
tation in rnhA has also been shown to be synthetically lethal with mutation in rep [53], a homo-
log of which is absent in the genome ofM. smegmatis. Rep is a helicase involved in restarting
DNA replication forks [54], facilitates reannealing of the parental strands during replication
[55] and has been shown essential for efficient replication across highly transcribed regions
[56,57]. The precise role of Rep remains unknown. Sandler suggested that Rep might be in-
volved in R-loop metabolism and this function, due to synthetic lethality, may be connected
with the function of RNase HI [53]. R-loops are linked with transcription and other helicases
of E. coli- RecG [52] and Cas3 [58] are involved in R-loop removal. R-loops, if unresolved, may
block DNA replication in several ways. First, unrepaired lesions in displaced DNA strand may
become a source of double strand ends and consequent replication fork collapse. Second, RNA
hybridized to the DNAmay be an obstacle for replication fork progression. Paused replication
forks can be cleaved by endonucleases known to cleave recombination intermediates again

Fig 4. Southern blots confirming deletions in double, complemented RNase H type I mutants ofM. smegmatis.We used gene replacement through
homologous recombination to obtain mutants deficient in both rnhA and MSMEG4305. We were unable to identify a mutant ΔrnhA/Δ4305. Therefore, we
introduced a functional copy of either MSMEG4305 or rnhA at the attB site of ΔrnhA/SCOMSMEG4305 or SCOrnhA/ΔMSMEG4305, respectively. Following
selection, we generated two strains ΔrnhA/Δ4305attB::Pami-rnhA and ΔrnhA/Δ4305attB::Pami-4305 deficient for both native versions of RNase HI encoding
genes, however complemented with either rnhA or MSMEG4305 at the attB site. For more information regarding plasmid construction, gene replacement
procedure and complementation please refer to the text. Schematic representation of analyzed genomic regions, including enzymes used for digestion, size
of restriction fragments following digestion and the site of hybridization of hybridization probe, is presented in the upper part of the figure. Photographic films
presenting results of Southern blot analysis are presented in lower part of the figure. Bands corresponding to wild type genotype (wt), mutant genotype (mut)
and complementation genotype (compl) are marked on the right side of each photograph.

doi:10.1371/journal.pone.0126260.g004
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creating double strand ends [59]. Finally, transcription complex linked to an R-loop might be-
come attached to the hybrid and collide with progressing replication fork. All of these scenarios
would result in replication fork collapse and could potentially lead to subsequent cell death
[60]. Although the idea that RNase H substrates other than R-loops might be responsible for
the lethal phenotype of ΔrnhA/ΔMSMEG4305 mutant cannot be entirely excluded, it seems
unlikely. In other bacteria Okazaki primers have been shown to be removed by other proteins,
which are also present withinM. smegmatis, PolI [61–63] and RNase HII [25].

The essentiality of RNase HI domain inM. smegmatis suggests that similar phenomenon
might be present inM. tuberculosis. Data obtained by high density transposon mutagenesis in
M. tuberculosis seem to confirm this hypothesis [64]. In studies assessing the essentiality of my-
cobacterial genes by high-density transposon mutagenesis the authors observed a small level of
transposon insertions within the gene encoding a homolog of MSMEG4305- Rv2228c. The
number of insertions was significantly smaller from what would be expected. Perhaps this ob-
servation could be related to insertions within CobC domain encoded by the gene and lethal
phenotype in the case of insertions within the region encoding RNase HI domain.

RNase HI mutants- RnhA level, growth rates and constitutive stable
DNA replication
We wanted to investigate how deletion of MSMEG4305 influences the level of RnhA. There-
fore, we obtained recombinant His-tagged RnhA protein expressed in E. coli. We used this pro-
tein to immunize a rabbit and to obtain polyclonal anti-RnhA antibodies. These antibodies
were used to perform detection of RnhA in protein extracts isolated fromM. smegmatis strains
used in this study. Further, we quantitated the amount of RnhA inM. smegmatismc2 155 and
compared it with the amount of LigA, NAD+ dependent ligase [44]. We observed that the level

Fig 5. Western blots presenting quantitative analysis of the RnhA protein in protein extracts ofM. smegmatis. The upper part of the figure presents
detection of either LigA or RnhA in protein extracts isolated frommutants used in this study. The lower part of the figure presents quantitative analysis of the
amount of RnhA inM. smegmatismc2 155. Briefly, we detected known concentrations of either recombinant LigA or recombinant RnhA. Further, we
compared the intensities of the obtained bands with those obtained from various concentrations of total protein extracts ofM. smegmatismc2 155. We were
able to calculate, that RnhA is approximately 133 times less abundant that LigA.

doi:10.1371/journal.pone.0126260.g005
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of RnhA in wild type strain was low (Fig 5). There were 200 ng of LigA detected in approxi-
mately 30 μg of total protein extract, while 10 ng of RnhA was identified in approximately
200 μg of total protein extract. Therefore we estimate that LigA is approximately 133 times
more abundant than RnhA.

Since the level of RnhA was low, we wanted to see whether deletion of one RNase HI genes
influenced growth rate of the mutants. For this purpose, we assessed growth rates by measuring
optical density of the liquid cultures at determined intervals of time and fitted appropriate
growth curves [65]. We did not observe any differences in growth rates or asymptotical values
between the ΔrnhA andM. smegmatismc2 155 on 7H9 medium supplemented with OADC
(t = 1.90, df = 5, p = 0.12; t = 0.35, df = 5, p = 0.74, respectively, data presented in S1 Table) or
Δ4305 andM. smegmatismc2 155 on 7H9 medium supplemented with OADC and vitamin
B12 (t = 0.84, df = 4, p = 0.84; t = 0.49, df = 4, p = 0.65, respectively, data presented in S2 Table)
(Fig 6A and 6B). The morphology of the mutant cells grown in before mentioned conditions,
in terms of cell length was not altered (t = 1.83, df = 198, p = 0.07 for ΔrnhA andM. smegmatis
mc2 155, data presented in S3 Table; t = 1.22, df = 198, p = 0.22 for Δ4305 andM. smegmatis
mc2 155, data presented in S4 Table) (Fig 7A and 7B).

In summary, these results suggest that mycobacterial cells may produce more RNase H type
I than would be sufficient for optimal growth, as deletion of one of the genes encoding this en-
zyme did not seem to affect the viability of the mutant. A similar phenomenon was observed
for other replication related proteins of mycobacteria- namely LigA [44] or DnaG [48].

In E. coli R-loops have been shown to be responsible for alternative pathway of initiation of
DNA replication. The phenomenon was termed constitutive stable DNA replication (cSDR).
cSDR was identified in thermosensitive E. colimutants with inactivated gene encoding RNase
HI [66]. Unlike the classical pathway, cSDR initiates from regions termed oriK instead of oriC
[67]. The initial strand opening involves RecA dependent hybridization of the RNA transcript
to dsDNA [68] (Fig 8A and 8B). The resulting R-loop is not resolved by RNase HI and there-
fore RNA persists on DNA strand and serves as a primer for elongation by PolI [50] (Fig 8C).
When the loop opens sufficiently, primosome is loaded on the leading strand. As replication
continues, PolI removes persisting RNA transcript and primosome is loaded on the lagging
strand [50] (Fig 8D and 8E). cSDR in E. coli is independent of DnaA and oriC. Hence, even
though dnaA and oriC are essential for viability of wild type E. coli, it is possible to obtain dou-
ble mutants bearing mutations inactivating either dnaA and rnhA or oriC and rnhA [69].

We wanted to investigate whether unaltered growth rate in RNase HI mutants ofM. smeg-
matis was a consequence of induced cSDR. In order to investigate the presence of cSDR inM.
smegmatis we used the technique of gene replacement through homologous recombination.
We introduced gene replacement plasmid for dnaA, with Gm resistance cassette cloned within
the sequence of the gene to facilitate screening, into ΔrnhA and Δ4305. In order to differentiate
cell’s metabolism and hence potential level of R-loop formation, we intended to remove the na-
tive version of dnaA gene on rich medium at 37°C and on minimal medium at 28°C. We were
not able to identify a mutant deficient for dnaA. To confirm that the plasmid that we used for
gene replacement was capable of creating a deletion within the native sequence of dnaA, we in-
troduced the complete version of the dnaA gene under a native promoter at the attB site of
ΔrnhA strain. We generated a strain, ΔrnhA/dnaASCOattB::dnaA, which was further subjected
to gene replacement protocol. We were therefore able to generate a strain deficient for a native
copy of dnaA, however possessing a copy of the dnaA gene at the attB site, ΔrnhA/ΔdnaAattB::
dnaA (Fig 9). Finally, we used the latter strain for ExEV experiment and confirmed that dnaA
cannot be removed from ΔrnhA strain.

The results of this study confirmed that the dnaA gene is essential inM. smegmatis cells in
which the formation of R-loops is limited by the presence of both RNases HI, and suggest that
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dnaA gene may be required in cells with an increased tendency to form these loops. However,
it cannot be entirely excluded that cSDR is not present under the conditions of our experiment.
Further decrease in RNase HI level could affect the ability to remove dnaA. Therefore, the exis-
tence of cSDR within mycobacteria needs to be further evaluated.

Fig 6. Growth rates of RNase H type I deficient mutants.We analyzed the growth rate of RNase H type I deficient mutants ΔrnhA and Δ4305 and
compared them with wild typeM. smegmatismc2 155. The analysis involved measuring optical density of the liquid cultures at determined intervals of time.
The cultures were performed on 7H9medium with the addition of OADC and Tween80. For the comparison between Δ4305 andM. smegmatismc2 155
media were additionally supplemented with vitamin B12. Each experiment was performed at least in triplicate. We observed no differences in growth rates
based on optical densities of the cultures. (Box- SE, whiskers- 0.95 CI).

doi:10.1371/journal.pone.0126260.g006
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Fig 7. Morphology of the cells of RNase H type I deficient mutants.We harvested cells grown in liquid cultures for 24 hours and analyzed them on Nikon
Eclipse TE2000 microscope. The cultures were performed on 7H9 medium with the addition of OADC and Tween80. For the comparison between Δ4305 and
M. smegmatismc2 155 media were additionally supplemented with vitamin B12. We observed no differences in cell lengths between mutant strains and the
wild type. (Box- SE, whiskers- 0.95 CI).

doi:10.1371/journal.pone.0126260.g007
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RNases HI as a new antimycobacterial target?
The products of the genes that are essential for survival of the pathogen are potential targets for
novel antibiotics. The possibility that RNase HI might be essential for survival ofM. tuberculo-
sis is particularly interesting as inhibitors of RNase H are currently intensively studied as po-
tential antiviral drugs in HIV therapy [70]. As reported by the World Health Organization, TB

Fig 8. Constitutive stable DNA replication of E. coli ΔrnhAmutants. An alternative mode of initiation of DNA replication was discovered in E. colimutants
lacking RNase H type I encoded by rnhA. (A,B) The initial strand opening involves RecA dependent hybridization of the RNA transcript to dsDNA, (C) The
resulting R-loop is not resolved by RNase HI and therefore RNA persists on DNA strand and serves as a primer for elongation by PolI, (D,E) When the loop
opens sufficiently, primosome is loaded on the leading strand. As replication continues, PolI removes persisting RNA transcript and primosome is loaded on
the lagging strand.

doi:10.1371/journal.pone.0126260.g008
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is the major cause of death among people living with HIV. Though the idea that one compound
might be limiting for bothM. tuberculosis and HIV is wonderful, it is rather utopian. Subopti-
mal concentrations of RNase H inhibitors of HIV have been shown to decrease susceptibility
to antiretroviral drug used for the treatment of HIV, zidovudine [71], and therefore they may
be questioned as a novel component of HIV therapy. Finding an RNase H inhibitor that would
inhibit both viral and mycobacterial RNase H, without affecting human RNase H, though theo-
retically possible, does not seem achievable. As an advantage, we observed that inM. smegmatis
RNase HI level was low. Therefore, perhaps even a small amount of an inhibitor could be suffi-
cient to effectively kill these cells. This is particularly important in the case of mycobacteria due
to their intracellular life niche (in the case ofM. tuberculosis) and composition of their unusual
and thick cell wall. Therefore the question of whether mycobacterial RNases HI may be used
for drug development remains open for future research.

Fig 9. Southern blot confirming deletion of native dnaA gene in ΔrnhA/ΔdnaAattB::dnaAmutant strain
ofM. smegmatis.We used gene replacement through homologous recombination to obtain mutants
deficient in rnhA. Further, we used the same procedure to generate ΔrnhA/dnaASCO strain where SCO
signifies an intermediate step of gene replacement procedure. Next, through complementation procedure, we
introduced an additional version of dnaA gene at the attB site of mycobacterial genome. Finally, we removed
the native version of dnaA, thereby generating a mutant ΔrnhA/dnaASCOattB::dnaA. For more information
regarding plasmid construction and gene replacement procedure please refer to the text. Schematic
representation of analyzed genomic region, including enzymes used for digestion, size of restriction
fragments following digestion and the site of hybridization of hybridization probe, is presented in the upper
part of the figure. Photographic film presenting results of Southern blot analysis is presented in the lower part
of the figure. Bands corresponding to wild type genotype (wt) and mutant genotype (mut) are marked on the
right side of the photograph.

doi:10.1371/journal.pone.0126260.g009
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Supporting Information
S1 Table. Optical densities of liquid cultures ofM. smegmatismc2 155 and ΔrnhA. Bacterial
cultures were grown on 7H9 media supplemented with OADC and Tween80. At determined
intervals of time optical density of the cultures was measured by spectrophotometer (wave
length 600 nm). Results were transformed into growth curves.
(XLSX)

S2 Table. Optical densities of liquid cultures ofM. smegmatismc2 155 and Δ4305. Bacterial
cultures were grown on 7H9 media supplemented with OADC, Tween80 and vitamin B12. At
determined intervals of time optical density of the cultures was measured by spectrophotome-
ter (wave length 600 nm). Results were transformed into growth curves.
(XLSX)

S3 Table. Cell lenghts ofM. smegmatismc2 155 and ΔrnhA. Bacteria were grown for 24
hours in 7H9 medium supplemented with OADC and Tween80. Cell lengths were measured
on Nikon Eclipse TE2000 microscope. Lengths are presented in (nm).
(XLSX)

S4 Table. Cell lenghts ofM. smegmatismc2 155 and Δ4305. Bacteria were grown for 24
hours in 7H9 medium supplemented with OADC, Tween80 and vitamin B12. Cell lengths
were measured on Nikon Eclipse TE2000 microscope. Lengths are presented in (nm).
(XLSX)
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