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Abstract. In this paper we present our novel R package {depthproc} which implements 

several multivariate statistical procedures induced by statistical depth functions and we discuss 
some examples and applications of the package in data mining concerning the multivariate time 
series. 
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I. STATISTICAL DEPTH FUNCTIONS 
 
A data depth is a way to measure the "depth" or "outlyingness" of a given 

point with respect to a multivariate data cloud or its underlying distribution. 
Given a cdf F  on Rd , a depth function ( , )xD F  provides an associated center-

outward ordering of points x  in Rd . Statistical depth function compensates for 
lack of a linear order in Rd , 2d , by orienting points to a "center". Higher 
depth represents greater "centrality". This ordering allows us for a quantifying 
the many complex multivariate features of the underlying distribution, including 
location, quantiles, scale, skewness and kurtosis. For a sample 1{ ,., }X x xn

n , 

an expression ( , )x XnD  denotes a sample depth where distribution F  is 

replaced by its sample counterpart nF  calculated on base of the sample Xn  (for 

an overview see Serfling, 2006). 
As an example of a statistical depth function let us recall a symmetric 

projection depth  ,xD F of a point x Rd  being a realization of some d  

dimensional random vector X  with probability distribution F , defined as 
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where Med denotes the univariate median,  MAD Z  =   Med Z Med Z ,  

a sample version denoted by  ,x nD F  or  ,x XnD  is obtained by replacing 

distribution F  by its empirical counterpart nF  calculated on base of the sample 

Xn .  
The projection depth function possesses among others an affine invariance 

property, induced location and scatter estimators have high finite sample 
replacement breakdown points and good properties in terms of Hampel's 
influence function and Huber's maximum bias (for details see Serfling, 2006 and 
references therein). 

For a sample 1{ ,., }X x xn
n  a set of points 

( ) { : ( , ) }X x R x Xn d nD D     is called   central region. Its border could 

be treated as an analogue of the univariate quantile. Figures 1-2 present sample 
projection depth calculated for two samples drawn from bivariate normal and 
mixture of two bivariate normal distribution correspondingly. Figures 1-2 were 
prepared by means of approximate algorithm proposed by Dyckerhoff (2004) 
implemented within our {depthproc} package free available via R-Forge server. 
We can define depth for vectors, matrices, functions, families of sets, 
geometrical objects (see Zuo and Serfling, 2006). Depth functions yield nested 
contours of equal outlyingness. Depth functions uniquely characterize a wide 
range of populations (see Kong and Zuo, 2010). For a general discussion of the 
depth concept see Serfling (2006) and references therein.  

Figure 3 shows a relation between numbers of dwellings completed divided 
by the number of employed persons vs. number of employed persons in Polish 
voivodships in 2011 year. Figure 4 shows a relation between employment in 
thousands vs. GDP in Polish voivodships in 2009. Blue crosses in these figures 
represent mean vectors, orange stars two-dimensional Tukey medians. Two 
dimensional medians being placed in the most central regions differ from the 
mean vectors due to the existence of outlying observations. Figures 3-4 were 
prepared by means of {aplpack} R package using halfspace depth. 

Our free available R package {depthproc} offers among other following 
procedures:  

1. depthContour(X,method = "Projection",plot.title = 
paste(method,"depth"),...) – 2d sample depth contour plot. 

2. depthPersp(X,method = "Projection",plot.method = "rgl",xlim = 
extendrange(X[,1],f=0.1),...) – 3d sample depth perspective plot. 
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3. ddPlot(x, y=NULL, distribution = c("mvnorm", "t", "smvnorm", "st"), 
method = "Projection", scale = FALSE,...) – generalization of the quantile–
quantile plot. 

4. (ddmvnorm(x, method = "Projection", robust=FALSE,...) – descriptive 
normality inspection.  

5. scalecurve(X, Y = NULL, alpha = seq(0,1,0.01), method = "Projection", 
draw = TRUE, nameX = "X", nameY) - nonparametric method for measuring 
a multivariate dispersion. 

6. asymmetrycurve<-function(X,Y = NULL, alpha = seq(0,1,0.01), method 
= "Projection", moving median = FALSE, draw = TRUE, nameX = "X", nameY 
= "Y",...) - nonparametric method of measuring multivariate asymmetry. 

7. deepreg2d(...) – robust regression  
8. trimprojreg2d(...) – robust regression  
Our package depends on the following R packages {rgl}, {geometry}, 

{ggplot2}, {lattice}, {MNM}, {sn}, {MASS}, {robustbase} 
 

 
Fig. 1. Projection depth contour plot – 100 
observations form 2d normal distribution 

Fig. 2. Projection depth contour plot – 100 
observations form a mixture of two 2d normal 

distributions 
Source: Our own calculations – {depthproc 1.0} R package. 

 
 

II. APPROXIMATE DEPTH CALCULATION IN {DEPTHPROC} 
 
Direct calculation of the statistical depth function is generally a very 

challenging computational issue. Within the {depthproc} package we use 
approximate algorithm proposed by Dyckerhoff (2004) to calculation of  
a certain class of location depth functions (depths possessing so called strong 
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projection property), direct algorithm proposed by Rousseeuw i Hubert (1998) 
for deepest regression estimator calculation and direct algorithm for Lopez-
Pintado i Romo (2009) depth for functional data. 
 

 
Fig. 3. Dwellings completed vs. the number of 

employed persons in Polish voividships in 2011 
– 2D boxplot 

Fig. 4. Employment in thousands vs. GDP  
in Polish voivodships – 2D boxplot 

 
Source: Our own calculations, data GUS, {aplpack} R package. 

 
 
Let ( , )x ZnD  denote sample depth in a point x Rd , 2d  , 

1{ ,..., }Z z z Rn d
n  . Following Dyckerhoff (2004) we assume depth of the 

point x Rd  with respect to 1{ ,., }Z z z Rn d
n   equals minimum of a one-

dimensional projection u xT with respect to 1{ ,., }u Z u z u z RT n T T
n  , u RT d , 

1u  , i.e. 1

1
( , ) min ( , )

u
x X u x u Xn T T nD D


 . Let 1( , )nD y Y  denote the one 

dimensional depth, Ry , 1{ ,..., }n
nY y y , let ( )Q   be a quantile of amount  . 

The above idea brings us to the following one dimensional depths leading to 
multidimensional depths using Dyckerhoff ideas:  

1. Simplicial depth: 1( , ) ( )(1 ( ))n
n nD y Y F y F y  , where nF   denotes 

sample cdf. 
2. Half space depth: 1( , ) min{ ( ),1 ( )}n

n nD y Y F y F y  , where nF   denotes 

sample cdf.  
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3. Projection depth:  
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where Med denotes median, MAD denotes median of absolute deviations from 
the median. 

4. Zonoid depth: 1 1 1
( , ) min : ( ), (1 )nD y Z y Q Q
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For two probability distributions F  and G , both in Rd , we can define 
depth vs. depth plot being very useful generalization of the one dimensional 
quantile-quantile plot (see Li and Liu 2004:  

 

    ( , ) ( , ), ( , ) ,z z z RdDD F G D F D G    (2)  

 
Its sample counterpart calculated for two samples 1{ ,., }Xn

nX X  from F , 

and 1{ ,., }Ym
mY Y  from G  is defined as 

 

    ( , ) ( , ),   {( , ) , }z z z X Yn m
n m n mDD F G D F D G     (3) 

 
 

 
 
 

Fig. 5. Sample depth vs. depth plot for a difference in location (left), a difference in scale (middle) 
and the same distribution (right) 

Source: Our own calculations – {depthproc 1.0} R package. 
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For sample depth function ( , )x ZnD , x Rd , 2d  , 1{ ,., }Z z z Rn d
n  , 

( ) { : ( , ) }Z z R z Zn d nD D        central region, for [0,1]   we can 

define a scale curve 
 

    2( ) , ( ( )Z RnSC vol D   , (5) 

 
and asymmetry curve  

 

   1 2( ) , ({ | ( )}) ,z Z RnAC c med D       (6) 

 
being nonparametric scale and asymmetry functional correspondingly, where 
c  denotes constant, z  denotes mean vector, denotes multivariate median 
induced by depth function and vol   denotes a volume. 
 
 

III. EXAMPLES OF APPLICATIONS OF {DEPTHPROC} PACKAGE 
 
Our {depthproc} package offers a variety of possibilities for a preliminary 

analysis of multivariate time series. We can among others prepare robust scatter 
diagrams time series value in a while t vs. its value in whiles (t-1), (t-2),… - 
what can help us in a correct model specification. We can prepare moving depth 
vs. depth plot and monitor multivariate location, scatter, skewness of the 
considered process. We can prepare moving scale or asymmetry curve. We can 
predict future values of the analyzed process by means of deepest regression 
applied to the moving window from the time series. We can consider robust 
filters, smoothing and by means of depth functions provided by {depthproc}.  

In order to show usefulness of the selected statistical procedures offered by 
{depthproc} we simulated 3500 observations from a certain regular two 
dimensional vector autoregressive model VAR(1). We assumed the simulated 
data consist up to 5% of additive outliers generated from i.i.d normal 
distribution. Observations from number 1401 to 2450 are shifted with respect to 
assumed VAR(1) model. We considered inference process conducted on base of 
window from the series of length 500 observations. Observations from number  
1 to 500 were treated as a reference sample. Figure 6 presents the results. 

We considered two dimensional empirical data set consisted of opening and 
closing points values for WIG20 index from 01.01.2009 to 30.06.2012 (861 
observations). We compared consecutive six month periods. We treated first 
period as a reference sample. Figure 7 presents the calculated depth vs. depth 
plots. The plots indicate significant differences in locations of the half year 
windows. 
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Fig. 6. Sample depth vs. depth plot for the simulated data from VAR(1) process. Plots were 

prepared on base of windows of length 500 observations from the series 
Source: Our own calculations – {depthproc 1.0} R package. 

 
 

 
Fig. 7. Depth vs. depth plots for the WIG 20 index considered wrt opening and closing values from 

01.01.2009 to 30.06.2012 year (861 observations). We compared consecutive six month periods 
Source: Our own calculations – {depthproc 1.0} R package. 
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Fig. 8. Sample scale curves for two dimensional time series simulated from VAR(1) process. 

Samples without outliers and samples with up to 1%, 5% and 10% of additive outliers 
Source: Our own calculations – {depthproc 1.0} R package. 

 
 
Figure 8 presents sample scale curves calculated on base of data windows 

from the simulated VAR(1) process with scale shifts and with up to 10% of the 
additive outliers. Figure 9 presents sample asymmetry curves calculated on base 
of two dimensional data sets simulated from two-dimensional normal and two-
dimensional T distributions with several parameters of skewness.  
 
 

IV. SUMMARY AND CONCLUSIONS 
 
We presented selected functions of R package {depthproc} which is freely 

available with detailed description under the address: https://r-forge.r-
project.org/projects/depthproc/ 

Our package is still developing and in our opinion in the future will find 
several interesting applications in the robust economic analysis.  
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Fig. 9. Sample asymmetry curves for two dimensional data sets simulated from two-dimensional 

normal and two-dimensional T distributions with several parameters of skewness 
Source: Our own calculations – {depthproc 1.0} R package. 
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PAKIET {DEPTHPROC} W EKSPLORACYJNEJ ANALIZIE 

WIELOWYMIAROWEGO SZEREGU CZASOWEGO 
 
W artykule przedstawiamy pakiet środowiska R naszego autorstwa o nazwie {DepthProc}. 

Pakiet zawiera implementacje kilku wielowymiarowych procedur statystycznych indukowanych 
przez statystyczne funkcje głębi. Przedstawiamy przykłady zastosowań pakietu w eksploracyjnej 
analizie wielowymiarowego szeregu czasowego. 


