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ON PARAMETER ESTIMATION OF SOME 
LONGITUDINAL MODEL 

 
Abstract. The problem of modeling longitudinal profiles is considered assuming that the 

population and elements’ affiliation to subpopulations may change in time. Some longitudinal 
model which is a special case of the general linear model (GLM) and the general linear mixed 
model (GLMM) is studied. In the model two random components are included under assumptions 
of simultaneous spatial autoregressive process (SAR) and temporal first-order autoregressive 
process (AR(1)) respectively. The accuracy of model parameters’ restricted maximum likelihood 
estimators is considered in the simulation. 
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I. INTRODUCTION 
  
Longitudinal data for periods t=1,...,M are considered. In the period t the 

population of size tN  is denoted by t . The population in the period t is 

divided into D disjoint subpopulations (domains) dt  of size dtN , where 

d=1,...,D. Let the set of population elements for which observations are available 
in the period t be denoted by st and its size by nt. The set of subpopulation 

elements for which observations are available in the period t is denoted by dts  

and its size by ndt. Let: rdt dt dts    ,  rdt dt dtN N n  . 

Let idM  denotes the number of periods when the i-th population element 

belongs to the d-th domain. Let us denote the number of periods when the i-th 

population element (which belongs to the d-th domain) is observed by idm . Let 

rid id idm M m  . It is assumed that the population may change in time and that 

one population element may change its domain affiliation in time (from 
technical point of view observations of some population element which change 
its domain affiliation are treated as observations of new population element). 
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It means that i and t completely identify domain affiliation but additional 
subscript d will be needed as well. The set of elements which belong at least in 

one of periods t=1,...,M to sets t  is denoted by   and its size by N. Similarly, 

sets d , s , ds , rd  of sizes dN , n, dn , rdN  respectively are defined as sets 

of elements which belong at least in one of periods t=1,...,M to sets dt , ts , 

dts , rdt  respectively. The d*-th domain of interest in the period of interest t* 

will be denoted by * *d t , and the set of elements which belong at least in one of 

periods t=1,...,M  to sets * *d t  will be denoted by *d . The introduced 

notations allow to assume that the domain affiliations of population elements 
change in time. 

 
 

II. LONGITUDINAL MODEL 
 
In the small area estimation literature the problem of spatial correlation is 

studied but for one period including both area-level models (Molina, Salvati and 
Pratesi, 2009; Petruci and Salvati, 2006; Petruci, Pratesi and Salvati, 2005; 
Pratesi and Salvati, 2008) and unit-level models (Chandra, Salvati and 
Chambers, 2007, Salvati, Pratesi, Tzavidis and Chambers, 2009).  In this paper 
superpopulation models used for longitudinal data (compare Verbeke and 
Molenberghs, 2000; Hedeker and Gibbons, 2006) are considered both with 
spatial and temporal correlation which are – what is important for further 
considerations – special cases of the General Linear Model (GLM) and the 
General Linear Mixed Model (GLMM). We propose the following model: 

 

   d d d d d dY X β Z v e ,                    (1) 

 

where 
1

( )
di N

col
 

d idY Y , where idY  is a random vector, called profile, of size 

1idM  , and dY  (d=1,...,D) are assumed to be independent, 

1
( )

di N
col

 
d idX X , where idX  is known matrix of size idM p , 

1
( )

di N
diag

 
d idZ Z , where idZ  is known vector of size 1idM  , 

1
( )

d
idi N

col v
 

dv , where idv  is a profile-specific random component and dv  

(d=1,2...,D) are assumed to be independent, 
1

( )
di N

col
 

d ide e , where ide  is a 
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random component vector of size 1idM   and ide  (i=1,...,N; d=1,...,D) are 

assumed to be independent, dv  and de  are assumed to be independent. 

What is more, it is assumed that vector of random components dv  obey 

assumptions of simultaneously spatial autoregressive (SAR)  process: 
 

 ( )sp d d d dv W v u ,                             (2) 

 

where dW  is the spatial weight matrix for profiles idY , 2~ ( , )
d

u N
du 0 I . 

Hence,   
 

  ~ ,Nd dv 0 R ,                 (3) 

 

where  2
u

-1
d dR C

 
and   ( ) ( )

d
sp spN

   
d

T
d d dN

C I W I W . 

Moreover, elements of ide  obey assumptions of autoregressive process 

AR(1): 
 

 ( ) 1idj t idj idje e   .                             (4) 

 
Hence,  
 

  ~ ,e Nid id0 Σ ,                  (5) 

 

where elements of idΣ  are given by   12 2
( ) ( )1k l
t t  

  .
 

 
III. ESTIMATION OF PARAMETERS 

 
The restricted maximum likelihood method (REML) was proposed by 

Thomson (1962) as written by Jiang (1996). What is important, the Gaussian 
REML is robust for nonnormality cases - as prooved by Jiang (1996) Gaussian 
REML estimators remain consistent and asymptotically normal even if normality 
does not hold. 

Let 
1

( )
di n

col
 

sd sidY Y , where sidY  is a random vector, called sample 

profile, of size 1idm  . Let  
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 2 2

1
( ) ( )

d

T
u i n

D diag 
 

  -1
ss d ss d sd d sd ss idV Y Z C Z Σ .      (6) 

 

where sdZ  is obtained from  dZ  by deleting rows for unsampled profiles, ss idΣ  

is a submatrix obtained from idΣ  by deleting rows and columns for unsampled 

observations. 
The restricted likelihood function for the considered model (1) is given by:  
 

   1

1

1 1
exp

2(2 ) det

D

n
d

L






   
 

 T T
sd d ss d d sdT

d ss d d

Y A V A Y
A V A

      (7) 

 

where matrices dA  (d=1,...,D) are any matrices of sizes 

1 1

1 1
d dn n

id id
i i

m m p
 

    
            

   of rank 
1

1
dn

id
i

m p


 
  

 
  such that: 

0T
d sdA X . Matrices dA  may be given by any 

1

1
dn

id
i

m p


 
  

 
   linear 

independent rows of 1( ( ) )T T sd sd sd sdI X X X X . 

 
 

IV. SIMULATION ANALYSIS 
 
Limited model-based simulation study prepared using R (R Development 

Core Team (2011)) is based on artificial data. Population of size N=200 elements 
is divided into D=10 domains of sizes {15, 15, 15, 20, 20, 20, 20, 25, 25, 25}. 
Number of periods M=3 and balanced panel sample is studied – in each period 

the same 5dn   elements from each domain are observed in the sample (overall 

sample size in each period is n=50). The purpose of the study is to predict D=10 
domain totals for the last period.  

Data are generated based on the model (1) where 1idj idjx  , 1idj idjz  , 

d d    and for arbitrary chosen values of parameters 100  , 2 1  , 
2 1u  . In the simulation the following values of ( )sp  and ( )t  are considered: 

0,8; 0,3; -0,3 and -0,8 what gives sixteen pairs of these correlation coefficients 
(these pairs are presented on x-axis). Realizations of random components are 
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generated using multivariate normal distribution. To maximize logarithm of the 
function (7) the constrOpitm R function was used. 

For the assumed model (1) and under the assumptions made in the 

simulation (balanced panel sample, 1idj idjx  , 1idj idjz  , d d   ) the 

Best Linear Unbiased Predictor of the d*th domain total in the t*th period is 
given by 

* *

* * * * *
ˆ ˆ

d t

BLU
d t id t rd t

i s

Y N 


   *  

   *

*
1

2 1
* * * * * ˆnd

id
i

u
m

 



 
 
  

T -1 T
rd* rd d sd ss d sdγ Z C Z V Y 1 ,     (8) 

 

where 

1 1 1 1 1 1

ˆ /n n nD D Dd d d

id id id
d i d i d i

m m m


     


  
T -1 T -1

ss s ss1 V Y 1 V 1 , rd*γ  is a 
*

*
1

1
dn

rid
i

M


  vector of 

one’s for observations in * *rd t  and zero otherwise, sdZ  and rdZ  are obtained 

from 
1

( )
d idi N M

diag
 

dZ 1  by deleting rows for unsampled and sampled 

profiles respectively, a1  is 1a  vector of one’s. 
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Figure 1. Absolute biases of estimators of: 2

e - , 2
u -  Δ, )(sp  - x, )(t - * 

Source: own work 
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Figure 2. Absolute RMSEs of estimators of: 2

e - , 2
u -  Δ, )(sp  - x, )(t - * 

Source: own work 
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Figure 3. Increase of MSE of 10 domain total’s predictors due to the estimation  

of model parameters (in %) 
Source: own work 
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It is known (e.g. Datta, Lahiri (2000)) that the biases of REML estimators 
are of order o(D-1) – in the simulation study, although the number of domains is 
small D=10, the biases (see Fig. 1) are small. In the Fig. 2 absolute values of 
RMSEs of the estimators are presented. Comparing them with real values 

( 2 1  , 2 1u   and different values of ( )sp  and ( )t : 0,8; 0,3; -0,3 and -0,8) 

shows that the values are high.  

Let us denote the predictor (8), where model parameters are known, as 
BLUP and the predictor (8), where model parameters are replaced by REML 
estimates, by EBLUP. In the Fig. 3 for each out of sixteen cases (defined by pairs of  

( ( )sp , ( )t )) ten values of 100*(MSE(EBLUP)-MSE(BLUP))/MSE(BLUP) are 

presented for D=10 domains. The values of 100*(MSE(EBLUP)-
MSE(BLUP))/MSE(BLUP) can be interpreted as the increase of the MSE (the 
decrease of accuracy) in % of the predictors of domain totals due to the 
estimation of model parameters. Although the MSEs of the estimators of model 
parameters are high (as presented in th Fig. 2) the increase of the MSE of 
domains’ total predictors is small (as presented in the Fig. 3). 

 
V.CONCLUSION 

 
In the paper the problem of estimation of parameters of some longitudinal 

model is considered. The parameters are estimated using Restricted Maximum 
Likelihood Method by maximization of the log restricted likelihood using 
constrOptim R function. In the Monte Carlo simulation study values of the 
biases and RMSEs are computed. Although the RMSEs of the estimators are 
large, the influence of estimation of model parameters on the increase of the 
MSEs of domain totals’ predictors  is small. 
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O ESTYMACJI PARAMETRÓW PEWNEGO MODELU  
DLA DANYCH WIELOOKRESOWYCH  

 
Rozważany jest problem modelowania profili wielookresowych zakładając, że populacja 

i przynależność elementów domen mogą zmieniać się w czasie. Proponowany model jest 
przypadkiem szczególnym ogólnego modelu liniowego i ogólnego mieszanego modelu liniowego. 
W modelu tym uwzględniono dwa wektory składników losowych spełniające odpowiednio 
założenia przestrzennego modelu autoregresyjnego i modelu autoregresyjnego rzędu pierwszego w 
czasie. W symulacji rozważano dokładność estymatorów parametrów modelu uzyskanych metodą 
największej wiarygodności z ograniczeniami. 




