Show simple item record

dc.contributor.authorIndrzejczak, Andrzej
dc.date.accessioned2019-06-18T14:22:59Z
dc.date.available2019-06-18T14:22:59Z
dc.date.issued2013
dc.identifier.citationIndrzejczak A., Rachunki sekwentowe w logice klasycznej, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013, doi: 10.18778/7525-812-7pl_PL
dc.identifier.isbn978-83-7525-812-7
dc.identifier.urihttp://hdl.handle.net/11089/28907
dc.descriptionPrezentowana praca jest pomyślana jako wprowadzenie do niezwykle bogatej i złożonej problematyki związanej z teorią i zastosowaniami rachunków sekwentowych. Chcąc zachować rozsądne rozmiary książki siłą rzeczy dokonano w niej wyboru zagadnień, które w przekonaniu autora są najważniejsze czy po postu interesujące. Nacisk został położony na metodologiczne aspekty RS, toteż nie jest to praca z zakresu teorii dowodu, w której RS jest narzędziem do prezentacji wyników tej teorii.pl_PL
dc.description.sponsorshipUdostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00.pl_PL
dc.language.isoplpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectrachunki sekwentowepl_PL
dc.subjectlogika klasycznapl_PL
dc.titleRachunki sekwentowe w logice klasycznejpl_PL
dc.typeBookpl_PL
dc.page.number311pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Filozoficzno-Historyczny, Katedra Logiki i Metodologii Naukpl_PL
dc.referencesD’Agostino, M., ‘Tableau Methods for Classical Propositional Logic’ w: M. D’Agostino (red.), Handbook of Tableau Methods, str. 45–123, Kluwer Academic Publishers, Dordrecht 1999.pl_PL
dc.referencesAho A. V., i J. D. Ullman, Foundations of Computer Science in C, W. H. Freeman and CO, New York 1995.pl_PL
dc.referencesAjdukiewicz, K., ‘Sprache und Sinn’, Erkenntniss, IV:100–138, 1934. Polskie tłumaczenie w: Język i Poznanie Tom I, str. 145–175, PWN 1985.pl_PL
dc.referencesAnderson, A., R. i N., D. Belnap, Entailment: the Logic of Relewance and Necessity, vol I Princeton University Press, Princeton 1975.pl_PL
dc.referencesAndrews, P., B. An Introduction to Mathematical Logic and Type Theory: to Truth through Proof, Harcourt Academic Press, Orlando 1986.pl_PL
dc.referencesAsser, G., Einführung in die Mathematische Logik, Leipzig 1959 (Teil I), 1972 (Teil II).pl_PL
dc.referencesAvron, A., ‘Gentzen-type systems, Resolution and Tableaux’, Journal of Automated Reasoning 10/2:265–281, 1993.pl_PL
dc.referencesAvron, A., ‘The Method of Hypersequents in the Proof Theory of Propositional Non-Classical Logics’, w: W. Hodges et al. (red.), Logic: From Foundations to Applications, str. 1–32, Oxford Science Publication, Oxford, 1996.pl_PL
dc.referencesAvron, A., ‘Simple Consequence Relations’, Information and Computation, 92: 105–139, 1991.pl_PL
dc.referencesBatóg T., Podstawy logiki, Wyd. Naukowe UAM 1994.pl_PL
dc.referencesBell, J., L. i M. Machover A Course in Mathematical Logic, North- Holland, Amsterdam 1977.pl_PL
dc.referencesBelnap, N., D. ‘Display Logic’, Journal of Philosophical Logic, 11:375– 417, 1982.pl_PL
dc.referencesBernays, P., ‘Betrachtungen zum Sequenzen-Kalkul’ w: A., T. Tymieniecka (red.), Contributions to Logic and Methodology in honor of J. M. Bochenski, str. 1–44, North-Holland, Amsterdam 1965.pl_PL
dc.referencesBeth E., Semantic Entailment and Formal Derivability, Mededelingen der Kon. Ned. Akad. v. Wet. 18 13, 1955.pl_PL
dc.referencesBibel, W., Deduction, Automated Logic, Academic Press, London 1993.pl_PL
dc.referencesBlamey S., L. Humberstone, ‘A Perspective on Modal Sequent Logic’, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 27: 763–782, 1991.pl_PL
dc.referencesBoolos, G., ‘Don’t eliminate Cut’, Journal of Philosophical Logic, 7:373–378, 1984.pl_PL
dc.referencesBorkowski L., J. Słupecki, ‘A Logical System based on rules and its applications in teaching Mathematical Logic’, Studia Logica, 7: 71–113, 1958.pl_PL
dc.referencesBraüner, T., Hybrid Logic and its Proof-Theory, Roskilde 2009.pl_PL
dc.referencesBuss, S.,R., ‘An Introduction to Proof Theory’ w: S. Buss (red.) Handbook of Proof Theory, Elsevier 1998.pl_PL
dc.referencesCarnielli,W.,A., ‘On Sequents and Tableaux for Many-valued Logics’, Journal of Non-Classical Logic 8(1):59–76, 1991.pl_PL
dc.referencesCasari, E., Introduzione alla Logica, UTET, Torino 1997.pl_PL
dc.referencesChang, C.,L. and R.,C.,T., Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, Orlando 1973.pl_PL
dc.referencesChurch, A. Introduction to Mathematical Logic, vol I, Princeton University Press, Princeton 1956.pl_PL
dc.referencesCiabattoni, A. i K. Terui, ‘Towards a Semantic Characterization of Cut-elimination’, Studia Logica 82: 95–119, 2006.pl_PL
dc.referencesCurry H. B., A Theory of Formal Deducibility, University of Notre Dame Press, Notre Dame 1950.pl_PL
dc.referencesCurry H. B., Foundations of Mathematical Logic, McGraw-Hill, New York 1963.pl_PL
dc.referencesCzelakowski, J., ‘Some theorems on structural entailment relations’ Studia Logica 42/4: 417–430, 1975.pl_PL
dc.referencesDo˘sen K., ‘Sequent-systems for Modal Logic’, Journal of Symbolic Logic, 50: 149–159, 1985.pl_PL
dc.referencesDo˘sen K., ‘Logical constants as punctuation marks’ Notre Dame Journal of Formal Logic, 30: 362–381, 1989.pl_PL
dc.referencesDo˘sen K. i P. Schroeder-Heister (red.), Substructural Logics, Oxford University Press, Oxford 1994.pl_PL
dc.referencesDragalin, A.,G., Mathematical Intuitionism. Introduction to Proof Theory, American Mathematical Society, Providence 1988.pl_PL
dc.referencesDreben B., Andrews P., i S. Aanderaa, ‘False lemmas in Herbrand’, Bulletin of American Mathematical Society, 69: 699–706, 1963.pl_PL
dc.referencesDreben B., i J. Denton, ‘A supplement to Herbrand’, Journal of Symbolic Logic, 31: 393–398, 1966.pl_PL
dc.referencesDummett, M., Logiczna Podstawa Metafizyki, PWN 1998.pl_PL
dc.referencesDunn, J., M., i G., M. Hardegree, Algebraic Methods in Philosophical Logic, Clarendon, Oxford 2001.pl_PL
dc.referencesDyckhoff, R., ‘Dragalin’s proof of cut-admissibility for the intuitionistic sequent calculi G3i and G3i’, Research Report CS/97/8, St Andrews 1997.pl_PL
dc.referencesEbbinghaus H. D., J. Flum, W. Thomas Mathematical Logic, Springer, Berlin 1984.pl_PL
dc.referencesErshow, Y., L. i E., A. Palyutin, Mathematical Logic, MIR, Moscow 1984.pl_PL
dc.referencesFeys, R., J. Ladriere supplementary notes in: Recherches sur la deduction logique, french translation of Gentzen, Press Univ. de France, Paris 1955.pl_PL
dc.referencesFine K., Reasoning with arbitrary objects, Blackwell, Oxford 1985.pl_PL
dc.referencesFitch, F., Symbolic Logic, Ronald Press Co, New York 1952.pl_PL
dc.referencesFitting, M., First-Order Logic and Automated Theorem Proving, Springer, Berlin 1996.pl_PL
dc.referencesFont, J., M., i R. Jansana, A General Algebraic Semantics for Sentential Logics, Springer, Berlin 1996.pl_PL
dc.referencesForbes, G., Modern Logic, New York 2001.pl_PL
dc.referencesGabbay, D., LDS - Labelled Deductive Systems, Clarendon Press, Oxford 1996.pl_PL
dc.referencesGarson, J.W. Modal Logic for Philosophers, Cambridge University Press, Cambridge 2006.pl_PL
dc.referencesGallier, J.,H., Logic for Computer Science, Harper and Row, New York 1986.pl_PL
dc.referencesGentzen G., ‘Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen’, Mathematische Annalen, 107:329–350, 1932.pl_PL
dc.referencesGentzen, G., ‘Untersuchungen über das Logische Schliessen’, Mathematische Zeitschrift 39:176–210 and 39:405–431, 1934.pl_PL
dc.referencesGentzen, G., ‘Die Widerspruchsfreiheit der reinen Zahlentheorie’, Mathematische Annalen 112:493–565, 1936.pl_PL
dc.referencesGentzen, G., ‘Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie’, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, New Series 4, Leipzig 19–44, 1938.pl_PL
dc.referencesGirard, J., Y., ‘Linear Logic’ Theoretical Computer Science, 50: 1–101, 1987.pl_PL
dc.referencesGoré, R. ‘Tableau Methods for Modal and Temporal Logics’, w: M. D’Agostino (red.), Handbook of Tableau Methods, str. 297–396, Kluwer Academic Publishers, Dordrecht 1999.pl_PL
dc.referencesGödel, K. ‘Die Vollständigkeit der Axiome des Logischen Funktionenkalküls’ Monatschefte für Mathematik und Physik 37: 349–360, 1930.pl_PL
dc.referencesGrandy, R., E., Advanced Logic for Applications, Reidel, Dordrecht 1977.pl_PL
dc.referencesHähnle, R. Automated Deduction in Multiple-Valued Logics, Oxford University Press, 1994.pl_PL
dc.referencesHähnle, R. ‘Tableaux and Related Methods’, w: A. Robinson, A. Voronkov (red.), Handbook of Automated Reasoning, str. 101–177, Elsevier, Amsterdam 2001.pl_PL
dc.referencesM. D’Agostino (red.), Handbook of Tableau Methods, Kluwer Academic Publishers, Dordrecht 1999.pl_PL
dc.referencesHacking, I., ‘What is Logic?’, The Journal of Philosophy 76: 285–319, 1979.pl_PL
dc.referencesHasenjaeger,G., Introduction to the Basic Concepts and Problems of Modern Logic, Reidel, Dordrecht 1972.pl_PL
dc.referencesHerbrand J., abstrakt w: Comptes Rendus des Seances de l’Academie des Sciences 1928, vol. 186, 1275 Paris.pl_PL
dc.referencesHerbrand J., ‘Recherches sur la theorie de la demonstration’, in: Travaux de la Societe des Sciences et des Lettres de Varsovie, Classe III, Sciences Mathematiques et Physiques, Warsovie, 1930.pl_PL
dc.referencesHermes H., Einführung in die Mathematische Logik, Teubner, Stuttgart 1963.pl_PL
dc.referencesHertz P., ‘Über Axiomensysteme für beliebige Satzsysteme’, Mathematische Annalen, 101: 457–514, 1929.pl_PL
dc.referencesHintikka J., ‘Form and Content in Quantification Theory’, Acta Philosophica Fennica, 8: 8–55, 1955.pl_PL
dc.referencesHintikka J., ‘Quantifiers in Deontic Logic’, Societas Scientiarum Fennica, Commentationes Humanarum Literarum XXIII, 1957.pl_PL
dc.referencesHodges, W., ‘Elementary Predicate Logic‘, w: D. Gabbay, i F. Guenther (red.), Handbook of Philosophical Logic, Tom I str. 1–132, Kluwer, Dordrecht 1983.pl_PL
dc.referencesHodges, W., ‘Logical Features of Horn Clauses’ w: D. Gabbay, C., J. Hogger i J., A. Robinson (red.), Handbook of Logic in AI and Logic Programming, Tom I str. 449–503, Clarendon, Oxford 1994.pl_PL
dc.referencesIndrzejczak, A., ‘Generalised Sequent Calculus for Propositional Modal Logics’, Logica Trianguli 1:15–31, 1997.pl_PL
dc.referencesIndrzejczak, A., ‘Jaskowski and Gentzen Approaches to Natural Deduction and Related Systems’ w: K. Kijania-Placek i J. Wolenski (red.), The Lvov-Warsw School and Contemporary Philosophy, str. 253–264, Kluwer, Dordrecht 1998.pl_PL
dc.referencesIndrzejczak,A. ‘Correspondence Theory in Proof Theory’ Bulletin of the Section of logic 37/3-4:171–184, 2008.pl_PL
dc.referencesIndrzejczak,A. ‘Suszko’s Contribution to the Theory of Nonaxiomatic Proof Systems’ Bulletin of the Section of logic 38/3-4:151–162, 2009.pl_PL
dc.referencesIndrzejczak,A., Natural Deduction, Hybrid Systems and Modal Logics, Springer 2010.pl_PL
dc.referencesJaśkowski, S., ‘On the Rules of Suppositions in Formal Logic’ Studia Logica 1:5–32, 1934.pl_PL
dc.referencesJaśkowski, S., ‘Teoria dedukcji oparta na dyrektywach założeniowych in: Księga Pamiątkowa I Polskiego Zjazdu Matematycznego, Uniwersytet Jagielloński, Kraków 1929.pl_PL
dc.referencesKalish, D., and R. Montague, ‘Remarks on Descriptions and Natural Deduction’, Archiv. für Mathematische Logik und Grundlagen Forschung 3:50–64, 65–73, 1957.pl_PL
dc.referencesKalish, D., and R. Montague, Logic, Techniques of Formal Reasoning, Harcourt, Brace and World, New York 1964.pl_PL
dc.referencesKanger S., Provability in Logic, Almqvist & Wiksell, Stockholm 1957.pl_PL
dc.referencesKashima R., ‘Cut-free sequent calculi for some tense logics’, Studia Logica, 53:119–135, 1994.pl_PL
dc.referencesKeisler, H. J., i J. Robbin, Mathematical Logic and Computability, The McGraw-Hill 1996.pl_PL
dc.referencesKetonen, O., Untersuchungen zum Prädikatenkalkül, Annalea Acad. Sci. Fenn. Ser. A. I. 32, Helsinki 1944.pl_PL
dc.referencesKleene S. C., Introduction to Metamathematics North Holland, Amsterdam 1952.pl_PL
dc.referencesKleene S. C., Mathematical Logic Willey, New York 1967.pl_PL
dc.referencesKleene S. C., ‘Permutability of inferences in Gentzen’s calculi LK and LJ’ Memoirs of the American Mathematical Society, 10: 1–26, 1952.pl_PL
dc.referencesKneale W., M. Kneale, The Development of Logic, Clarendon Press, Oxford 1962.pl_PL
dc.referencesKrajicek, J., ‘Lower bounds to the size of constant-depth propositional proofs‘ Journal of Symbolic Logic 59/1:73–85, 1994.pl_PL
dc.referencesLeblanc, H., ‘Proof routines for the propositional calculus’, Notre Dame Journal of Formal Logic 4/2: 81–104, 1963.pl_PL
dc.referencesLeblanc, H., ‘Two separation theorems for natural deduction’, Notre Dame Journal of Formal Logic 7/2: 81–104, 1966.pl_PL
dc.referencesLemmon E. J., Beginning Logic Nelson, London 1965.pl_PL
dc.referencesLeśniewski, S., ‘Gründzuge eines Neuen Systems der Grundlagen der Mathematik’, Fundamenta Mathematicae, 14: 1–81, 1929.pl_PL
dc.referencesLetz, R., ‘First-order Tableau Methods’ w: M. D’Agostino (red.), Handbook of Tableau Methods, str. 125–196, Kluwer Academic Publishers, Dordrecht 1999.pl_PL
dc.referencesLis, Z., ‘Wynikanie semantyczne a wynikanie formalne’, Studia Logica 10:39–60, 1960.pl_PL
dc.referencesLoveland D. W., Automated Theorem Proving: a Logical Basis, North Holland, Amsterdam 1978.pl_PL
dc.referencesLyndon, R., O logice matematycznej, PWN, Warszawa 1968.pl_PL
dc.referencesŁawrow, I., A. i Ł., L. Maksimowa, Zadania z teorii mnogości, logiki matematycznej i teorii algorytmów, PWN, Warszawa 2004.pl_PL
dc.referencesMaciaszek, J., Znaki logiczne, Wyd. UŁ, Łódź 2003.pl_PL
dc.referencesMarciszewski W., R. Murawski, Mechanization of Reasoning in a Historical Perspective, Rodopi, Amsterdam, Atlanta 1995.pl_PL
dc.referencesMints G., ‘Cut-free calculi of the S5 type’, Studies in Constructive Mathematics and Mathematical Logic II: 79–82, 1970.pl_PL
dc.referencesMostowski, A., Logika matematyczna, Warszawa 1948.pl_PL
dc.referencesNegri, S., and J. von Plato, Structural Proof Theory, Cambridge University Press, Cambridge 2001.pl_PL
dc.referencesNegri S., ‘Proof Analysis in Modal Logic’, Journal of Philosophical Logic, 34: 507–544, 2005.pl_PL
dc.referencesNishimura H., ‘A Study of Some Tense Logics by Gentzen’s Sequential Method’, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 16: 343–353, 1980.pl_PL
dc.referencesOno, H., ‘Proof-Theoretic Methods in Nonclassical Logic – an Introduction’ w: M. Takahashi (red.), Theories of Types and Proofs, MSJMemoir 2, str. 207–254, Mathematical Society of Japan, 1998.pl_PL
dc.referencesOrłowska, E. i J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology, Case Studies, Springer 2011.pl_PL
dc.referencesPaoli, F., Substructural Logics: a Primer, Kluwer, Dordrecht 2002.pl_PL
dc.referencesPlato von J., ‘Gentzen’s proof of normalization for ND’, The Bulletin of Symbolic Logic 14(2):240–257, 2008.pl_PL
dc.referencesPoggiolesi F., Gentzen Calculi for Modal Propositional Logic, Springer 2011.pl_PL
dc.referencesPogorzelski W. A., Klasyczny rachunek zdań, PWN, Warszawa 1973.pl_PL
dc.referencesPopper, K., ‘Logic without assumptions’, Proceedings of the Aristotelian Society 47:251–292, 1947.pl_PL
dc.referencesPopper, K., ‘New foundations for Logic’, Mind 56: 1947.pl_PL
dc.referencesPrior, A.,N. ‘A runabout inference ticket’, Analysis 21:38–39, 1960.pl_PL
dc.referencesPrawitz, D. Natural Deduction, Almqvist and Wiksell, Stockholm 1965.pl_PL
dc.referencesQuine W. Van O., Z punktu widzenia logiki, Colt, New York 1950.pl_PL
dc.referencesQuine W. Van O., Methods of Logic, Colt, New York 1950.pl_PL
dc.referencesRaggio A., ‘Gentzen’s Hauptsatz for the systems NI and NK’, Logique et Analyse 8:91–100, 1965.pl_PL
dc.referencesRasiowa H., R. Sikorski, The Mathematics of Metamathematics, PWN, Warszawa 1963.pl_PL
dc.referencesRestall, G. Proof Theory and Philosophy, available on: http://consequently.org/writing/ptppl_PL
dc.referencesRieger, L. Algebraic Methods of Mathematical Logic, Academia, Prague 1967.pl_PL
dc.referencesRobinson, J.,A., ‘A Machine Oriented Logic based on the Resolution Principle’, Journal of the Assoc. Comput. Mach., 12:23–41, 1965.pl_PL
dc.referencesRousseau G., ‘Sequents in Many Valued Logic’, Fundamenta Mathematicae, LX, 1: 22–23, 1967.pl_PL
dc.referencesSchroeder-Heister, P., ‘Popper’s theory of deductive inference and the concept of a logical constant’, History and Philosophy of Logic 5:79– 110, 1984.pl_PL
dc.referencesSchütte K., Proof Theory, Springer, Berlin 1977.pl_PL
dc.referencesSchwichtenberg, H., ‘Proof Theory’ w: J. Barwise (red.), Handbook of Mathematical Logic, T. 1, North-Holland, Amsterdam 1977.pl_PL
dc.referencesScott, D., ‘Rules and derived rules’ w: S. Stenlund (red.) Logical Theory and Semantical Analysis, str. 147–161, 1974.pl_PL
dc.referencesSegerberg, K. Classical Propositional Operators, Clarendon Press, Oxford 1982.pl_PL
dc.referencesShoesmith, D., j. i T., J. Smiley, Multiple-conclusion Logic, Cambridge 1978.pl_PL
dc.referencesSimpson, A. The Proof Theory and Semantics of Intuitionistic Modal Logic, PhD thesis, University of Edinburgh, 1994.pl_PL
dc.referencesSmullyan, R., ‘Analytic Natural Deduction’, The Journal of Symbolic Logic, 30/2: 123–139, 1965.pl_PL
dc.referencesSmullyan, R., ‘Trees and Nest Structures’, The Journal of Symbolic Logic, 31/3: 303–321, 1966.pl_PL
dc.referencesSmullyan, R., First-Order Logic, Springer, Berlin 1968.pl_PL
dc.referencesSundholm, G., ‘Systems of Deduction’ w: D. Gabbay, F. Guenthner (red.), Handbook of Philosophical Logic, vol I, str. 133–188, Reidel Publishing Company, Dordrecht 2002.pl_PL
dc.referencesSuppes P., Introduction to Logic, Van Nostrand, Princeton 1957.pl_PL
dc.referencesSurma, S., J., Wprowadzenie do metamatematyki T. I, Kraków 1965.pl_PL
dc.referencesSuszko R., ‘W sprawie logiki bez aksjomatów’, Kwartalnik Filozoficzny, 17(3/4): 199–205, 1948.pl_PL
dc.referencesSuszko R., O analitycznych aksjomatach i logicznych regułach wnioskowania, Poznańskie Towarzystwo Przyjaciół Nauk, Prace Komisji Filozoficznej 7/5, 1949.pl_PL
dc.referencesSuszko R., ‘Formalna teoria wartości logicznych’, Studia Logica 6:145– 320, 1957.pl_PL
dc.referencesSuszko R., ‘The Fregean Axiom and Polish Mathematical Logic in the 1920’s’, Studia Logica 36(4):377–380, 1977.pl_PL
dc.referencesSzabo M. E. The Collected Papers of Gerhard Gentzen, North- Holland, Amsterdam 1969.pl_PL
dc.referencesTait, W., W., ‘Normal Derivability in Classical Logic’ w: The Sintax and Semantics of Infinitary Languages, LNM 72, str. 204–236, 1968.pl_PL
dc.referencesTakano M., ‘Subformula Property as a substitute for Cut-Elimination in Modal Propositional Logics’, Mathematica Japonica, 37(6): 1129– 1145, 1992.pl_PL
dc.referencesTakano M., ‘A Modified Subformula Property for the Modal Logics K5 and K5D’, Bulletin of the Section of Logic 30(2):115–123, 2001.pl_PL
dc.referencesTakeuti, G., Proof Theory, North-Holland, Amsterdam 1987.pl_PL
dc.referencesTarski A., ‘Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften’, Monatschefte für Mathematik und Physik, 37:361–404, 1930.pl_PL
dc.referencesTroelstra A. S. i H. Schwichtenberg Basic Proof Theory, Oxford University Press, Oxford 1996.pl_PL
dc.referencesTrzęsicki, K., Logika i teoria mnogości, Exit, Warszawa 2003.pl_PL
dc.referencesWaaler, A. i L. Wallen, ‘Tableaux for Intuitionistic Logics’ w: M. D’Agostino (red.), Handbook of Tableau Methods, str. 255–296, Kluwer Academic Publishers, Dordrecht 1999.pl_PL
dc.referencesWansing, H., Displaying Modal Logics, Kluwer Academic Publishers, Dordrecht 1999.pl_PL
dc.referencesWansing, H., ‘Sequent Systems for Modal Logics’, w: D. Gabbay, F. Guenthner (red.), Handbook of Philosophical Logic, vol IV, str. 89–133, Reidel Publishing Company, Dordrecht 2002.pl_PL
dc.referencesWójcicki, R. Theory of Logical Calculi, Kluwer, Dordrecht 1988.pl_PL
dc.referencesVickers, S., Topology via Logic, Cambridge University Press, Cambridge 1988.pl_PL
dc.referencesZeman, J.,J., Modal Logic, Oxford University Press, Oxford 1973.pl_PL
dc.referencesZygmunt, J., ‘Entailment Relations on Logical Matrices’, Bulletin of the Section of Logic 8:112–115, 1979.pl_PL
dc.referencesZucker, J. i R. Tragesser, ‘The adequacy problem for inferential logic’ Journal of Philosophical Logic 7:501–516, 1987.pl_PL
dc.identifier.doi10.18778/7525-812-7


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe