Show simple item record

dc.contributor.authorStronkowski, Michał M.
dc.description.abstractWe provide simple algebraic proofs of two important facts, due to Zakharyaschev and Esakia, about Grzegorczyk algebras.en_GB
dc.description.sponsorshipThe work was supported by the Polish National Science Centre grant no. DEC- 2011/01/D/ST1/06136.en_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;2
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.subjectGrzegorczyk algebrasen_GB
dc.subjectfree Boolean extensions of Heyting algebrasen_GB
dc.subjectstable homomorphismsen_GB
dc.titleGrzegorczyk Algebras Revisiteden_GB
dc.contributor.authorAffiliationFaculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
dc.referencesG. Bezhanishvili and N. Bezhanishvili, An algebraic approach to canonical formulas: modal case, Studia Logica 99 (2011), pp. 93–125.en_GB
dc.referencesG. Bezhanishvili, N. Bezhanishvili and R. Iemhoff, Stable canonical rules, Journal of Symbolic Logic 81 (2016), pp. 284–315.en_GB
dc.referencesW. J. Blok, Varieties of interior algebras, PhD thesis, University of Amsterdam (1976), URL=
dc.referencesW. J. Blok and Ph. Dwinger, Equational classes of closure algebras. I, Indagationes Mathematicae 37 (1975), pp. 189–198.en_GB
dc.referencesA. Chagrov and M. Zakharyaschev, Modal logic, Oxford University Press, New York, 1997.en_GB
dc.referencesA. Chagrov and M. Zakharyashchev, Modal companions of intermediate propositional logics, Studia Logica 51 (1992), pp. 49–82.en_GB
dc.referencesL. L. Esakia, On the theory of modal and superintuitionistic systems, [in:] V. A. Smirnov (ed.), Logical inference, Nauka, Moscow (1979), pp. 147–172 (in Russian).en_GB
dc.referencesL. L. Esakia, On the variety of Grzegorczyk algebras, [in:] Studies in nonclassical logics and set theory, Nauka, Moscow (1979), pp. 257–287 (in Russian).en_GB
dc.referencesS. Ghilardi, Continuity, freeness, and filtrations, Journal of Applied Non-Classical Logics 20 (2010), pp. 193–217.en_GB
dc.referencesS. Givant and P. Halmos, Introduction to Boolean algebras, Springer, New York, 2009.en_GB
dc.referencesA. Grzegorczyk, Some relational systems and the associated topological spaces, Fundamenta Mathematicae 60 (1967), pp. 223–231.en_GB
dc.referencesD. C. Makinson, On the number of ultrafilters of an infinite boolean algebra, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 15 (1969), pp. 121–122.en_GB
dc.referencesL. L. Maksimova and V. V. Rybakov, The lattice of normal modal logics, Algebra and Logic 13 (1974), pp. 105–122.en_GB
dc.referencesJ. C. C. McKinsey and A. Tarski, On closed elements in closure algebras, Annals of Mathematics 47 (1946), pp. 122–162.en_GB
dc.referencesA. Y. Muravitsky, The embedding theorem: its further developments and consequences. Part I, Notre Dame Journal of Formal Logic 47 (2006),pp. 525–540.en_GB
dc.referencesM. M. Stronkowski, Free Boolean extensions of Heyting algebras, Advances in Modal Logic, Budapest, 2016, pp. 122–126 (Extended abstract).en_GB
dc.referencesM. M. Stronkowski, On the Blok-Esakia theorem for universal classes, arXiv:1810.09286.en_GB
dc.referencesF. Wolter and M. Zakharyaschev, On the Blok-Esakia theorem, [in:] G. Bezhanishvili (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics, Springer Netherlands, Dordrecht (2014), pp. 99–118.en_GB
dc.referencesM. Zakharyaschev, Canonical formulas for K4. Part I. Basic results Journal of Symbolic Logic 57 (1992), pp. 1377–1402.en_GB

Files in this item


This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.