Pokaż uproszczony rekord

dc.contributor.authorSzewczyk, Rafał
dc.contributor.authorKuśmierska, Anna
dc.contributor.authorBernat, Przemysław
dc.date.accessioned2017-10-06T10:34:08Z
dc.date.available2017-10-06T10:34:08Z
dc.date.issued2018-01
dc.identifier.citationSzewczyk R., Kuśmierska A., Bernat P. (2017). Ametryn removal by Metarhizium brunneum: biodegradation pathway proposal and metabolic background revealed. Chemosphere 190: 174-183, DOI: 10.1016/j.chemosphere.2017.10.011pl_PL
dc.identifier.issn0045-6535
dc.identifier.urihttp://hdl.handle.net/11089/22816
dc.description.abstractAmetryn is a representative of a class of s-triazine herbicides absorbed by plant roots and leaves and characterized as a photosynthesis inhibitor. It is still in use in some countries in the farming of pineapples, soybean, corn, cotton, sugar cane or bananas; however, due to the adverse effects of s-triazine herbicides on living organisms use of these pesticides in the European Union has been banned. In the current study, we characterized the biodegradation of ametryn (100 mg L-1) by entomopathogenic fungal cosmopolite Metarhizium brunneum. Ametryn significantly inhibited the growth and glucose uptake in fungal cultures. The concentration of the xenobiotic drops to 87.75 mg L-1 at the end of culturing and the biodegradation process leads to formation of four metabolites: 2-hydroxy atrazine, ethyl hydroxylated ametryn, S-demethylated ametryn and deethylametryn. Inhibited growth is reflected in the metabolomics data, where significant differences in concentrations of L-proline, gamma-aminobutyric acid, L-glutamine, 4-hydroxyproline, L-glutamic acid, ornithine and L-arginine were observed in the presence of the xenobiotic when compared to control cultures. The metabolomics data demonstrated that the presence of ametryn in the fungal culture induced oxidative stress and serious disruptions of the carbon and nitrogen metabolism. Our results provide deeper insights into the microorganism strategy for xenobiotic biodegradation which may result in future enhancements to ametryn removal by the tested strain.pl_PL
dc.description.sponsorshipNational Science Center, Poland (Project No. 2015/19/B/NZ9/00167)pl_PL
dc.language.isoenpl_PL
dc.publisherElsevierpl_PL
dc.relation.ispartofseriesChemosphere;190
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjecttriazinespl_PL
dc.subjectlc-ms/mspl_PL
dc.subjectbiodegradationpl_PL
dc.subjectoxidative stresspl_PL
dc.subjectxenobioticspl_PL
dc.subjectfungipl_PL
dc.subjectmetabolomicspl_PL
dc.subjectpathwaypl_PL
dc.titleAmetryn removal by Metarhizium brunneum: Biodegradation pathway proposal and metabolic background revealedpl_PL
dc.typeArticlepl_PL
dc.page.number174-183pl_PL
dc.contributor.authorAffiliationDepartment of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódźpl_PL
dc.identifier.eissn1879-1298
dc.referencesAbigail, E.A., Salam, J.A., Das, N. 2013. Atrazine degradation in liquid culture and soil by a novel yeast Pichia kudriavzevii strain Atz-EN-01 and its potential application for bioremediation. J. App. Pharm. Sci. 3, 35-43.pl_PL
dc.referencesAllan, H.L., van de Merwe, J.P., Finlayson, K.A., O'Brien, J., Mueller, J.F., Leusch, F.D. 2017. Analysis of sugarcane herbicides in marine turtle nesting areas and assessment of risk using in vitro toxicity assays. Chemosphere 185, 656-664.pl_PL
dc.referencesAtrazine Pathway Map, 2017, eawag-bbd.ethz.ch/atr/atr_map.html.pl_PL
dc.referencesBernat, P., Gajewska, E., Szewczyk, R., Słaba, M., Długoński, J., 2014. Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunnighamella elegans. Environ Sci Pollut Res Int. 21(6), 4228-4235.pl_PL
dc.referencesBernat, P., Szewczyk, R., Krupiński, M., Długoński, J. 2013. Butyltins degradation by Cunninghamella elegans and Cochliobolus lunatus co-culture. J. Hazard. Mat. 246, 277-282.pl_PL
dc.referencesBorges, C.A., do Carmo Calijuri, M., de Matos, A.T., Lopes Ribeiro de Queiroz, M.E. 2009. Horizontal subsurface flow constructed wetlands for mitigation of ametryn-contaminated water. Water SA 35, 441-446.pl_PL
dc.referencesChen, C., Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceed. Nat. Acad. Sci. U.S.A. 102, 3459-3464.pl_PL
dc.referencesChen, C., Yang, S., Guo, Y., Sun, C., Gu, C., Xu, B. 2009. Photolytic destruction of endocrine disruptor atrazine in aqueous solution under UV irradiation: Products and pathways. J. Hazard. Mat.172, 675-684.pl_PL
dc.referencesChirnside, A.E.M., Ritter, W.F., Radosevich, M. 2011. Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Appl. Environ. Soil Sci. 2011, 1-10.pl_PL
dc.referencesDługoński, J. 2016. Microbial elimination of endocrine disrupting compounds, from: microbial biodegradation: from omics to function and application (Edited by: J. Długoński). Caister Academic Press, U.K., 99-118.pl_PL
dc.referencesElbashir, A.A., Aboul-Enein, H.Y. 2015. Separation and analysis of triazine herbicide residues by capillary electrophoresis. Biomed. Chrom. 29, 835-842.pl_PL
dc.referencesFang, Y.Z., Yang, S., Wu, G. 2002. Free radicals, antioxidants, and nutrition. Nutrition 18, 872-879.pl_PL
dc.referencesFujii, K., Takagi, K., Hiradate, S., Iwasaki, A., Harada, N. 2007. Biodegradation of methylthio‐s‐triazines by Rhodococcus sp. strain FJ1117YT, and production of the corresponding methylsulfinyl, methylsulfonyl and hydroxy analogues. Pest. Manag. Sci. 63, 254-260.pl_PL
dc.referencesGao, N., Deng, Y., Zhao D. 2009. Ametryn degradation in the ultraviolet (UV) irradiation/hydrogen peroxide (H2O2) treatment. J. Hazard. Mat. 164, 640-645.pl_PL
dc.referencesGovantes, F., Porrúa, O., García‐González, V., Santero, E. 2009. Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microb. Biotech. 22, 178–185.pl_PL
dc.referencesGrillo, R., do Espirito Santo Pereira, A., de Melo, N.F.S, Porto, R.M., Feitosa, L.O., Tonello, P.S., Filho, N.L.D., Rosa, A.H., Lima, R., Fraceto, L.F. 2011. Controlled release system for ametryn using polymer microspheres: Preparation, characterization and release kinetics in water. J. Hazard. Mat. 186, 1645-1651.pl_PL
dc.referencesHayes, T.B., Khoury, V., Narayan, A., Nazir, M., Brown, T., Adame, L., Chan, E., Buchholz, D., Stueve, T., Gallipeau, S. 2010. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proceed. Nat. Acad. Sci. U.S.A. 107, 4612-4617.pl_PL
dc.referencesJi, Y., Dong, C., Kong, D., Lu, J., Zhou, Q. 2015. Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. Chem. Eng. J. 263, 45-54.pl_PL
dc.referencesKEGG, Atrazine degradation – Reference pathway, 2017, www.genome.jp/kegg-bin/show_pathway?map=map00791&show_description=show.pl_PL
dc.referencesKrishnan, N., Dickman, M.B., Becker, D.F. 2008. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radical Biol. Med. 44, 671-681.pl_PL
dc.referencesLee, I.R., Lui, E.Y., Chow, E.W., Arras, S.D., Morrow, C.A., Fraser, J.A. 2013. Reactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformans requires an intact proline catabolism pathway. Genetics 194, 421-433.pl_PL
dc.referencesLiang, X., Zhang, L., Natarajan, S.K., Becker, D.F. 2013. Proline Mechanisms of Stress Survival. Antioxi. Red. Sig. 19, 998-1011.pl_PL
dc.referencesLiu T., Cao P., Geng J., Li J., Wang M., Wanga M., Li X., Yin D. 2014. Determination of triazine herbicides in milk by cloud point extraction and high-performance liquid chromatography. Food Chem. 142, 358-364.pl_PL
dc.referencesLiu, Z., Wang, Y., Zhu, Z., Yang, E., Feng, X., Fu, Z., Jin, Y. 2016. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). Chemosphere 148, 163-170.pl_PL
dc.referencesLobos, J.H., Leib, T.K., Su, T.M. 1992. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Appl. Environ. Microbial. 58, 1823-1831.pl_PL
dc.referencesMa, H., Ma, Y., Zhang, Z., Zhao, Z., Lin, R., Zhu, J., Guo, Y. Xu, L., 2016. L-arginine enhances resistance against oxidative stress and heat stress in Caenorhabditis elegans. Inter. J. Environ. Res. Pub. Health 13, 969.pl_PL
dc.referencesNavaratna, D., Elliman, J., Cooper, A., Shu, L., Baskaran, K., Jegatheesan, V. 2012. Impact of herbicide ametryn on microbial communities in mixed liquor of a membrane bioreactor (MBR). Biores. Tech. 113, 181-190.pl_PL
dc.referencesNoguchi, Y., Zhang, Q. W., Sugimoto, T., Furuhata, Y., Sakai, R., Mori, M., Mitsuo, T., Kimura, T. 2006. Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Amer. J. Clinic. Nut. 832, 513S-519S.pl_PL
dc.referencesPayá, P., Anastassiades, M., Mack, D., Sigalova, I., Tasdelen, B., Oliva, J., Barba, A. 2007. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem. 3896, 1697-1714.pl_PL
dc.referencesPereira, P.M., Sobral Teixeira, R.S., de Oliveira, M.A.L., da Silva, M., Ferreira- Leitão, V.S. 2013. Optimized atrazine degradation by Pleurotus ostreatus incqs 40310: an alternative for impact reduction of herbicides used in sugarcane crops. J. Microb. Biochem. Technol. S12, 006.pl_PL
dc.referencesPeters, L. P., Carvalho, G., Martins, P. F., Dourado, M. N., Vilhena, M. B., Pileggi, M., Azevedo, R. A. 2014. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PloS One, 9, e112271.pl_PL
dc.referencesProsen H. 2012. Fate and determination of triazine herbicides in soil, from: herbicides - properties, synthesis and control of weeds (Edited by: Hasaneen M. N.). InTech, 43-58.pl_PL
dc.referencesQuEChERS, 2017, quechers.cvua-stuttgart.de.pl_PL
dc.referencesRocha, N., Garcia, V., Rocha, H., Cardoso, I., Silva, G., Barbosa, T., Fernandes, I., Secher, N., Vianna, L. Nobrega, A., 2015. L-arginine reduces matrix metalloproteinases activity and normalizes oxidative stress in hypertensive patients. The FASEB Journal, 29, 1048-2.pl_PL
dc.referencesRóżalska, S., Szewczyk, R., Długoński, J. 2010. Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: a proposal of a metabolic pathway. J. Haz. Mat. 1801, 323-331.pl_PL
dc.referencesSandoval-Carrasco, C.A., Ahuatzi-Chacón, D., Galíndez-Mayer, J., Ruiz-Ordaz, N., Juárez-Ramírez, C., Martínez-Jerónimo, F. 2013. Biodegradation of a mixture of the herbicides ametryn, and 2, 4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor. Biores. Technol. 145, 33-36.pl_PL
dc.referencesScialli, A.R., DeSesso, J.M., Breckenridge, C.B. 2014. Developmental toxicity studies with atrazine and its major metabolites in rats and rabbits. Birth Def. Res. Part B: Developmental and Reproductive Toxicology 101, 199-214.pl_PL
dc.referencesShah, J., Jan, M.R., Ara, B., Shehzad, F. 2011. Determination of ametryn in sugarcane and ametryn-atrazine herbicide formulations using spectrophotometric method. Environ. Monit. Assess. 184, 3463-3468.pl_PL
dc.referencesSignorelli, S., Dans, P.D., Coitiño, E.L., Borsani, O., Monza, J. 2015. Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PloS One 10, e0115349.pl_PL
dc.referencesSoboń, A., Szewczyk, R., Długoński, J. 2016. Tributyltin (TBT) biodegradation induces oxidative stress of Cunninghamella echinulata. Inter. Biodet. Biodeg. 107, 92-101.pl_PL
dc.referencesSolomon, R.D.J., Kumar, A., Satheeja Santhi, V. 2013. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil. J. Zheji. Uni. Sci. B, 14, 1162-1172.pl_PL
dc.referencesStoker, T.E., Hallinger, D.R., Seely, J.C., Zorrilla, L.M. 2013. Evaluation of hydroxyatrazine in the endocrine disruptor screening and testing program's male and female pubertal protocols. Birth Def. Res. Part B: Developmental and Reproductive Toxicology 98, 428-435.pl_PL
dc.referencesSzewczyk, R., Kowalski, K., 2016. Metabolomics and crucial enzymes in microbial degradation of contaminants, from: microbial biodegradation: from omics to function and application (Edited by: Długoński J.). Caister Academic Press, U.K., 43-66.pl_PL
dc.referencesSzewczyk, R., Soboń, A., Słaba, M., Długoński, J. 2015. Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J. Hazard. Mat. 291, 52-64.pl_PL
dc.referencesTejada, M., Gómez, I., del Toro, M. 2011. Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology. Ecotox. Environ. Saf. 747, 2075-2081.pl_PL
dc.referencesTripathi, P., Pandey, S. 2013. L-arginine attenuates oxidative stress condition during cardiomyopathy. Indian J. Biochem. Biophys. 50, 99-104.pl_PL
dc.referencesVelisek, J., Stara, A., Zuskova, E., Kouba, A. 2017. Effects of three triazine metabolites and their mixture at environmentally relevant concentrations on early life stages of marbled crayfish (Procambarus fallax f. virginalis). Chemosphere 175, 440-445.pl_PL
dc.referencesWorld Health Organization 2010. Pesticide Residues in Food 2007: Toxicological Evaluations 184.pl_PL
dc.contributor.authorEmailrafal.szewczyk@biol.uni.lodz.plpl_PL
dc.identifier.doi10.1016/j.chemosphere.2017.10.011


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska