Show simple item record

dc.contributor.authorAab, A.
dc.contributor.authorAbreu, P.
dc.contributor.authorAglietta, M.
dc.contributor.authorGiller, Maria
dc.contributor.authorŚmiałkowski, Andrzej
dc.contributor.authorSzadkowski, Zbigniew
dc.contributor.authorWinchen, T.
dc.description.abstractEnergy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E≥6×10^19 eV by analyzing cosmic rays with energies above E≥5×10^18 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.pl_PL
dc.description.sponsorshipFunded by SCOAP3. The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), São Paulo Research Foundation (FAPESP) Grants # 2010/07359-6, # 1999/05404-3, Ministério de Ciência e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation grant 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/CNRS), Institut Lagrange de Paris, ILP LABEX ANR-10-LABX-63, within the Investissements d’Avenir Programme ANR-11-IDEX-0004-02, France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, HelmholtzGemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grant Nos.ERA-NET-ASPERA/01/11 and ERA-NET-ASPERA/02/11, National Science Centre, Grant Nos. 2013/08/M/ST9/00322, 2013/08/M/ST9/00728 and HARMONIA 5 – 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE – Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDIUEFISCDI partnership projects nr.20/2012 and nr.194/2012, project nr.1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research – Space Technology and Advanced Research – STAR, project number 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educación y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract No. DE-AC02-07CH11359, DE-FR02- 04ER41300, DE-FG02-99ER41107 and DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.pl_PL
dc.publisherSpringer Berlin Heidelbergpl_PL
dc.relation.ispartofseriesThe European Physical Journal C;6
dc.rightsUznanie autorstwa 3.0 Polska*
dc.titleSearch for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatorypl_PL
dc.contributor.authorAffiliationBergische Universität Wuppertalpl_PL
dc.contributor.authorAffiliationUniversity of Łódźpl_PL
dc.referencesK. Kotera, A.V. Olinto, The astrophysics of ultrahigh energy cosmic rays. Annu. Rev. Astron. Astrophys. 49, 119–153 (2011)pl_PL
dc.referencesD. Ryu et al., Magnetic fields in the large-scale structure of the universe. Space Sci. Rev. 166, 1–35 (2012)pl_PL
dc.referencesL. Widrow et al., The first magnetic fields. Space Sci. Rev. 166(1), 37–70 (2012)pl_PL
dc.referencesS. Lee, A.V. Olinto, G. Sigl, Extragalactic magnetic field and the highest energy cosmic rays. Astrophys. J. 455, L21–L24 (1995)pl_PL
dc.referencesM. Lemoine et al., Ultra-high-energy cosmic-ray sources and large-scale magnetic fields. Astrophys. J. 486.2, L115–L118 (1997)pl_PL
dc.referencesJ. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. Sect. A 523, 50 (2004)pl_PL
dc.referencesJ. Abraham et al., Trigger and aperture of the surface detector array of the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. Sect. A A613, 29–39 (2010)pl_PL
dc.referencesJ. Abraham et al., Correlation of the highest energy cosmic rays with nearby extragalactic objects. Science 318, 938–943 (2007)pl_PL
dc.referencesJ. Abraham et al., Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys. 29, 188–204 (2008)pl_PL
dc.referencesP. Abreu et al., Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter. Astropart. Phys. 34, 314–326 (2010)pl_PL
dc.referencesP. Abreu et al., A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 4, 040 (2012)pl_PL
dc.referencesP. Abreu et al., Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 1305, 009 (2013)pl_PL
dc.referencesP. Abreu et al., Search for signatures of magneticallyinduced alignment in the arrival directions measured by the Pierre Auger Observatory. Astropart. Phys. 35, 354–361 (2012)pl_PL
dc.referencesC.L. Basham et al., Energy correlations in electron–positron annihilation: testing quantum chromodynamics. Phys. Rev. Lett. 41(23), 1585–1588 (1978)pl_PL
dc.referencesS. Brandt et al., The principal axis of jets—an attempt to analyse high-energy collisions as two-body processes. Phys. Lett. 12, 57–61 (1964)pl_PL
dc.referencesM. Erdmann, P. Schiffer, A method of measuring cosmic magnetic fields with ultra high energy cosmic ray data. Astropart. Phys. 33, 201–205 (2010)pl_PL
dc.referencesM. Erdmann, T. Winchen, Detecting local deflection patterns of ultra-high energy cosmic rays using the principal axes of the directional energy distribution. in Proceedings of the 33rd ICRC (Rio de Janeiro, Brasil, 2013)pl_PL
dc.referencesK. Greisen, End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966)pl_PL
dc.referencesG.T. Zatsepin, V. Kuz’min, Upper limit on the spectrum of cosmic rays. Sov. Phys. JETP Lett. 4, 78–80 (1966)pl_PL
dc.referencesH.-P. Bretz et al., PARSEC: a parametrized simulation engine for ultra-high energy cosmic ray protons. Astropart. Phys. 54, 110–117 (2014)pl_PL
dc.referencesP. Schiffer, Constraining cosmic magnetic fields by a measurement of energy-energy-correlations with the Pierre Auger Observatory. Ph.D. thesis, RWTH Aachen University (2011)pl_PL
dc.referencesT. Winchen, The principal axes of the directional energy distribution of cosmic rays measured with the Pierre Auger Observatory. Ph.D. thesis, RWTH Aachen University (2013)pl_PL
dc.referencesP. Sommers, Cosmic ray anisotropy analysis with a full-sky observatory. Astropart. Phys. 14, 271–286 (2001)pl_PL
dc.referencesE. Farhi, Quantum chromodynamics test for jets. Phys. Rev. Lett. 39(25), 1587–1588 (1977)pl_PL
dc.referencesR. Fisher, Dispersion on a sphere. Proc. R. Soc. A 217, 295–305 (1953)pl_PL
dc.referencesA. Achterberg et al., Intergalactic propagation of UHE cosmic rays. in 19th Texas Symposium on Relativistic Astrophysics and Cosmology, (Paris, France, 1998)pl_PL
dc.referencesD. Harari et al., Lensing of ultra-high energy cosmic rays in turbulent magnetic fields. J. High Energy Phys. 0203, 045 (2002)pl_PL
dc.referencesJ. Abraham et al., Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory. Physics Lett. B 685(1018), 239–246 (2010)pl_PL
dc.referencesK.V. Mardia, Statistics of Directional Data (Academic Press, London, 1972)pl_PL
dc.referencesS.R. Jammalamadaka, A. SenGupta, Topics in Circular Statistics. Series on multivariate analysis, vol. 5 (World Scientific, Singapore, 2001)pl_PL
dc.referencesC. Di Giulio, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory. in Proceedings of the 31st ICRC (Łódź, 2009)pl_PL
dc.referencesC. Bonifazi, A. Letessier-Selvon, E. Santos, A model for the time uncertainty measurements in the Auger surface detector array. Astropart. Phys. 28, 523–528 (2008)pl_PL
dc.referencesM.S. Sutherland, B.M. Baughman, J.J. Beatty, CRT: a numerical tool for propagating ultra-high energy cosmic rays through Galactic magnetic field models. Astropart. Phys. 34, 198–204 (2010)pl_PL
dc.referencesR. Jansson, G.R. Farrar, A new model of the Galactic magnetic field. Astrophys. J. 757, 14 (2012)pl_PL
dc.referencesR. Jansson, G.R. Farrar, The Galactic magnetic field. Astrophys. J. 761(1), L11 (2012)pl_PL
dc.referencesK.M. Górski et al., HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)pl_PL
dc.referencesS. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943)pl_PL
dc.referencesA. L. Read, Modified frequentist analysis of search results (the CL ss method). in 1st Workshop on Confidence Limits (CERN. Geneva, Switzerland, 2000), pp. 81–101pl_PL
dc.referencesA.L. Read, Presentation of search results: the CLs technique. J. Phys. G 28(10), 2693–2704 (2002)pl_PL

Files in this item


This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska