Pokaż uproszczony rekord

dc.contributor.authorVoutsadakis, George
dc.date.accessioned2016-03-13T12:21:06Z
dc.date.available2016-03-13T12:21:06Z
dc.date.issued2015
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/17400
dc.description.abstractWójcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wójcicki asserts that a logic has a referential semantics if and only if it is selfextensional. Referential semantics was subsequently studied in detail by Malinowski and the concept of selfextensionality has played, more recently, an important role in the field of abstract algebraic logic in connection with the operator approach to algebraizability. We introduce and review some of the basic definitions and results pertaining to the referential semantics of π-institutions, abstracting corresponding results from the realm of propositional logics.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesBulletin of the Section of Logic;1/2
dc.subjectReferential Logicspl_PL
dc.subjectSelfextensional Logicspl_PL
dc.subjectLeibniz operatorpl_PL
dc.subjectTarski operatorpl_PL
dc.subjectSuszko operatorpl_PL
dc.subjectπ-institutionspl_PL
dc.titleCategorical Abstract Algebraic Logic: Referential π-Institutionspl_PL
dc.typeArticlepl_PL
dc.rights.holder© Copyright by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.page.number33–51pl_PL
dc.contributor.authorAffiliationSchool of Mathematics and Computer Science, Lake Superior State University, Sault Sainte Marie, MI 49783, USA.pl_PL
dc.identifier.eissn2449-836X
dc.referencesBlok W. J. and Pigozzi D., Algebraizable Logics, Memoirs of the American Mathematical Society, Vol. 77, No. 396 (1989).pl_PL
dc.referencesCzelakowski J., Equivalential Logics II, Studia Logica, Vol. 40, No. 4 (1981), pp. 355–372.pl_PL
dc.referencesCzelakowski J., The Suszko Operator Part I, Studia Logica, Vol. 74, No. 1-2 (2003), pp. 181–231.pl_PL
dc.referencesCzelakowski J., Fregean Logics and the Strong Amalgamation Property, Bulletin of the Section of Logic, Vol. 36, No. 3/4 (2007), pp. 105–116.pl_PL
dc.referencesCzelakowski J. and Pigozzi D., Amalgamation and Interpolation in Abstract Algebraic Logic, Models, Algebras and Proofs, in Lecture Notes in Pure and Applied Mathematics 203, Dekker, New York, 1999, pp. 187–265.pl_PL
dc.referencesCzelakowski J. and Pigozzi D., Fregean Logics, Annals of Pure and Applied Logic, Vol. 127, No. 1-3 (2004), pp. 17–76.pl_PL
dc.referencesCzelakowski J. and Pigozzi D., Fregean Logics with the Multiterm Deduction Theorem and Their Algebraization, Studia Logica, Vol. 78, No. 1-2 (2004), pp. 171–212.pl_PL
dc.referencesFont J. M. and Jansana R., A General Algebraic Semantics for Sentential Logics, Lecture Notes in Logic, Vol. 332, No. 7 (1996), Springer-Verlag, Berlin Heidelberg, 1996pl_PL
dc.referencesJansana R., Selfextensional Logics in Abstract Algebraic Logic: a Brief Survey, [in:] J.-Y. Béziau, A. Costa-Leite, and A. Facchini, (eds.), Aspects of Universal Logic, Cahiers de Logique, No. 17, Centre de Recerches Sémiologiques, Université de Neuchâtel, Neuchâtel, 2004, pp. 32–65.pl_PL
dc.referencesJansana R., Selfextensional Logics with Implication, Béziau, Jean-Yves (ed.), Logica Universalis. Towards a general theory of logic. Basel: Birkh¨auser 2005, pp. 65–88.pl_PL
dc.referencesJansana R., Selfextensional Logics with a Conjunction, Studia Logica, Vol. 84, No. 1 (2006), pp. 63–104.pl_PL
dc.referencesJansana R. and Palmigiano A., Referential Semantics: Duality and Applications, Reports on Mathematical Logic, Vol. 41 (2006), pp. 63–93.pl_PL
dc.referencesMalinowski G., A Proof of Ryszard Wójcicki’s Conjecture, Bulletin of the Section of Logic, Vol. 7, No. 1 (1978), pp. 20–25.pl_PL
dc.referencesMalinowski G., Pseudo-Referential Matrix Semantics for Propositional Logics, Bulletin of the Section of Logic, Vol. 12, No. 3 (1983), pp. 90–98.pl_PL
dc.referencesMalinowski G., Many-Valued Referential Matrices, Bulletin of the Section of Logic, Vol. 24, No. 3 (1995), pp. 140–146.pl_PL
dc.referencesMalinowski G., Referentiality and Matrix Semantics, Studia Logica, Vol. 97, No. 2 (2011), pp. 297–312.’pl_PL
dc.referencesMarek I., Remarks on Pseudo-Referential Matrices, Bulletin of the Section of Logic, Vol. 16, No. 2 (1987), pp. 89–92.pl_PL
dc.referencesPigozzi D., Fregean Algebraic Logic, [in:] H. Andréka, J. Monk, and I. Németi, (eds.), Algebraic Logic, Budapest, 8-14 August, 1988, Colloquia Mathematica Societatis János Bolyai, Vol. 54, North-Holland, Amsterdam, 1991, pp. 473–502.pl_PL
dc.referencesTokarz M., Synonymy in Sentential Languages: a Pragmatic View, Studia Logica, Vol. 47, No. 2 (1988), pp. 93–97.pl_PL
dc.referencesWójcicki R., Referential Matrix Semantics for Propositional Calculi, Bulletin of the Section of Logic, Vol. 8, No. 4 (1979), pp. 170–176.pl_PL
dc.referencesWójcicki R., More About Referential Matrices, Bulletin of the Section of Logic, Vol. 9, No. 2 (1980), pp. 93–95.pl_PL
dc.referencesWójcicki R., Theory of Logical Calculi, Basic Theory of Consequence Operations, Vol. 199, Synthese Library, Reidel, Dordrecht, 1988.pl_PL
dc.referencesVoutsadakis G., Categorical Abstract Algebraic Logic: Models of π-Institutions, Notre Dame Journal of Formal Logic, Vol. 46, No. 4 (2005), pp. 439–460.pl_PL
dc.referencesVoutsadakis G., Categorical Abstract Algebraic Logic: Full Models, Frege Systems and Metalogical Properties, Reports on Mathematical Logic, Vol. 41 (2006), pp. 31–62.pl_PL
dc.referencesVoutsadakis G., Categorical Abstract Algebraic Logic: Referential Algebraic Semantics, Studia Logica, Vol. 101, No. 4 (2013), pp. 849–899.pl_PL
dc.referencesVoutsadakis G., Categorical Abstract Algebraic Logic: Tarski Congruence Systems, Logical Morphisms and Logical Quotients, to appear in the Journal of Pure and Applied Mathematics: Advances and Applications.pl_PL
dc.referencesVoutsadakis G., Categorical Abstract Algebraic Logic: Selfextensional π-Institutions with Implication, available in http://www.voutsadakis.com/RESEARCH/papers.htmlpl_PL
dc.referencesVoutsadakis G., Categorical Abstract Algebraic Logic: Selfextensional π-Institutions with Conjunction, available in http://www.voutsadakis.com/RESEARCH/papers.html.pl_PL
dc.contributor.authorEmailgvoutsad@lssu.edupl_PL
dc.relation.volume44pl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord