Anna Rogut*

SMART SPECIALISATION – TOWARDS A NEW GENERATION OF REGIONAL INNOVATION STRATEGIES

1. INTRODUCTION

Smart specialisation entered the European regional policy due to the *Europe 2020 Strategy*. It was, however, defined earlier in the documents of the “*Knowledge for Growth*” Expert Group and was further sanctioned in a number of EU documents. As a result, it became an ex ante condition for the acquisition of structural funds for research and development, as well as innovative activity, in the period of 2014–2020. This development forced all the Polish regions to work on updating their old innovation strategies and transforming them into regional research

Łódź University professor, Ph.D., Department of Entrepreneurship and Industrial Policy, Faculty of Management, University of Łódź, 22/26 Matejki Str., 90-237 Łódź.

2 *Knowledge for Growth. European issues and policy challenges, European Commission, Luxembourg 2008 (Office for Official Publications of the European Communities).*

and innovation strategies for smart specialisation (RIS3) so that they could become instruments for economic and innovation transformation of the regions. Thus, the subject of this paper is the presentation, based on experiences from Łódź Voivodeship, of the procedure of finding smart specialisations, preceded by a brief presentation of the essence of the smart specialisation concept.

2. THE ESSENCE OF SMART SPECIALISATION

In the traditional approach, specialisation of the country/region is defined by the relationship between the characteristics of industries and the countries/regions where they are developed (Tab. 1) which determine the specialisation of the individual countries/regions in industries/services technologically intensive, and/or characterised by high economies of scale, and/or capital intensive, and/or saturated with skilled and/or highly skilled workforce.

Table 1

<table>
<thead>
<tr>
<th>Characteristics of industries</th>
<th>Characteristics of countries/regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• economies of scale</td>
<td>• market potential</td>
</tr>
<tr>
<td>• technical level</td>
<td>• human capital rate</td>
</tr>
<tr>
<td>• R&D intensity</td>
<td>• average wage level in manufacturing/services</td>
</tr>
<tr>
<td>• capital intensity</td>
<td>• ratio of wages in a given country/region to</td>
</tr>
<tr>
<td>• intensity of use of skilled and highly skilled workforce</td>
<td>wages in other countries/regions</td>
</tr>
<tr>
<td>• intensity of use of agricultural produce and intermediate products</td>
<td>• availability of research staff</td>
</tr>
<tr>
<td>• intra and inter-sectoral relations</td>
<td>• availability of skilled and highly skilled workforce</td>
</tr>
<tr>
<td>• final demand potential</td>
<td>• availability of public assistance</td>
</tr>
<tr>
<td>• industry sales</td>
<td></td>
</tr>
<tr>
<td>• industry growth rate</td>
<td></td>
</tr>
</tbody>
</table>

Smart Specialisation – Towards a New Generation of Regional Innovation Strategies

From this perspective, specialisation is mainly the consequence of history and individual countries/regions have a relatively narrow margin of entry into new areas of specialisation (other than the currently existing ones)\(^6\).

The current concept of smart specialisation (stemming from *Europe 2020 Strategy*) differs from this approach and relates to the technological change\(^7\) embedded in territorial capital\(^8\). Its pivotal points are general purpose technologies\(^9\).

\(^9\) D. Foray, P. A. David, B. Hall, *op. cit.*
and the position of the country/region in the global innovation chain which is associated with these technologies. The expected effect is an increased efficiency of the European Research Area, as well as more effective implementation of the cohesion policy. The latter follows from the assumption of the existence of more fundamental (than history itself) evolution mechanisms, particularly the (technological) process of learning and adapting, which make the specialisation of the country/region more a matter of strategy (than history) and a choice between various paths of technological development.

The consequence of thus defined concept of smart specialisation is a departure from the existing policy of financing R&D and innovation activity (neutrality without favouring any research or economic area) in favour of concentration of resources (both at the level of individual countries and individual regions) on a small number of key research/innovation priorities. These priorities need to result from the place of a given country/region in the global innovation chain and, consequently, need to be associated with:

12 Regional policy contributing to sustainable...

16 Which, in essence, is more of a political idea than a documented scientific theory (D. For ay, P. A. David, B. H. Hall, Smart specialization. From academic idea to political instrument, the surprising career of a concept and the difficulties involved in its implementation, “MTEI Working Paper” 2011, No. 1), yet it is becoming extremely popular (mostly due to the recent crisis and limited public funds allocated to R&D and innovation activity).
• either – in the case of leaders – investing in the improvement/development of general purpose technologies or innovation in services,
• or – in the case of the other countries/regions – investing in innovation in a particular sector or several related sectors.

The latter (investing in innovation in particular sectors) may lead to the impression that smart specialisation (strategy) should be identified with simple changes of economic structure. The essence of the concept, however, is not a change in structure as such (e.g. favouring the development of tourism, the textile industry or any other sector/group of sectors) but the development of R&D activity and/or innovation activity supporting the development of a particular sector or a group of sectors considered highly important in a given country/region (specialisation in the development of co-invention for the purpose of application, e.g. in tourism or the textile industry). In other words, smart specialisation is a process of investing in knowledge in specialised regional clusters, where:
• investments in knowledge mean a small number of R&D and innovation priorities, incl. the creation of the missing or the strengthening of the existing relationships between resources, R&D/innovation activity and the economic structure, and
• specialised regional clusters represent a small number of sectors/groups of sectors important for a given country/region, selected on the basis of three groups of criteria: business specialisation17, scientific specialisation and technological specialisation18. This means that the concept of smart specialisation encompasses a very broad definition of clusters, identifying clusters with the sectoral innovation system19, as well as with the market and environmental initiative promoting the development of wide networks and cooperation20, rather than with a narrowly

20 M. Fromhold-Eisebith, G. Eisebith, How to institutionalize innovative clusters?
defined geographical concentration of businesses or with the business entities that use the term of *cluster* in their names, which has become fashionable.

3. THE METHOD OF IDENTIFYING REGIONAL AREAS OF SMART SPECIALISATION

In the case of Łódź Voivodeship, these important sectors (the basis for regional areas of smart specialisation) initially included\(^{21}\):

- industries: household appliances, furniture, medical-pharmaceutical-cosmetic, clothing, energy, construction materials, agriculture and food processing (incl. fruit and vegetables, milk and meat processing) and creative industries\(^{22}\),
- services: logistic, BPO, IT, hospitality, spa and wellness,
- biotechnology as well as manufacturing and service industries for sustainable energy solutions (SES).

In order to determine whether they meet the criteria of particular importance for the future development of the region, the following factors were tested:

- their growth potential, particularly in crisis situations,
- the level of technological and knowledge advancement,
- the competitive position of the voivodeship in these areas, as well as their potential for radical technological development.

The study of the proposed sectors from the perspective of their development potential and resistance to the crisis indicated that though some of the selected specialisations are relatively resistant to the crisis, at the same time they are characterised by negative (e.g. clothing manufacturing) or relatively low (e.g. furniture manufacturing) growth rates (Tab. 2). The question remains whether similar trends will continue in the future, especially in the context of:

- the annual average growth rate, which in the more “traditional” and labour-intensive sectors (particularly leather and footwear manufacturing, clothing and textile manufacturing, manufacturing of tobacco products) has declined since the 1990’s from 2.5 to 5% and risen from 3 to 5.4% in the more capital-intensive industries (particularly in manufacturing of pharmaceuticals, computers, electronics and optical products, as well as motor vehicles), and
- the labour market, indicating a greater potential for job creation in the service sector (especially in real estate, hotels, restaurants and other services) than

in the manufacturing industry, where the annual average rate of unemployment (particularly in textile and clothing manufacturing, manufacturing of leather products and tobacco products) has remained at 1% since the beginning of the 1990’s. Manufacturing of other transport equipment, rubber and plastic products has been an exception as it has recorded an increase in the rate of employment.

Table 2

Growth and change in manufacturing production in EU27 in the years 1990–2011 (in %)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Cycle max</th>
<th>Cycle min</th>
<th>change intensity</th>
<th>Growth max</th>
<th>Growth min</th>
<th>average growth rate</th>
<th>Crisis-induced production losses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothing</td>
<td>5.8</td>
<td>-7.6</td>
<td>1.0</td>
<td>11.4</td>
<td>-17.7</td>
<td>-4.5</td>
<td>-17.7</td>
</tr>
<tr>
<td>Leather and leather products</td>
<td>6.3</td>
<td>-9.7</td>
<td>1.2</td>
<td>8.3</td>
<td>-22.5</td>
<td>-4.0</td>
<td>-22.5</td>
</tr>
<tr>
<td>Tobacco products</td>
<td>8.7</td>
<td>-6.9</td>
<td>0.9</td>
<td>18.5</td>
<td>-22.9</td>
<td>-3.5</td>
<td>-22.9</td>
</tr>
<tr>
<td>Textile products</td>
<td>6.7</td>
<td>-12.0</td>
<td>1.0</td>
<td>14.5</td>
<td>-25.3</td>
<td>-2.7</td>
<td>-25.3</td>
</tr>
<tr>
<td>Mining</td>
<td>6.2</td>
<td>-5.6</td>
<td>0.7</td>
<td>17.2</td>
<td>-16.5</td>
<td>-1.1</td>
<td>-16.5</td>
</tr>
<tr>
<td>Repair, maintenance, installation of machinery</td>
<td>20.9</td>
<td>-19.3</td>
<td>2.0</td>
<td>20.0</td>
<td>-31.8</td>
<td>-1.1</td>
<td>-15.3</td>
</tr>
<tr>
<td>Other manufacturing</td>
<td>8.8</td>
<td>-9.5</td>
<td>1.0</td>
<td>10.7</td>
<td>-21.5</td>
<td>-0.8</td>
<td>-21.5</td>
</tr>
<tr>
<td>Other non-metallic mineral products</td>
<td>8.6</td>
<td>-11.8</td>
<td>1.1</td>
<td>13.4</td>
<td>-24.0</td>
<td>-0.2</td>
<td>-24.0</td>
</tr>
<tr>
<td>Coke and refined petroleum products</td>
<td>4.2</td>
<td>-3.9</td>
<td>0.5</td>
<td>14.3</td>
<td>-11.2</td>
<td>0.2</td>
<td>-11.2</td>
</tr>
<tr>
<td>Wood and wooden products</td>
<td>8.0</td>
<td>-9.8</td>
<td>1.1</td>
<td>13.6</td>
<td>-22.1</td>
<td>0.3</td>
<td>-22.1</td>
</tr>
<tr>
<td>Printing and reproduction</td>
<td>3.3</td>
<td>-5.0</td>
<td>0.6</td>
<td>13.5</td>
<td>-8.2</td>
<td>0.3</td>
<td>-8.2</td>
</tr>
<tr>
<td>Metals</td>
<td>13.7</td>
<td>-21.8</td>
<td>1.6</td>
<td>36.2</td>
<td>-40.3</td>
<td>0.5</td>
<td>-40.3</td>
</tr>
<tr>
<td>Other transport equipment</td>
<td>5.2</td>
<td>-4.8</td>
<td>0.7</td>
<td>16.7</td>
<td>-14.4</td>
<td>0.5</td>
<td>-14.4</td>
</tr>
<tr>
<td>Construction</td>
<td>5.1</td>
<td>-4.2</td>
<td>0.7</td>
<td>10.7</td>
<td>-13.7</td>
<td>0.5</td>
<td>-10.7</td>
</tr>
<tr>
<td>Ready-made metal products</td>
<td>12.6</td>
<td>-15.8</td>
<td>1.4</td>
<td>13.3</td>
<td>-27.9</td>
<td>0.7</td>
<td>-27.9</td>
</tr>
<tr>
<td>Furniture</td>
<td>6.1</td>
<td>-6.9</td>
<td>0.8</td>
<td>12.1</td>
<td>-23.3</td>
<td>0.7</td>
<td>-9.3</td>
</tr>
<tr>
<td>Beverages</td>
<td>3.8</td>
<td>-3.3</td>
<td>0.5</td>
<td>15.2</td>
<td>-9.4</td>
<td>0.8</td>
<td>-7.3</td>
</tr>
</tbody>
</table>
Table 2 (contd)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery and equipment otherwise non-classified</td>
<td>16.0</td>
<td>–21.3</td>
<td>1.8</td>
<td>20.4</td>
<td>–30.6</td>
<td>1.0</td>
<td>–30.6</td>
</tr>
<tr>
<td>Electrical equipment</td>
<td>12.7</td>
<td>–17.3</td>
<td>1.5</td>
<td>16.5</td>
<td>–27.5</td>
<td>1.2</td>
<td>–27.5</td>
</tr>
<tr>
<td>Paper and paper products</td>
<td>5.7</td>
<td>–8.1</td>
<td>0.7</td>
<td>10.8</td>
<td>–15.1</td>
<td>1.2</td>
<td>–15.1</td>
</tr>
<tr>
<td>Food products</td>
<td>1.7</td>
<td>–1.9</td>
<td>0.2</td>
<td>5.9</td>
<td>–3.4</td>
<td>1.3</td>
<td>–3.4</td>
</tr>
<tr>
<td>Rubber and plastic products</td>
<td>9.4</td>
<td>–12.3</td>
<td>1.1</td>
<td>17.7</td>
<td>–22.0</td>
<td>1.4</td>
<td>–22</td>
</tr>
<tr>
<td>Electricity gas, water</td>
<td>3.4</td>
<td>–3.6</td>
<td>0.4</td>
<td>15.4</td>
<td>–13.1</td>
<td>1.4</td>
<td>–13.1</td>
</tr>
<tr>
<td>Chemicals and chemical products</td>
<td>7.4</td>
<td>–12.1</td>
<td>0.9</td>
<td>17.1</td>
<td>–22.2</td>
<td>1.7</td>
<td>–22.2</td>
</tr>
<tr>
<td>Motor vehicles</td>
<td>17.1</td>
<td>–22.9</td>
<td>1.8</td>
<td>34.9</td>
<td>–44.6</td>
<td>2.8</td>
<td>–44.6</td>
</tr>
<tr>
<td>Computers, electronics</td>
<td>14.5</td>
<td>–16.0</td>
<td>1.6</td>
<td>23.2</td>
<td>–19.6</td>
<td>3.4</td>
<td>–19.6</td>
</tr>
<tr>
<td>Pharmaceuticals and medicine</td>
<td>2.1</td>
<td>–4.2</td>
<td>0.4</td>
<td>16.8</td>
<td>–8.7</td>
<td>5.1</td>
<td>–2.7</td>
</tr>
</tbody>
</table>

Analysis of the proposed sectors from the perspective of the level of technological and knowledge advancement indicated that among the initially proposed specialisations most were low and medium-low tech manufacturing and less knowledge-intensive market services. This creates a threat of a partial dependence of the voivodeship’s development on industries based on relatively mature and aging technologies with a low and decreasing innovation potential and a low potential for generating economic growth (Fig. 2). Additionally, some of these industries (e.g., those whose competitive advantage lies mostly in labour costs) are characterised by strong susceptibility to delocalisation. This particularly applies to the clothing industry. In the case of other industries (e.g., manufacturing of

furniture, wood and wooden products), delocalisation is part of wide globalisation, rationalisation and modernisation processes, and an increase in productivity25. Agriculture and food processing is an exception here, as its transfer abroad is not profitable since the benefits that result from maintaining a short, flexible value chain are higher than the potential savings gained from cost reduction26. Therefore, it would be advisable to expand the regional base for smart specialisation by high-tech manufacturing and services27, so far poorly represented in the region’s economic structure28.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Development potential of technologies at various levels of maturity}
\end{figure}

\begin{itemize}
\item 27 High-tech encompasses areas and products characterised by a high intensity of R&D activity (T. H a t z i c h r o n o g l o u, \textit{Revision of the high-technology sector and product classification}, “OECD Science, Technology and Industry Working Papers” 1997, No. 2, (OECD Publishing, Paris)). The following factors are measures of R&D activity: i) the relation of direct expenditure on R&D to the value added; ii) the relation of direct R&D expenditure to production value (sales); iii) the relation of direct R&D expenditure increased by indirect expenditure “embodied” in investment goods and semi-finished products to production value (sales).
\item 28 \textit{Science and Technology in Poland in 2009}, Central Statistical Office of Poland, Warsaw 2011.
\end{itemize}
Analysis of the proposed sectors from the perspective of the competitive position of the voivodeship indicates that in some of these sectors, it will be difficult to find unique competitive advantages which significantly distinguish Łódź Voivodeship from other voivodeships.

For example, creative industries are characterised by a relatively large concentration in Poland. The scale of this concentration is illustrated, for instance, by the fact that five voivodeships generate 75% of the domestic production, though Łódź Voivodeship is not one of the five (Fig. 2). Łódź, however, has great hopes connected with creative industries, particularly taking into account its film and artistic traditions. Apart from tradition, there are also other location factors that facilitate the creation of a strong economic sector, yet the situation is worse in this respect according to the reports prepared for the latest Congress of Polish Culture. A relatively low regional level of cultural needs may also be a barrier, which,
in combination with a relatively low level of tourist attractiveness of the voivodship, creates a certain demand obstacle30. The situation is different in the case of SSC/BPO services which result from global trends connected with the rationalisation of costs of business activity. Poland so far seems to be an attractive place for the location of such services. In the medium and long term, a decrease in the interest of global enterprises in the European market is projected and a shift of business activity to the so-called E7 countries, which consists of China, India, Brazil, Russia, Indonesia, Mexico and Turkey, is expected31. Specific location decisions are dictated, among others by: i) access to and the quality of skilled labour with command of foreign languages and the costs (incl. the cost of labour) of business activity in this particular location; ii) transport accessibility, particularly in relation to the most important routes/communication centres; iii) the quality and level of infrastructure development, e.g., office space; iv) the quality of investor service in a given city; v) the city image; vi) the available investment incentives, and vii) the quality of life in a given city. The combination of these factors has so far worked for the benefit of such agglomerations as Warsaw (comprising 54 centres), Cracow (43 centres) and Wroclaw (38 centres). Cracow, according to the latest ranking of the UNCTAD Division on Investment and Enterprise, also belongs to the ten most attractive BPO locations. Łódź (31 centres) ranks

lower, followed by the agglomerations of Katowice, Poznań and Trójmiasto. All these locations comprise 20 centres. The number of the analysed entities does not exceed 10 in any of the other cities. The ranking of cities according to their employment rate in SSC/BPO services looks similar: this time Cracow and Wrocław rank first, followed by Warsaw. Interestingly, Wrocław is characterised by the highest growth rate in employment in this sector, which reached 100% in the period of 2008–2010. Poznań and Szczecin were also characterised by a high share of new jobs (approx. 90% in both cases). Łódź, with a 70% growth rate, ranked lower. At the same time, other locations (e.g., Cracow and Warsaw) reduced the number of some of the existing jobs.

Yet another situation is observed in wind power, where Poland has a real opportunity to not only use wind turbines to produce electricity but also to benefit as a producer of wind turbines and their parts for other countries or by providing transport services. Taking into consideration the existing technological and growth potential, mostly in the steel and smelting industry, the growth in the production of construction elements for power plants rather than their high-tech electrotechnical components can be expected in Poland in the next years. Ship building companies and similar enterprises are already taking advantage of this opportunity – for instance, the Gdańsk Shipyard will be able to construct 400 towers annually by 2012. The development of wind power, however, encounters several obstacles in Poland (difficulties with connecting SES to the grid, no access to information concerning the network, technical requirements for connection without the guarantee of purchasing the power produced the application of regulations that are not consistent). Thus, it is still at the early development stage and the main investments in the manufacturing of components for this sector are made by foreign capital companies, such as KK Electronics, ABB, LM Glasfibre, Aarsleff and Euros.

Thus, the final decision concerning the choice of these or any other areas for smart specialisation requires a prior, detailed analysis of the regional potential and competitive position of the voivodeship as Łódź Voivodeship is not the only region planning to base its development on these specialisations (Box 1).
Box 1. Areas of specialisation in regional innovation strategies and regional development strategies. Examples

Dolnośląskie Voivodeship treats chemical and pharmaceutical manufacturing, manufacturing of motor vehicles, electricity production and mining, as well as IT as strategic industries. Other emerging industries include healthy food production, manufacturing of modern materials, electronics and machinery, as well as industrial design. In the case of household appliance manufacturing, it is assumed that its competitiveness is based on typical cost advantages, thus its position will be weakened over the next dozen or so years (projected pay increase in Poland).

Kujawsko-Pomorskie Voivodeship focuses on the following industries: information and communication technology, biotechnology, tool manufacturing, electronics and furniture manufacturing, printing, agriculture and food processing, chemical, electronic, electrotechnical and electromechanical manufacturing, hospitality, as well as spa and wellness.

Lubelskie Voivodeship concentrates on BPO, the development of medical services (incl. telemedical) and logistics. Other sectors include eco-energy and agrotourism.

Opolskie Voivodeship focuses on traditional market services such as construction, trade and transport services (particularly river and air transport), as well as less popular ones for which great demand arises in such industries as: financial intermediation, IT or the business environment. The growth of non-market services in the area of education, health and culture, as well as traditional services, e.g. smithery and handicraft, will also be supported. The development of tourism-related and agrotourism services should gain particular importance and it ought to be accompanied by the creation of a modern tourism base as well as a recreation and entertainment base.

Pomorskie Voivodeship concentrates, among others, on: the shipyard industry, electronics, IT, telecommunication, petroleum industry, pharmaceuticals and light chemicals manufacturing, biotechnologies and the metal industry.

Podkarpackie Voivodeship concentrates on the development of tourism and the creation of a logistics cluster on the basis of the “dry port” within the complex of the border crossings Medyka – Żurawica. It also is planning the development of SES.

As for the criterion of the potential for radical technological development, the current lack of regional analyses regarding determinants of this potential made it impossible to conduct this sort of test on the initially selected areas of regional specialisation.
Box 2. Determinants of the potential for radical technological development

The potential for radical technological development is a derivative of the following:

• technological competitiveness of the region’s economy and/or of its individual segments, which means the capacity to create and commercialise more radical innovations and

• competence competitiveness of the voivodeship that encompasses a set of technical and organisational competences, access to and the quality of institutions/financial markets, as well as the quality and efficiency of territorial administration.

The first of the areas forms the base for the development capacity of the region, while the latter for its absorptive capacity. This latter area encompasses the capacity (of individuals, organisations) to acquire and assimilate (potential capacity), as well as to transform and exploit (realised capacity), new external knowledge. These four dimensions combined enable the region (and the companies based on its territory) to reconfigure the resource base and adapt to the changing market conditions in order to achieve a competitive advantage.

This means that the selection of segments/sectors of the economy with the potential of more radical technological development cannot be a purely administrative choice, but the consequence of a thorough analysis that takes into account at least:

• in reference to science (supply side) – the level of technology readiness and the difficulty level of research and development, as well as, in the auxiliary capacity: (i) available bibliometric studies and (ii) the assessment of the voivodeship’s competitive position compared to the leaders and the main competitors;

• in reference to the economy (demand side) – the level of innovativeness of individual research and technology directions and, in the auxiliary capacity: i) the level of manufacturing readiness and ii) the level of programming readiness.

4. SUMMARY

Smart specialisation has become one of the main principles of contemporary concepts of regional development management. Originally, it:

• refers to the theories that regard technology (and technological progress) as the main driving force of economic development34, and assume that a high po-

potential for the creation and commercialisation of new technological knowledge is (almost exclusively) the domain of innovation leaders, i.e., the richest countries with a high level of technological competitiveness:

- states that radical technological development based on the so-called general purpose technologies and/or their combination (e.g., bioinformatics) is the role of innovation leaders and the remaining regions specialise in the so called ‘co-invention of application’, i.e., in the import of general purpose technologies and their implementation in one or several areas of the regional economy.

On the other hand:

- a high level of innovativeness requires an equally high level of competence and technological competitiveness;
- the rate of competence competitiveness convergence is higher than the rate of technological competitiveness convergence. This is supported by the existing character of international technology transfer between the innovation leaders and the other countries/regions, which are limited (most often) to more or less outdated technology.

Thus, the adaptation of the concept of smart specialisation requires double effort on the part of each region:

- leading to finding such technological niches where they may achieve the position of innovation leader and hence specialise in the development of general purpose technologies. The highest probability of success should be found in (new) general purpose technologies that – unlike mature technologies – are still open to the entry of new competitors;
- leading to finding such sectors/groups of related sectors where they can specialise in the implementation of technologies developed by other innovation leaders.

This procedure, however, cannot be fully applied in the regions at present as they do not have at their disposal all the necessary information. Nevertheless, the procedure indicates the existing information gaps and stimulates the introduction of new diagnostic instruments, laying the foundation for a reliable selection of regional areas of smart specialisation.

36 D. Foray, P. A. David, B. Hall, *Smart Specialisation*...

38 J. Fagerberg, M. Srholc, M. Knell, op. cit.; *Global Economic*...

REFERENCES

Foray D., David P. A., Hall B. H., Smart specialization. From academic idea to political instrument, the surprising career of a concept and the difficulties involved in its implementation, “MTEI Working Paper” 2011, No. 1.

Regional policy contributing to smart growth in Europe. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions 2020, COM(2010), 553 final.

Anna Rogut

INTELLIGENTNA SPECJALIZACJA – W KIERUNKU NOWEJ GENERACJI REGIONALNYCH STRATEGII INNOWACJI

Inteligentna specjalizacja stała się jednym z zasadniczych wątków współczesnych koncepcji zarządzania rozwojem regionalnym. W oryginale oznacza sztywny podział ról między regiony–liderzy innowacji i pozostałe regiony. Te pierwsze specjalizują się w tzw. technologiach ogólnego zastosowania i/lub ich kombinacji (np. bioinformatyce), drugie zaś w tzw. „koinwencji zastosowań”, czyli w imporcje technologii ogólnego zastosowania i wdrażaniu ich w jednym lub kilku obszarach regionalnej gospodarki. Tego typu koncepcja niesie ze sobą pewne niebezpieczeństwo, bo – jak wynika z doświadczeń międzynarodowych: 1) wysoki poziom innowacyjności wymaga wyrównanego poziomu konkurencyjności kompetencyjnej i technologicznej; 2) szybkość konwergencji konkurencyjności kompetencyjnej jest wyższa niż szybkość konwergencji konkurencyjności technologicznej, czemu również sprzyja dotychczasowy charakter międzynarodowowego transferu technologii między liderami innowacji i pozostałymi regionami, ograniczający się (najczęściej) do technologii mniej lub bardziej przestarzałych. Stąd adaptacja koncepcji inteligentnej specjalizacji wymaga od każdego z regionów podwójnego wysiłku: a) znajdzenia takich nisz technologicznych, w których mogą osiągnąć rolę lidera innowacji, i tym samym specjalizować się w rozwijaniu technologii ogólnego zastosowania; b) znajdzenia takich sektorów / grup pokrewnych sektorów, gdzie mogą się specjalizować we wdrażaniu technologii rozwijanych przez innych liderów innowacji. Procedura określania takich obszarów inteligentnej specjalizacji uwzględnia przewagi konkurencyjne województwa, jego podstawowe zasoby (konkurencyjność technologiczną i konkurencyjność kompetencyjną) i potrzeby modernizacyjne jego bazy społeczno-ekonomicznej oraz globalne uwarunkowania.