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Abstract

Let 2 < n < ω. Then CAn denotes the class of cylindric algebras of dimension

n, RCAn denotes the class of representable CAns, CRCAn denotes the class of

completely representable CAns, and NrnCAω(⊆ CAn) denotes the class of n-neat

reducts of CAωs. The elementary closure of the class CRCAns (Kn) and the non-

elementary class At(NrnCAω) are characterized using two-player zero-sum games,

where At is the operator of forming atom structures. It is shown that Kn is not

finitely axiomatizable and that it coincides with the class of atomic algebras in the

elementary closure of ScNrnCAω where Sc is the operation of forming complete

subalgebras. For any class L such that AtNrnCAω ⊆ L ⊆ AtKn, it is proved that

SPCmL = RCAn, where Cm is the dual operator to At; that of forming complex

algebras. It is also shown that any class K between CRCAn ∩ SdNrnCAω and

ScNrnCAn+3 is not first order definable, where Sd is the operation of forming

dense subalgebras, and that for any 2 < n < m, any l ≥ n + 3 any any class K

such that At(NrnCAm ∩ CRCAn) ⊆ K ⊆ AtScNrnCAl, K is not not first order

definable either.
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We follow the notation of [1] which is in conformity with the notation in
the monograph [3]. In particular, for any pair of ordinal α < β, CAα stands
for the class of cylindric algebras of dimension α, RCAα denotes the class
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of representable CAαs and NrαCAβ(⊆ CAα) denotes the class of α-neat
reducts of CAβs.

Definition 0.1. Assume that α < β are ordinals and that B ∈ CAβ . Then
the α-neat reduct of B, in symbols NrαB, is the algebra obtained from B,
by discarding cylindrifiers and diagonal elements whose indices are in β \α,
and restricting the universe to the set

NrαB = {x ∈ B : {i ∈ β : cix ̸= x} ⊆ α} .

It is straightforward to check that NrαB ∈ CAα. Let α < β be ordinals.
If A ∈ CAα and A ⊆ NrαB, with B ∈ CAβ , then we say that A neatly
embeds in B, and that B is a β-dilation of A, or simply a dilation of A
if β is clear from context. For K ⊆ CAβ , we write NrαK for the class
{NrαB : B ∈ K}. Following [3], Csn denotes the class of cylindric set
algebras of dimension n, and Gsn denotes the class of generalized cylindric
set algebra of dimension n; C ∈ Gsn, if C has top element V a disjoint union
of cartesian squares, that is V =

⋃
i∈I

nUi, I is a non-empty indexing set,
Ui ̸= ∅ and Ui ∩ Uj = ∅ for all i ̸= j. The operations of C are defined like
in cylindric set algebras of dimension n relativized to V .

Definition 0.2. An algebra A ∈ CAn is completely representable ⇐⇒
there exists C ∈ Gsn, and an isomorphism f : A → C such that for all
X ⊆ A, f(

∑
X) =

⋃
x∈X f(x), whenever

∑
X exists in A. If

∑
X exists

in A, we denote this supremum by
∑A

X. In this case, we say that A is
completely representable via f .

It is known that A is completely representable via f : A → C, where
C ∈ Gsn has top element V say ⇐⇒ A is atomic and f is atomic in the
sense that f(

∑
AtA) =

⋃
x∈AtA f(x) = V [5] where AtA denotes the set

of atoms of A. We denote the class of completely representable CAns by
CRCAn.

For an atomic Boolean algebra with operators A say, we may write
AtA to denote its atom structures, i.e. the set of atoms expanded with the
accessiblity relations corresponding to the non- Boolean operations- which
is a first order structure. In modal logic terminology, this atom structure
is nothing more than a Kripke frame. It will be clear from context what
we mean by AtA (either the atom structure of A or the set of atoms of A).
No confusion is likely to ensue. We write A ⊆d B if A is dense subalgebra
of B. Recall that A ⊆d B if A is a subalgebra of B, in symbols A ⊆ B,
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and for all non-zero b ∈ B, there exists a non-zero a ∈ A such that a ≤ b.
Let Sd denote the class of forming dense subalgebas; that is to say, for a
class K of Boolean algebras with operators SdK = {A : (∃B ∈ K)(A ⊆d

B)}. Given two Boolean algebras with operators A,B having the same
signature, we write A ⊆c B if A is a complete subalgebra of B in the
sense that for all X ⊆ A, if

∑A
X = 1 then

∑B
X = 1.1 We write Sc

for the operation of forming subalgebras, that is to say for a class K of
Boolean algebras with operators, ScK = {A : (∃B ∈ K)(A ⊆c B)}. It is
known that the class CRCAn coincides with the class of atomic algebras
in ScNrnCAω as long as the number of atoms is countable [14, Theorem
5.3.6]. However, unlike ordinary reprsentations, this charactrization using
complete neat embeddings does not generalize to the uncountable case.
This will be proved below in Theorem 1.16, where an atomic A ∈ NrnCAω

having uncountably many atoms but A has no complete representation, is
constructed.

Define the class LCAn as follows: A ∈ LCAn ⇐⇒ A is atomic and ∃ has
a winning strategy in Gk(AtA) for all k < ω, where Gk is the k rounded
game defined on atomic networks in [7, Definition 3.3.2] truncated to k
rounds. Then this class is elementary, because a winning strategy for ∃ in
Gk can be coded by a first order sentence; call it ρk. Hirsch and Hodkinson
study the class of atom structures of this class denoted by LCASn on [7,
p. 73] that they call atom structures satisfying the ‘Lyndon conditions’ [7].
In our context, working now on the algebra level, the Lyndon conditions
that Hirsch and Hodkinson use can be lifted to the algebra level as first
order formulas that are just the ρks.

Layout: Fix 2 < n < ω. In the following Section 1, the class ElCRCAn

is characterized using neat embeddings. It is shown that ElCRCAn coin-
cides with the elementary class LCAn defined by the Lyndon conditions and
that LCAn = ElCRCAn = ElScNrn(CAω ∩At) = (ElScNrnCAω) ∩At, cf.
Theorem 1.4. In particular, NrnCAω ⊆ LCAn. We show that LCAn is not
finitely axiomatizable, and we prove that RCAn is generated by At(LCAn)
in the following strong sense RCAn = SCmAt(LCAn) and by At(NrnCAω) in
the weaker sense RCAn = SPCmAt(NrnCAω), cf. Theorem 1.17. We also
show that for any 2 < n < l < m, there exists an atomic A ∈ NrnCAl∩RCAn

such that its Dedekind–MacNeille completion2, namely, the complex alge-

1This is different from that A ⊆ B and A is complete.
2Sometimes referred to as minimal or Monk completion.
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bra of its atom structure, in symbols CmAtA, is outside RCAn, cf. Theorem
1.12. In Section 2 we continue study atom-canonicity for varieties of cylin-
dric algebras and introduce a new notion of ‘degrees of representability’ cf.
Theorems 2.2, which enables one to measure in a precise sense the degree
of representability of a given A ∈ RCAn; some algebras are more repre-
sentable than others: Given an atomic algebra A ∈ RCAn and n < m ≤ ω,
then A is representable up to m if CmAtA ∈ SNrnCAm. In the final Sec-
tion 4, using certain atomic games, we characterize the non-elementary
class At(NrnCAω) and it is shown, using such games, that any class K
such that CRCAn ∩ SdNrnCAω ⊆ K ⊆ ScNrnCAn+3, K is not elementary,
cf. Theorem 3.1.

1. Complete representations and the Lyndon
conditions

Fix a finite ordinal n > 2. For a class K, ElK denotes its elementary
closure. By the Keisler-Shelah Ultrapower Theorem, ElK = UpUrK where
Up(Ur) denotes the operation of forming ultraproducts (ultraroots). For
a Boolean algebra A and a ∈ A, RlaA is the Boolean with universe {x ∈
A : x ≤ a} and Boolean operations those of A relativized to the universe.
For a Boolean algebra A, we write A+ to denote its canonical extension.

Definition 1.1. [3, Definition 3.1.2] Let α be an ordinal. A weak space
of dimension α is a set V of the form {s ∈ αU : |{i ∈ α : si ̸= pi}| < ω}
where U is a non-empty set and p ∈ αU . We denote V by αU (p). Following
[3], Wsα denotes the class of weak set algebra of dimension α. The top
elements of Wsαs are weak spaces of dimension α and the operations are
defined like in cylindric set algebras of dimension α relativized to the top
element.

Observe that when α < ω, Wsα = Csα. To define certain deterministic
games to be used in the sequel, we recall the notions of atomic networks,
and atomic games [6, 7]. Let i < n. For n-ary sequences x̄ and ȳ ⇐⇒
ȳ(j) = x̄(j) for all j ̸= i.

Definition 1.2. Fix finite n > 2 and assume that A ∈ CAn is atomic.
(1) An n-dimensional atomic network on A is a map N : n∆ → AtA,

where ∆ is a non-empty set of nodes, denoted by nodes(N), satisfying the
following consistency conditions for all i < j < n:
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• If x̄ ∈ nnodes(N) then N(x̄) ≤ dij ⇐⇒ xi = xj ,

• If x̄, ȳ ∈ nnodes(N), i < n and x̄ ≡i ȳ, then N(x̄) ≤ ciN(ȳ).

For n-dimensional atomic networks M and N , we write M ≡i N ⇐⇒
M(ȳ) = N(ȳ) for all ȳ ∈ n(n ∼ {i}).

(2) Assume that m, k ≤ ω. The atomic game Gm
k (AtA), or simply Gm

k ,
is the game played on atomic networks of A using m nodes and having k
rounds [7, Definition 3.3.2], where ∀ is offered only one move, namely, a
cylindrifier move: At round zero ∀ picks an atom a ∈ A. Then ∃ has to
respond with a network N and a tuple ȳ such that N(ȳ) = a. Suppose that
we are at round t > 0. Then ∀ picks the played network Nt (nodes(Nt) ⊆
m), i < n, a ∈ AtA, x ∈ nnodes(Nt), such that Nt(x̄) ≤ cia. For her
response, ∃ has to deliver a networkM such that nodes(M) ⊆ m, M ≡i N ,
and there is ȳ ∈ nnodes(M) that satisfies ȳ ≡i x̄ and M(ȳ) = a. We write
Gk(AtA), or simply Gk, for G

m
k (AtA) if m ≥ ω.

(3) The ω-rounded game Gm(AtA) or simply Gm is like the game
Gm

ω (AtA) except that ∀ has the bonus to reuse the m nodes in play.3

Lemma 1.3. Let 2 < n < m < ω and assume that A ∈ CAn is atomic. If
A ∈ ScNrnCAm, then ∃ has a winning strategy in Gm(AtA).

Proof: [15, Lemma 4.3].

For a class K of BAOs, recall that K ∩ At denotes the class of atomic
algebras in K. Let Fsn = {A ∈ Csn : A = ℘(nU) some non-empty set U}.

Theorem 1.4. For 2 < n < ω the following hold:

1. CRCAn ⊆ ScNrn(CAω ∩At) ∩At ⊆ ScNrnCAω ∩At,

2. If A∈CRCAn, then ∃ has a winning strategy in Gω(AtA) and Gω(AtA),

3The games Gm and Gm are based on a private Ehrenfeucht–Fräıssé deterministic
games on two relational structures A and B between two players ∃ lloise and ∀ belard.
Each player chooses a pebble from a particular pebble pair outside the board of the game
and places it on one of the structures, A say. The other responds with the other pebble
in this pair putting it on the other structure B. The aim of ∃ is to show that A and B are
alike while the ‘spoiler’ ∀ wants to show that they are different—the ‘likeness’ here may
be measured by existence of isomorphisms between A and B, or partial isomorphisms or
elementary equivalence, ... etc. In Gm once ∀ has chosen a pebble in his private game
Ehrenfeucht–Fräıssé game, he cannot use it again. However, in Gm the pebbles chosen
by ∀ always remain outside the board of the play, so that ∀ has the option to re-use
them in every round of the game. This of course makes it harder for ∃ to win.
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3. All reverse inclusions and implications in the previous two items hold,
if algebras considered have countably many atoms,

4. Non of the classes in the first item is elementary,

5. CRCAn = ScPFsn,

6. NrnCAω∩At ⊈ CRCAn, NrnCAω∩At ⊊ ScNrnCAω∩At and CRCAn ⊊
ScNrnCAω ∩At.

7. Neither of the classes CRCAn and SdNrnCAω are contained in each
other. In particular, SdNrnCAω ⊊ ScNrnCAω.

Proof: 1. Let A ∈ CRCAn. Assume that M is the base of a complete
representation of A, whose unit is a generalized cartesian space, that is,
1M =

⋃
nUi, where

nUi ∩ nUj = ∅ for distinct i and j, in some index set
I, that is, we have an isomorphism t : B → C, where C ∈ Gsn has unit 1M,
and t preserves arbitrary meets carrying them to set-theoretic intersections.
For i ∈ I, let Ei =

nUi and pick an arbitrary fi ∈ ωUi and let Wi be the

ω-dimensional weak space {f ∈ ωU
(fi)
i : |{k ∈ ω : f(k) ̸= fi(k)}| < ω}.

Identifying set algebras with their domain let Ci = ℘(Wi). Then Ci ∈ Wsω
and is atomic; indeed the atoms are the singletons sets {f} for f ∈ Wi.
Note, for f, g ∈ Wi ad i < ω if f ↾ ω ∼ {i} = g ↾ ω ∼ {i}, then {f} ≤
Ci{g}.

Let x ∈ NrnCi, that is cix = x for all n ≤ i < ω. Now if f ∈ x and
g ∈ Wi satisfy g(k) = f(k) for all k < n, then g ∈ x because |{n ≤ i < ω :
f(i) ̸= g(i)}| < ω. Hence NrnCi is atomic; its atoms are {{g ∈Wi : {g(i) =
d : i < n}, d ∈ Ui}. Define hi : A → NrnCi by hi(a) = {f ∈ Wi : ∃a′ ∈
AtA, a′ ≤ a; (f(i) : i < n) ∈ t(a′)}. Let D = PiCi. Let πi : D → Ci be
the ith projection map. Now clearly D is atomic, because it is a product
of atomic algebras, and its atoms are (πi(β) : β ∈ At(Ci)). Now A embeds
into NrnD via J : a 7→ (πi(a) : i ∈ I). If x ∈ NrnD, then for each i, we
have πi(x) ∈ NrnCi, and if x is non-zero, then πi(x) ̸= 0. By atomicity
of Ci, there is an n-ary tuple y, such that {g ∈ Wi : g(k) = yk} ⊆ πi(x).
It follows that there is an atom of b ∈ A, such that y ∈ t(b). Hence
{g ∈ Ui : g(i) = yi} ⊆ πi(< x ·J(b) >, so x ·J(b) ̸= 0, and so the embedding
is atomic, hence complete. We have shown that A ∈ ScNrnCAω ∩At, and
since A is atomic because A ∈ CRCAn we are done with the first inclusion.
The second inclusion is straightforward since CAω ∩At ⊆ CAω.
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2. [7, Theorem 3.3.3]. Follows too from the first item taken together
with lemma 1.3.

3. Follows by observing that the class CRCAn coincides with the class
ScNrnCAω on atomic algebras having countably many atoms, cf. [14, The-
orem 5.3.6], taken together with [7, Theorem 3.3.3]. Strictly speaking, in
[14] it is shown that the two classes CRCAn and ScNrnCAω coincide on
countable atomic algebras. One can show that they coincide on the larger
class of atomic agebras having countably many atoms by observing that
if A is an atomic algebra having countably many atoms, then TmAtA is
countable and TmAtA ∈ CRCAn ⇐⇒ A ∈ CRCAn.

4. To show that non of the classes in the first item is elementary, let
D be an atomic RCAn with countably many atoms that is not completely
representable, but is elementary equivalent to some B ∈ CRCAn. Such
algebras exist; see e.g. [5]. Another such algebra is the algebra CZ,N used
in theorem 3.1 below. Then D is not in any of the aforementiond classes
because it has countably many atoms, and by the first item B is in all three
classes, proving the required.

5. The inclusion ⊆ is straightforward. Conversely, assume that A ⊆c

Pi∈I℘(
nUi). Then B = Pi∈I℘(

nUi) ∼= ℘(V ), where V is the disjoint union
of the nUi, is clearly completely representable. Then since A ⊆c B, and so
A is completely representable, too.

6. First ⊈ follows from the construction in [12], cf. corollary 1.16 for
more details. Second ⊊ follows from item (3) of Theorem 2.2. Last ⊊
follows from the first two parts in this item together with the inclusions in
the first item.

7. That SdNrnCAω∩At ⊈ CRCAn follows from the first part of item (6)
of theorem 1.4, cf. also corollary 1.16. To show that, conversely CRCAn ⊈
SdNrnCAω ∩At, we slighty modify the construction in [14, Lemma 5.1.3,
Theorem 5.1.4] lifted to any finite n > 2. The algebras A andB constructed
in op. cit. satisfy that A ∈ NrnCAω, B /∈ NrnCAn+1 and A ≡ B. As
they stand, A and B are not atomic, but it can be fixed that they are
atomic, giving the same result, by interpreting the uncountably many n-
ary relations in the signature of M defined in [14, Lemma 5.1.3] for n = 3,
which is the base of A and B to be disjoint in M, not just distinct. In fact
the construction is presented in this way in [11]. Let us explain why. We
work with 2 < n < ω instead of only n = 3. The proof presented in op.
cit. lifts verbatim to any such n. Let u ∈ nn. Write 1u for χM

u (denoted
by 1u (for n = 3) in [14, Theorem 5.1.4].) We denote by Au the Boolean
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algebra Rl1uA = {x ∈ A : x ≤ 1u} and similarly for B, writing Bu short
hand for the Boolean algebra Rl1uB = {x ∈ B : x ≤ 1u}. Using that M
has quantifier elimination we get, using the same argument in op. cit. that
A ∈ NrnCAω. The property that B /∈ NrnCAn+1 is also still maintained.
To see why consider the substitution operator ns(0, 1) (using one spare
dimension) as defined in the proof of [14, Theorem 5.1.4].

Assume for contradiction that B = NrnC, with C ∈ CAn+1. Let u =
(1, 0, 2, . . . , n − 1). Then Au = Bu and so |Bu| > ω. The term ns(0, 1)
acts like a substitution operator corresponding to the transposition [0, 1];

it ‘swaps’ the first two coordinates. Now one can show that ns(0, 1)
C
Bu ⊆

B[0,1]◦u = BId, so |ns(0, 1)CBu| is countable because BId was forced by
construction to be countable. But ns(0, 1) is a Boolean automorpism with

inverse ns(1, 0), so that |BId| = |ns(0, 1)CBu| > ω, contradiction. One
proves that A ≡ B exactly like in [14]. Take the cardinality κ spec-
ifying the signature of M to be 22

ω

and assume for contradiction that
B ∈ SdNrnCAω ∩At. Then B ⊆d NrnD, for some D ∈ CAω and NrnD is
atomic. For brevity, let C = NrnD. Then BId ⊆d RlIdC; the last algebra
is the Boolean algebra with universe {x ∈ C : x ≤ Id}. Since C is atomic,
then RlIdC is also atomic.

Using the same reasoning as above, we get that |RlIdC| > 2ω (since C ∈
NrnCAω). By the choice of κ, we get that |AtRlIdC| > ω. ByB ⊆d C, we get
that BId ⊆d RlIdC, and that AtRlIdC ⊆ AtBId, so |AtBId| ≥ |AtRlIdC| >
ω. But by the construction of B, we have |BId| = |AtBId| = ω, which is
a contradiction and we are done. The algebra B so constructed is atomic
and is outside SdNrnCAω. Furthermore, B ∈ CRCAn because B ∈ Gsn
and

⋃
AtB =

⋃
u∈nn

⋃
AtBu =

⋃
u∈nn 1u = 1B. Thus the identity may

establishes a complete representation of B.

Here we review and elaborate on the construction in [2] as our first
instance of a so-called blow up and blur construction in the sense of [16].
This subtle construction may be applied to any two classes L ⊆ K of
completely additive Boolean algebras with opertors (BAOs). One takes an
atomic A /∈ K (usually but not always finite), blows it up, by splitting4

one or more of its atoms each to infinitely many subatoms, obtaining an

4The idea of splitting one or more atoms in an algebra to get a (bigger) superalgebra
tailored to a certain purpose seems to originate with Henkin [3, p. 378, footnote 1] to
be reinvented by Hajnal Andréka as a nutcracker for proving non-finite axiomatizability
results for varieties of RCAn.
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(infinite) countable atomic Bb(A) ∈ L, such that A is blurred in Bb(A)
meaning that A does not embed in Bb(A), but A embeds in the Dedekind–
MacNeille completion of Bb(A), namely, CmAtBb(A). Then any class M
say, between L and K that is closed under forming subalgebras will not be
atom-canonical, for Bb(A) ∈ L(⊆ M), but CmAtBb(A) /∈ K(⊇ M) because
A /∈ M and SM = M. We say, in this case, that L is not atom-canonical
with respect to K. This method is applied to K = SRaCAl, l ≥ 5 and
L = RRA in [6, SS 17.7] and to K = RRA and L = RRA ∩ RaCAk for
all k ≥ 3 in [2]; the construction in [2] will be generalized below, and will
applied below to K = SNrnCAn(n+1)/2 and L = RCAn, where Ra denotes
the operator of forming relation algebra reducts (applied to classes) of CAs,
respectively, cf. [3, Definition 5.2.7].

Definition 1.5. Let R be an atomic relation algebra. An n-dimensional
basic matrix, or simply a matrix on R, is a map f : 2n → AtR satsfy-
ing the following two consistency conditions f(x, x) ≤ Id and f(x, y) ≤
f(x, z); f(z, y) for all x, y, z < n. For any f, g basic matrices and x, y < m
we write f ≡xy g if for all w, z ∈ m \ {x, y} we have f(w, z) = g(w, z). We
may write f ≡x g instead of f ≡xx g.

Definition 1.6. An n-dimensional cylindric basis for an atomic relaton
algebra R is a set CAlM of n-dimensional matrices on R with the following
properties:

• If a, b, c ∈ AtR and a ≤ b; c, then there is an f ∈ CAlM with f(0, 1) =
a, f(0, 2) = b and f(2, 1) = c

• For all f, g ∈ CAlM and x, y < n, with f ≡xy g, there is h ∈ CAlM
such that f ≡x h ≡y g.

For the next lemma, we refer the reader to [6, Definition 12.11] for the
definition of of hyperbasis for relation algebras as well as to [6, Chapter 13,
Definitions 13.4, 13.6] for the notions of n-flat and n-square representations
for relation algebras (n > 2) For a relation algebra R, recall that R+

denotes its canonical extension.

Lemma 1.7. Let R be a relation algebra and 3 < n < ω. Then the following
hold:

1. R+ has an n-dimensional infinite basis ⇐⇒ R has an infinite
n-square representation.



420 Tarek Sayed Ahmed

2. R+ has an n-dimensional infinite hyperbasis ⇐⇒ R has an infinite
n-flat representation.

Proof: [6, Theorem 13.46, the equivalence (1) ⇐⇒ (5) for basis, and
the equivalence (7) ⇐⇒ (11) for hyperbasis].

One can construct a CAn in a natural way from an n-dimensional cylin-
dric basis which can be viewed as an atom structure of a CAn (like in [6,
Definition 12.17] addressing hyperbasis). For an atomic relation algebra
R and l > 3, we denote by Matn(AtR) the set of all n-dimensional basic
matrices on R. Matn(AtR) is not always an n-dimensional cylindric basis,
but sometimes it is, as will be the case described next. On the other hand,
Mat3(AtR) is always a 3-dimensional cylindric basis; a result of Maddux’s,
so that CmMat3(AtR) ∈ CA3. The following definition to be used in the
sequel is taken from [2]:

Definition 1.8. [2, Definition 3.1] Let R be a relation algebra, with non-
identity atoms I and 2 < n < ω. Assume that J ⊆ ℘(I) and E ⊆ 3ω.

1. We say that (J,E) is an n-blur for R, if J is a complex n-blur defined
as follows:

(a) Each element of J is non-empty,

(b)
⋃
J = I,

(c) (∀P ∈ I)(∀W ∈ J)(I ⊆ P ;W ),

(d) (∀V1, . . . Vn,W2, . . .Wn∈J)(∃T ∈J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ),
that is there is for v ∈ Vi, w ∈Wi and t ∈ T , we have v;w ≤ t,

(e) (∀P2, . . . Pn, Q2, . . . Qn ∈ I)(∀W ∈ J)W ∩ P2;Qn ∩ . . . Pn;Qn

̸= ∅.

and the tenary relation E is an index blur defined as in item (ii) of
[2, Definition 3.1].

2. We say that (J,E) is a strong n-blur, if it (J,E) is an n-blur, such
that the complex n-blur satisfies:

(∀V1, . . . Vn,W2, . . .Wn ∈ J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ).

Definition 1.9. An atomic algebra A ∈ CAn is strongly representable if
CmAtA ∈ RCAn.
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Lemma 1.10. Let A ∈ CAn be completely representable. Then A is strongly
representable.

Proof: Since A is completely representable, then it is atomic. Let f :
A → B be a complete representation of A via f , with B ∈ Gsn. Then
one extends f to f̂ from CmAtA to B by defining f̂(a) =

∑CmAtA
x∈AtA,x≤a f(x).

The last suprema is well defined because CmAtA is complete. It is easy to
check that f̂ is an isomorphism and so CmAtA is isomorphic to B, hence,
by definition, CmAtA is representable.

Definition 1.11. A completely additive variety V of BAOs is atom-cano-
nical if whenever A ∈ V, then its Dedekind–MacNeille completion, which
is the complex algebra of its atom structure, namely, CmAtA, is also in V,

Monk prove that CAn is atom-canonical; this follows from the fact that
CAn can be axiomatized by positive in the wider sense equations, which
are are an instance of Sahlqvist equations. However, the variety RCAn is
not atom-canonical; a result of Hodkinson’s [10]. We reprove the last result
differently based on the construction in [2].

Theorem 1.12. For any 2 < n < l < ω, there is an atomic algebra B ∈
NrnCAl ∩ RCAn, but CmAtB /∈ RCAn. In particular, B is not completely
representable a fortiori B is not strongly representable, and RCAn is not
atom-canonical.

Proof: Let 2 < n < m ≤ ω. First we prove the conditionally the non-
atom canonicity of SNrnCAm depending on the existence of a certain finite
relation algebra R with strong m blur- satisfying a condition that we high-
light as we go along. We use the flexible blow up and blur construction used
in [2]. The idea is to use R in place of the finite Maddux algebras denoted
by Ek(2, 3) on [2, p. 83]. Here k(< ω) is the number of non-identity atoms
and then take it from there to reach the conditions, we move backwards
if you like. The required algebra witnessing non-atom canonicity will be
obtained by blowing up and blurring R in place of the relation algebra
Ek(2, 3) [2].

Our exposition addresses an (abstract) finite relation algebra R having
an l-blur in the sense of definition [2, Definition 3.1], with 3 ≤ l ≤ k < ω
and k depending on l. Occasionally we use the concrete Maddux algebra
Ek(2, 3) to make certain concepts more tangible. We use the notation in
[2]. Let 2 < n ≤ l < ω. One starts with a finite relation algebra R that has
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only representations, if any, on finite sets (bases), having an l-blur (J,E) as
in [2, Definition 3.1] recalled in definition 1.8. After blowing up and bluring
R, by splitting each of its atoms into infinitely many, one gets an infinite
atomic representable relation algebra Bb(R, J, E) [2, p. 73], whose atom
structure At is weakly but not strongly representable. The atom structure
At is not strongly representable, because R is not blurred in CmAt. The
finite relation algebra R embeds into CmAt, so that a representation of
CmAt, necessarily on an infinite base, induces one of R on the same base,
which is impossible. The representability of Bb(R, J, E) depend on the
properties of the l-blur, which blurs R in Bb(R, J, E). The set of blurs
here, namely, J is finite. In the case of Ek(2, 3) used in [2], the set of blurs
is the set of all subsets of non-identity atoms having the same size l < ω,
where k = f(l) ≥ l for some recursive function f from ω → ω, so that k
depends recursively on l.

One (but not the only) way to define the index blur E ⊆ 3ω is as follows
[13, Theorem 3.1.1]: E(i, j, k) ⇐⇒ (∃p, q, r)({p, q, r} = {i, j, k} and r −
q = q − p. This is a concrete instance of an index blur as defined in [2,
Definition 3.1(iii)] (recalled in definition 1.8 above), but defined uniformly,
it does not depends on the blurs. The underlying set of At, the atom
structure of Bb(R, J, E) is the following set consisting of triplets: At =
{(i, P,W ) : i ∈ ω, P ∈ AtR ∼ {Id},W ∈ J} ∪ {Id}. When R = Ek(2, 3)
(some finite k > 0), composition is defined by singling out the following
(together with their Peircian transforms), as the consistent triples: (a, b, c)
is consistent ⇐⇒ one of a, b, c is Id and the other two are equal, or if
a = (i, P, S), b = (j,Q, Z), c = (k,R,W )

S ∩ Z ∩W ≠ ∅ =⇒ E(i, j, k)&|{P,Q,R}| ̸= 1.

(We are avoiding mononchromatic triangles). That is if for W ∈ J , EW =
{(i, P,W ) : i ∈ ω, P ∈W}, then

(i, P, S); (j,Q, Z) =
⋃

{EW : S ∩ Z ∩W = ∅}⋃
{(k,R,W ) : E(i, j, k), |{P,Q,R}| ̸= 1}.

More generally, for the R as postulated in the hypothesis, composi-
tion in At is defined as follow. First the index blur E can be taken
to be like above. Now the triple ((i, P, S), (j,Q, Z), (k,R,W )) in which
no two entries are equal, is consistent if either S,Z,W are safe, briefly

safe(S, Z, W ), witness item (4) in definition 1.8 (which vacuously hold
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oif S ∩ Z ∩ W = ∅), or E(i, j, k) and P ; Q ≤ R in R. This general-
izes the above definition of composition, because in Ek(2, 3), the triple
of non-identity atoms (P, Q, R) is consistent ⇐⇒ they do not have the
same colour ⇐⇒ |{P, Q, R}| ̸  = 1. Having specified its atom structure, its
timely to specfiy the relation algebra Bb(R, J, E) ⊆ CmAt. The relation
algebra Bb(R, J, E) is TmAt (the term algebra). Its universe is the set
{X ⊆ H ∪ {Id} : X ∩ EW ∈ Cof(EW ), for all W ∈ J}, where Cof(EW ) 
denotes the set of co-finite subsets of EW , that is subsets of EW whose 
complement is infinite, with EW as defined above. The relation algebra 
operations lifted from At the usual way. The algebra Bb(R, J, E) is proved
to be representable [2].

For brevity, denote Bb(R, J, E) by CAlR, and its domain by R. For
a ∈ At, and W ∈ J, set Ua = {X ∈ R : a ∈ X} and UW = {X ∈ R : |X ∩
EW | ≥ ω}. Then the principal ultrafilters of CAlR are exactly Ua, a ∈ H
and UW are non-principal ultrafilters for W ∈ J when EW is infinite. Let
J ′ = {W ∈ J : |EW | ≥ ω}, and let Uf = {Ua : a ∈ F}∪{UW :W ∈ J ′}. Uf
is the set of ultrafilters of CAlR which is used as colours to represent CAlR,
cf. [2, pp. 75–77]. The representation is built from coloured graphs whose
edges are labelled by elements in Uf in a fairly standard step-by-step con-
struction. The step-by-step construction builds in the way coloured graphs,
which are basically networks whose edges are labelled by ultrafilters, with
non-principal ultrafilters allowed. So such coloured graphs are networks
that are not atomic because not only principal ultrafilters are allowed as
labels. Furthermore, we cannot restrict our attension to only atomic net-
works because we do not want Bb(R, J, E) to be strongly representable,
least completely representable. The ‘limit’ of a sequence of atomic net-
works constructed in a step-by-step manner, or obtained via winning strat-
egystrategy for ∃ in an ω-rounded atomic game, will necessarily produce
a complete representation of Bb(R, J, E). But the required representation
will be extracted from a complete representation of the canonical exten-
sion of Bb(R, J, E). Nothing wrong with that. A relation algebra CAlR is
representable ⇐⇒ its canonical extension is representable. A complete
representation of the canonical extension of CAlR induces a representation
of CAlR, because CAlR embeds into its a canonical extension, but the con-
verse is not necessarily true. So here we are proving more than the mere
representablity ofBb(R, J, E), because we are constructing a complete rep-
resentation of its canonical extension, namely, the algebra CmUf , whereUf
is the atom structure having domain Uf, with Uf as defined above.
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Now we show why the Dedekind–MacNeille completion CmAt is not
representable. For P ∈ I, let HP = {(i, P,W ) : i ∈ ω,W ∈ J, P ∈W}. Let
P1 = {HP : P ∈ I} and P2 = {EW : W ∈ J}. These are two partitions of
At. The partition P2 was used to represent, Bb(R, J, E), in the sense that
the tenary relation corresponding to composition was defined on At, in a
such a way so that the singletons generate the partition (EW : W ∈ J)
up to “finite deviations.” The partition P1 will now be used to show that
Cm(Bb(R, J, E)) = Cm(At) is not representable. This follows by observ-
ing that omposition restricted to P1 satisfies: HP ;HQ =

⋃
{HZ : Z;P ≤

Q in R} which means that R embeds into the complex algebra CmAt pro-
hibiting its representability, because R allows only representations having
a finite base.

The construction lifts to higher dimensions expressed in CAns, 2 <
n < ω. Because (J,E) is an l-blur, then by [2, Theorem 3.2 9(iii)],
Atca = Matl(AtBb(R, J, E)), the set of l by l basic matrices on At is an
l-dimensional cylindric basis, giving an algebra Bl = Bbl(R, J, E) ∈ RCAl.
Again Atca is not strongly representable, for had it been then a repre-
sentation of CmAtca, induces a representation of R on an infinite base,
because RaCmAtca ⊇ CmAt ⊇ R, and the representability of CmAtca in-
duces one of RaCmAtca, necessarily having an infinite base. For 2 < n ≤
l < ω, denote by Cl the non-representable Dedekind–MacNeille completion
of the algebra Bbl(R, J, E) ∈ RCAl, that is Cl = CmAt(Bbl(R, J, E)) =
CmMatl(At). If the l-blur happens to be strong, in the sense of defi-
nition 1.8 and n ≤ m ≤ l, then we get by [2, item (3), p. 80], that
Bbm(R, J, E) ∼= NrmBbl(R, J, E). This is proved by defining an embed-
ding h : RdmCl → Cm via x 7→ {M ↾ m : M ∈ x} and showing that
h ↾ NrmCl is an isomorphism onto Cm [2, p. 80]. Surjectiveness uses the
condition (J5)l formulated in the second item of definition 1.8 of strong
l-blurness. Without this condition, that is if the l-blur (J,E) is not strong,
then still Cm and Cl can be defined because by definition (J,E) is an t-
blur for all m ≤ t ≤ l, so Matt(At) is a cylindric basis and for t < l Ct

embeds into NrmCl using the same above map, but this embedding might
not be surjective. So for every l, now replacing R by the Maddux algebra
Ef(l)(2, 3), the algebra Al = NrnBbl(Ef(l)(2, 3)), J, E)– with f(l) depending
recursively on l, having strong l-blur due to the properties of the Maddux
algebra Ef(l)(2, 3), is as required. In other words, and more concisely, we
have Al ∈ RCAn ∩ NrnCAl, but CmAtAl /∈ RCAn.
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The following Theorem summarizes the proof of the previous Theorem,
generalizes the construction in [2] and says some more new facts. We use
the notation Bb(R, J, E) with atom structure At obtained by blowing up
and blurring R with underlying set is denoted by At on [2, p. 73] and is
recalled in the previous proof. The algebra Bbl(R, J, E)(∈ CAl) is defined
in [2, top of p. 78] and also in the immediately previous proof.

A CAn atom structure At is weakly representable if there is an atomic
A ∈ RCAn such that At = AtA; recall that it is strongly representable if
CmAt ∈ RCAn. These two notions are distinct as proved in Theorem 1.12.

Theorem 1.13. Let 2 < n ≤ l < m ≤ ω.

1. Let R be a finite relation algebra with an l-blur (J,E) where J is the
l-complex blur and E is the index blur.

(a) Let At be the relation algebra atom structure obtained by blow-
ing up and blurring R as specified above. Then the set of l by l-
dimensional matrices Atca = Matl(At) is an l-dimensional cylindric
basis, that is a weakly representable atom structure [2, Theorem 3.2].
The algebra Bbl(R, J, E) with atom structure Atra is in RCAl. Fur-
thermore, R embeds into CmAt which embeds into RaCm(Atca).

(b) If (J,E) is a strong m-blur for R, then (J,E) is a strong l-blur
for R. Furthermore, Bbl(R, J, E) ∼= NrlBbm(R, J, E) and for any
l ≤ j ≤ m, Bb(R, J, E) having atom structure At, is isomorphic to
Ra(Bbj(R, J, E)).

2. For every n < l, there is an R having a strong l-blur (J,E) but no
infinite representations (representations on an infinite base). Hence
the atom structures defined in (a) of the previous item (denoted by
At and Atca) for this specific R are not strongly representable.

3. Let m < ω. If R is a finite relation algebra having a strong l-blur,
and no m-dimensional hyperbasis, then l < m.

4. If n = l < m < ω and R is a finite relation algebra with an n blur
(J,E) (not necessarily strong) and no infinite m-dimensional hyper-
basis, then the algebras CmAt(Bb(R, J, E)) and CmAt(Bbl(R, J, E))
are outside SRaCAm and SNrnCAm, respectively, and the latter two
varieties are not atom-canonical.
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Proof: [2, Lemmata 3.2, 4.2, 4.3]. We start by an outline of (a) of item
1. Let R be as in the hypothesis. Let 3 < n ≤ l. We blow up and blur
R. R is blown up by splitting all of the atoms each to infinitely many
defining an (infinite atoms) structure At. R is blurred by using a finite set
of blurs (or colours) J . The term algebra denoted in [2] by Bb(R, J, E))
over At, is representable using the finite number of blurs. Such blurs are
basically non-principal ultrafilters; they are used as colours together with
the principal ultrafilters (the atoms) to represent Bb(R, J, E). This repre-
sentation is implemented in step-by-step manner, and in fact this step by
step construction adopted in [2] completely represents the canonical exten-
sion of Bb(R, J, E). Because (J,E) is a complex set of l-blurs, this atom
structure has an l-dimensional cylindric basis, namely, Atca = Matl(At).
The resulting l-dimensional cylindric term algebra TmMatl(At), and an al-
gebra C having atom structure Atca (denoted in [2] by Bbl(R, J, E)) such
that TmMatl(At) ⊆ C ⊆ CmMatl(At) is shown to be representable.
We prove (b) of item (1): Assume that the m-blur (J,E) is strong, then
by definition (J,E) is a strong j blur for all n ≤ j ≤ m. Furthermore, by
[2, item (3), p. 80], Bb(R, J, E) = Ra(Bbj(R, J, E)) and Bbj(R, J, E) ∼=
NrjBbm(R, J, E).

2. Like in [2, Lemma 5.1], one takes l ≥ 2n − 1, k ≥ (2n − 1)l, k ∈ ω.
The Maddux integral relation algebra Ek(2, 3) where k is the number of
non-identity atoms is the requiredR. In this algebra a triple (a, b, c) of non-
identity atoms is consistent ⇐⇒ |{a, b, c}| ̸= 1, i.e only monochromatic
triangles are forbidden.

3. Let (J,E) be the strong l-blur of R. Assume for contradiction that
m ≤ l. Then we get by [2, item (3), p. 80], that A = Bbn(R, J, E) ∼=
NrnBbl(R, J, E). But the cylindric l-dimensional algebra Bbl(R, J, E) is
atomic, having atom structure MatlAt(split(R, J, E)), so A has an atomic
l-dilation. So A = NrnD where D ∈ CAl is atomic. But R ⊆c RaNrnD ⊆c

RaD. By [6, Theorem 13.45 (6) ⇐⇒ (9)], R has a complete l-flat repre-
sentation, thus it has a complete m-flat representation, because m < l and
l ∈ ω. This is a contradiction.

4. Let B = Bbn(R, J, E). Then, since (J,E) is an n blur, B ∈
RCAn. But C = CmAtB /∈ SNrnCAm, because R /∈ SRaCAm, R em-
beds into Bb(R, J, E) which, in turn, embeds into RaCmAtB. Similarly,
Bb(R, J, E) ∈ RRA and Cm(AtBb(R, J, E)) /∈ SRaCAm. Hence the al-
ledged varieties are not atom-canonical.
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Theorem 1.14. Let 2 < n < ω. Then LCAn is an elementary class that is
not finitely axiomatizable.

Proof: For each 2 < n ≤ l < ω, let Rl be the finite Maddux algebra
Ef(l)(2, 3), as defined on [2, p. 83, S5, in the proof of Theorem 5.1] with
l-blur (Jl, El) as defined in [2, Definition 3.1] and f(l) ≥ l as specified in
[2, Lemma 5.1] (denoted by k therein). Let CAlRl = Bb(Rl, Jl, El) ∈ RRA
where CAlRl is the relation algebra having atom structure denoted At in [2,
p. 73] when the blown up and blurred algebra denotedRl happens to be the
finite Maddux algebra Ef(l)(2, 3) and let Al = NrnBbl(Rl, Jl, El) ∈ RCAn

as defined in [2, top of p. 80] (with Rl = Ef(l)(2, 3)). Then (AtCAlRl :
l ∈ ω ∼ n), and (AtAl : l ∈ ω ∼ n) are sequences of weakly representable
atom structures that are not strongly representable with a completely rep-
resentable ultraproduct.

We have shown that the three classes in the first item of the theorem
1.4 are not elementary and in the last item of op. cit. that at least two
are distinct. Now we show that their elementary closure coincide with the
class LCAn.

Theorem 1.15. Let 2 < n < ω. Then:

ElCRCAn = El[ScNrn(CAω ∩At) ∩At]

= ElScNrnCAω ∩At

= El(ScNrnCAω ∩At)

= LCAn.

Proof: We show, as claimed, that all the given classes coincide with LCAn.
Assume that A ∈ LCAn. Take a countable elementary subalgebra C of A.
Since LCAn is elementary, then C ∈ LCAn, so for k < ω, ∃ has a winning
strategyρk, in Gk(AtC). Let D be a non-principal ultrapower of C. Then
∃ has a winning strategyσ in Gω(AtD) [7, Theorem 3.3.4]. Essentially
she uses ρk in the k’th component of the ultraproduct so that at each
round of Gω(AtD), ∃ is still winning in co-finitely many components, this
suffices to show she has still not lost. Now one can use an elementary
chain argument to construct countable elementary subalgebras C = A0 ⪯
A1 ⪯ . . . ⪯ . . .D in the following way. One defines Ai+1 to be a countable
elementary subalgebra of D containing Ai and all elements of D that σ
selects in a play of Gω(AtD) in which ∀ only chooses elements from Ai.
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Now let B =
⋃

i<ω Ai. This is a countable elementary subalgebra of D,
hence necessarily atomic, and ∃ has a winning strategy in Gω(AtB), so B
is completely representable.

Thus A ≡ C ≡ B, hence A ∈ ElCRCAn. We have shown that LCAn ⊆
ElCRCAn. If A ∈ ScNrnCAω ∩ At, then by lemma 1.3, ∃ has a winning
strategy in Gω(AtA), hence in Gω(AtA), a fortiori, in Gk(AtA) for all
k < ω, so A ∈ LCAn. Since LCAn is elementary, we get that
El(ScNrnCAω ∩ At) ⊆ LCAn. But CRCAn ⊆ ScNrnCAω ∩ At, hence
LCAn = ElCRCAn ⊆ El(ScNrnCAω ∩ At) ⊆ LCAn. Now ScNrnCAω ∩ At
⊆ ElScNrnCAω∩At, and the latter class is elementary (if K is elementary,
then K ∩ At is elementary), so El(ScNrnCAω ∩ At) ⊆
ElScNrnCAω ∩At.

Conversely, if C is in ElScNrnCAω ∩At. then C is atomic and C ≡ D,
for some D ∈ ScNrnCAω since ScNrnCAω is closed under ultraproducts.
Hence D is atomic because atomicity is a first order property, so D ∈
ScNrnCAω ∩At, thus C ∈ El(ScNrnCAω ∩At).

We have shown that ElScNrnCAω ∩ At = El(ScNrnCAω ∩ At) =
LCAn = ElCRCAn. Finally, by lemma 1.3, ScNrn(CAω ∩At)∩At ⊆ LCAn,
from which it follows that ElSc[Nrn(CAω ∩ At) ∩ At] ⊆ LCAn, since
LCAn is elementary. The other inclusion follows from that, by item (1)
of theorem 1.4, CRCAn ⊆ ScNrn(CAω ∩ At) ∩ At, so LCAn = ElCRCAn

⊆ El[ScNrn(CAω ∩At)∩At]. We have shown that all classes coincide with
LCAn, which is the elementary closure of CRCAn, and we are done.

Corollary 1.16. For each 2 < n < ω, there is an atomic algebra B ∈
NrnCAω ∩ ElCRCAn, that is not completely representable. In particular,
CRCAn is not elementary [5]. Furthermore, each An is constructed uni-
formly from one relation algebra.

Proof: In [12], a relation atomic algebra R having uncountably many
atoms is constructed such that R has an ω-dimensional cylindric basis
CAlH (the latter is defined in opcit) and R is not completely representable.
It is shown in [12] that if one takes C = CA(CAlH), then C ∈ CAω, C is
atomless, and A = RaC. Now fix 2 < n < ω. Then the required CAn isB =
NrnC; An is atomic and has uncountably many atoms. Furthermore, B has
no complete representation for a complete representation of B induces one
of A. Since B ∈ NrnCAω ∩ At, then by theorem 1.15, B ∈ LCAn =
ElCRCAn.
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For the reader’s convenience, we give the details of the above proof. We
use the following uncountable version of Ramsey’s theorem due to Erdos
and Rado: If r ≥ 2 is finite, k an infinite cardinal, then expr(k)

+ →
(k+)r+1

k , where exp0(k) = k and inductively expr+1(k) = 2expr(k). The
above partition symbol describes the following statement. If f is a coloring
of the r + 1 element subsets of a set of cardinality expr(k)

+ in k many
colors, then there is a homogeneous set of cardinality k+ (a set, all whose
r+1 element subsets get the same f -value). We will construct the requred
C ∈ CAω from a relation algebra (to be denoted in a while by A) having an
‘ω-dimensional cylindric basis.’

To define the relation algebra, we specify its atoms and forbidden triples.
Let κ be the given cardinal in the hypothesis of the Theorem. The atoms
are Id, gi0 : i < 2κ and rj : 1 ≤ j < κ, all symmetric. The forbidden triples
of atoms are all permutations of (Id, x, y) for x ̸= y, (rj , rj , rj) for 1 ≤ j < κ

and (gi0, g
i′

0 , g
i∗

0 ) for i, i′, i∗ < 2κ. Write g0 for {gi0 : i < 2κ} and r+ for
{rj : 1 ≤ j < κ}. Call this atom structure α.

Consider the term algebra A defined to be the subalgebra of the com-
plex algebra of this atom structure generated by the atoms. We claim
that A, as a relation algebra, has no complete representation, hence any
algebra sharing this atom structure is not completely representable, too.
Indeed, it is easy to show that if A and B are atomic relation algebras
sharing the same atom structure, so that AtA = AtB, then A is completely
representable ⇐⇒ B is completely representable.

Assume for contradiction that A has a complete representation with
base M. Let x, y be points in the representation with M |= r1(x, y). For
each i < 2κ, there is a point zi ∈ M such that M |= gi0(x, zi) ∧ r1(zi, y).
Let Z = {zi : i < 2κ}. Within Z, each edge is labelled by one of the κ
atoms in r+. The Erdos-Rado theorem forces the existence of three points
z1, z2, z3 ∈ Z such that M |= rj(z

1, z2) ∧ rj(z
2, z3) ∧ rj(z

3, z1), for some
single j < κ. This contradicts the definition of composition in A (since we
avoided monochromatic triangles).

Let S be the set of all atomic A-networks N with nodes ω such that
{ri : 1 ≤ i < κ : ri is the label of an edge in N} is finite. Then it is
straightforward to show S is an amalgamation class, that is for allM,N ∈ S
if M ≡ij N then there is L ∈ S with M ≡i L ≡j N , witness [6, Definition
12.8] for notation. We have S is symmetric, that is, if N ∈ S and θ : ω → ω
is a finitary function, in the sense that {i ∈ ω : θ(i) ̸= i} is finite, then Nθ
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is in S. It follows that the complex algebra CA(S) ∈ QEAω. Now let X be
the set of finite A-networks N with nodes ⊆ κ such that:

1. each edge of N is either (a) an atom of A or (b) a cofinite subset of
r+ = {rj : 1 ≤ j < κ} or (c) a cofinite subset of g0 = {gi0 : i < 2κ}
and

2. N is ‘triangle-closed’, i.e. for all l,m, n ∈ nodes(N) we have N(l, n) ≤
N(l,m);N(m,n). That means if an edge (l,m) is labelled by Id then
N(l, n) = N(m,n) and if N(l,m), N(m,n) ≤ g0 then N(l, n) · g0 = 0
and if N(l,m) = N(m,n) = rj (some 1 ≤ j < ω) then N(l, n) · rj = 0.

For N ∈ X let N̂ ∈ CA(S) be defined by

{L ∈ S : L(m,n) ≤ N(m,n) for m,n ∈ nodes(N)}.

For i ∈ ω, let N ↾−i be the subgraph of N obtained by deleting the node

i. Then if N ∈ X, i < ω then ĉiN = N̂ ↾−i. The inclusion ĉiN ⊆ (N̂ ↾−i)

is clear. Conversely, let L ∈ ̂(N ↾−i). We seek M ≡i L with M ∈ N̂ . This

will prove that L ∈ ĉiN , as required. Since L ∈ S the set T = {ri /∈ L}
is infinite. Let T be the disjoint union of two infinite sets Y ∪ Y ′, say. To
define the ω-network M we must define the labels of all edges involving
the node i (other labels are given by M ≡i L). We define these labels by
enumerating the edges and labeling them one at a time. So let j ̸= i < κ.
Suppose j ∈ nodes(N). We must choose M(i, j) ≤ N(i, j). If N(i, j) is
an atom then of course M(i, j) = N(i, j). Since N is finite, this defines
only finitely many labels of M . If N(i, j) is a cofinite subset of g0 then
we let M(i, j) be an arbitrary atom in N(i, j). And if N(i, j) is a cofinite
subset of r+ then let M(i, j) be an element of N(i, j) ∩ Y which has not
been used as the label of any edge of M which has already been chosen
(possible, since at each stage only finitely many have been chosen so far).
If j /∈ nodes(N) then we can let M(i, j) = rk ∈ Y some 1 ≤ k < κ such
that no edge of M has already been labelled by rk. It is not hard to check
that each triangle of M is consistent (we have avoided all monochromatic

triangles) and clearly M ∈ N̂ and M ≡i L. The labeling avoided all but

finitely many elements of Y ′, so M ∈ S. So ̂(N ↾−i) ⊆ ĉiN .

Now let X̂ = {N̂ : N ∈ X} ⊆ CA(S). Then we claim that the sub-

algebra of CA(S) generated by X̂ is simply obtained from X̂ by closing
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under finite unions. Clearly all these finite unions are generated by X̂. We
must show that the set of finite unions of X̂ is closed under all cylin-
dric operations. Closure under unions is given. For N̂ ∈ X we have

−N̂ =
⋃

m,n∈nodes(N) N̂mn where Nmn is a network with nodes {m,n} and

labeling Nmn(m,n) = −N(m,n). Nmn may not belong to X but it is

equivalent to a union of at most finitely many members of X̂. The diago-
nal dij ∈ CA(S) is equal to N̂ where N is a network with nodes {i, j} and
labeling N(i, j) = Id. Closure under cylindrification is given.

Let C be the subalgebra of CA(S) generated by X̂. Then A = RaC. To
see why, each element of A is a union of a finite number of atoms, possibly a
co-finite subset of g0 and possibly a co-finite subset of r+. Clearly A ⊆ RaC.

Conversely, each element z ∈ RaC is a finite union
⋃

N∈F N̂ , for some finite
subset F ofX, satisfying ciz = z, for i > 1. Let i0, . . . , ik be an enumeration
of all the nodes, other than 0 and 1, that occur as nodes of networks in F .

Then, ci0 . . . cikz =
⋃

N∈F ci0 . . . cikN̂ =
⋃

N∈F
̂(N ↾{0,1}) ∈ A. So RaC ⊆

A. Thus A is the relation algebra reduct of C ∈ CAω, but A has no complete
representation. Let n > 2. Let B = NrnC. Then B ∈ NrnCAω, is atomic,
but has no complete representation for plainly a complete representation
of B induces one of A.

By Theorem 1.15 B is in ElCRCAn = LCAn. It remains to show that
the ω-dilation C is atomless. For any N ∈ X, we can add an extra node
extending N to M such that ∅ ⊊M ′ ⊊ N ′, so that N ′ cannot be an atom
in C.

In the next theorem the inclusions in the third item are valid since by
Lemma 1.3, NrnCAω ∩At ⊆ LCAn and the last class is elementary.5

Theorem 1.17. Let 2 < n < ω. Then the following hold:

1. SCmLCASn = RCAn,

2. SPCmAt(NrnCAω) = RCAn,

3. For any class L such that At(NrnCAω) ⊆ L ⊆ LCASn, SPCmL =
RCAn.

5The last incusion was implicitly prove in Theorem 1.3. To be more explicit, assume
that A ∈ NrnCAω is atomic. Then by lemma 1.3, ∃ has a winning strategy in Gω ,
since there are infinitely many nodes, reusing them is superfluous, so ∃ has a winning
strategyactually in (the harder to win game), Gω(AtA), and so ∃ has a winning strategy
in all k rounded game Gk(AtA), so by definition A ∈ LCAn.
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In particular, SPCm(ElAt(NrnCAω)) = RCAn.

Proof: 1. If A ∈ RCAn, then A+ is completely representable [5], so
AtA+ ∈ LCASn. By A ⊆ A+ = CmAtA+, and CmAtA+ ∈ CmLCASn,
we are done.

2. This follows from that Fsn ⊆ CmAtNrnCAω. Indeed, suppose that
A ∈ Fsn, then A ∈ NrnCAω, hence AtA ∈ AtNrnCAω and A = CmAtA ∈
CmAtNrnCAω. Thus RCAn = SPFsn ⊆ SPCmAtNrnCAω ⊆ SPCmLCASn ⊆
RCAn.

3. Follows immediately from the previous item.

2. Atom-canonicity and degrees of representability

In this section, unless otherwise indicated, n is a finite ordinal > 2. We
study closure properties of the classes NrnCAm (m > n) and CRCAn. We
also introduce several new classes defined via the complex algebra operator
Cm and the neat reduct operator Nr and study their properties. The most
general exposition of CA rainbow constructions is given in [7, Section 6.2,
Definition 3.6.9] in the context of constructing atom structures from classes
of models. Our models are just coloured graphs [5]. Let G, R be two
relational structures. Let 2 < n < ω. Then the colours used are:

• greens: gi (1 ≤ i ≤ n− 2), gi0, i ∈ G,

• whites : wi : i ≤ n− 2,

• reds: rij (i < j ∈ n,

• shades of yellow : yS : S a finite subset of ω or S = ω.

A coloured graph is a graph such that each of its edges is labelled by the
colours in the above first three items, greens, whites or reds, and some
n−1 hyperedges are also labelled by the shades of yellow. Certain coloured
graphs will deserve special attention.

Definition 2.1. Let i ∈ G, and let M be a coloured graph consisting of n
nodes x0, . . . , xn−2, z. We call M an i-cone if M(x0, z) = gi0 and for every
1 ≤ j ≤ n − 2, M(xj , z) = gj , and no other edge of M is coloured green.
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(x0, . . . , xn−2) is called the base of the cone, z the apex of the cone and i
the tint of the cone.

The rainbow algebra depending on G and R from the class K consisting
of all coloured graphs M such that:

1. M is a complete graph and M contains no triangles (called forbidden
triples) of the following types:

(g, g
′
, g∗), (gi, gi,wi) any 1 ≤ i ≤ n− 2, (2.1)

(gj0, g
k
0 ,w0) any j, k ∈ G, (2.2)

(rij , rj′k′ , ri∗k∗) unless |{(j, k), (j′, k′), (j∗, k∗)}| = 3 (2.3)

and no other triple of atoms is forbidden.

2. If a0, . . . , an−2 ∈ M are distinct, and no edge (ai, aj) i < j < n is
coloured green, then the sequence (a0, . . . , an−2) is coloured a unique
shade of yellow. No other (n−1) tuples are coloured shades of yellow.
Finally, if D = {d0, . . . , dn−2, δ} ⊆ M and M ↾ D is an i cone with
apex δ, inducing the order d0, . . . , dn−2 on its base, and the tuple
(d0, . . . , dn−2) is coloured by a unique shade yS then i ∈ S.

Let G and R be relational structures as above. Take the set J consisting
of all surjective maps a : n → ∆, where ∆ ∈ K and define an equivalence
relation ∼ on this set relating two such maps iff they essentially define the
same graph [5]; the nodes are possibly different but the graph structure
is the same. Let At be the atom structure with underlying set J ∼. We
denote the equivalence class of a by [a]. Then define, for i < j < n,
the accessibility relations corresponding to ijth-diagonal element, and ith-
cylindrifier, as follows:

(1) [a] ∈ Eij iff a(i) = a(j),
(2) [a]Ti[b] iff a ↾ n∖ {i} = b ↾ n∖ {i},
This, as easily checked, defines a CAn atom structure. The complex

CAn over this atom structure will be denoted by AG,R. The dimension of
AG,R, always finite and > 2, will be clear from context. For rainbow atom
structures, there is a one to one correspondence between atomic networks
and coloured graphs [5, Lemma 30], so for 2 < n < m ≤ ω, we use the
graph versions of the games Gm

k , k ≤ ω, and Gm played on rainbow atom
structures of dimension m [5, pp. 841–842]. The the atomic k rounded
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game game Gm
k where the number of nodes are limited to n to games on

coloured graphs [5, lemma 30]. The game Gm lifts to a game on coloured
graphs, that is like the graph games Gm

ω [5], where the number of nodes of
graphs played during the ω rounded game does not exceed m, but ∀ has
the option to re-use nodes. The typical winning strategy for ∀ in the graph
version of both atomic games is bombarding ∃ with cones having a common
base and green tints until she runs out of (suitable) reds, that is to say, reds
whose indicies do not match [5, 4.3]. So roughly if |G| is larger that |R|
substantially, then ∀ can win; otherwise ∃ wins for if there is a winning
strategy for ∀ it must be implemented as just described. The (complex)
rainbow algebra based on G and R is denoted by AG,R. The dimension n
will always be clear from context.

Theorem 2.2. Let 2 < n < ω.

1. There exists A ∈ RCAn such that CmAtA /∈ SNrnCAt(n), where t(n) =
n(n + 1)/2. Therefore any completely additive variety V such that
RCAn ⊆ V ⊆ SNrnCAt(n) is not atom-canonical.

2. There exists A ∈ NrnCAl ∩ RCAn such that CmAtA /∈ RCAn,

3. There exists B ∈ Csn, B /∈ ElNrnCAn+1, but AtB ∈ NrnCAω and
CmAtB ∈ NrnCAω

Proof: 1. The proof of the first item is given in full detail in [16, Theo-
rem 1]; here we give the main ingredients of the proof as another instance
of a blow up and blur construction. Take the finite rainbow cylindric al-
gebra R(Γ) as defined in [7, Definition 3.6.9], where Γ (the reds) is taken
to be the complete irreflexive graph m, and the greens are {gi : 1 ≤ i <
n − 1} ∪ {gi0 : 1 ≤ i ≤ n(n − 1)/2} so that G is the complete irreflexive
graph n(n− 1)/2.

Call this finite rainbow n-dimensional cylindric algebra, based on G =
n(n − 1)/2 and R = n, CAn(n−1)/2+1,n and denote its finite atom struc-
ture by Atf . One then replaces each red colour used in constructing
CAn(n−1)/2,n by infinitely many with superscripts from ω, getting a weakly
representable atom structure At, that is, the term algebra TmAt is repre-
sentable.

The resulting atom structure (with ω-many reds), call it At, is the
rainbow atom structure that is like the atom structure of the (atomic set)
algebra denoted by A in [10, Definition 4.1] except that we have n(n−1)/2

greens and not infinitely many as is the case in [10]. Everything else is the
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same. In particular, the rainbow signature [7, Definition 3.6.9] now consists
of gi : 1 ≤ i < n − 1, gi0 : 1 ≤ i ≤ n + 1, wi : i < n − 1, rtkl : k < l < n,
t ∈ ω, binary relations, and n− 1 ary relations yS , S ⊆ n(n− 1)/2.

There is a shade of red ρ; the latter is a binary relation that is outside the
rainbow signature. But ρ is used as a label for coloured graphs built during
a ‘rainbow game’, and in fact, ∃ can win the rainbow ω-rounded game
and she builds an n-homogeneous (coloured graph) model M as indicated
in the above outline by using ρ when she is forced a red [10, Proposition
2.6, Lemma 2.7]. Then, it can be shown exactly as in [10], that TmAt is
representable as a set algebra with unit nM.

We next embed CAn(n−1)/2,n into the complex algebra CmAt, the De-
dekind–MacNeille completion of TmAt. Let CRGf denote the class of
coloured graphs on Atf and CRG be the class of coloured graph on At.
We can assume that CRGf ⊆ CRG. Write Ma for the atom that is the
(equivalence class of the) surjection a : n → M , M ∈ CRG. Here we
identify a with [a]; no harm will ensue.

We define the (equivalence) relation ∼ on At by Mb ∼ Na, (M,N ∈
CRG) ⇐⇒ they are everywhere identical except possibly at red edges:

Ma(a(i), a(j)) = rl ⇐⇒ Nb(b(i), b(j)) = rk, for some l, k ∈ ω.

We say that Ma is a copy of Nb if Ma ∼ Nb. Now we define a map
Θ : CAn+1,n = CmAtf to CmAt, by specifing first its values on Atf , via

Ma 7→
∑

j M
(j)
a ; where M

(j)
a is a copy of Ma; each atom maps to the

suprema of its copies. (If Ma has no red edges, then by
∑

j M
(j)
a , we

understand Ma). This map is extended to CAn+1,n the obvious way. The
map Θ is well defined, because CmAt is complete. It is not hard to show
that the map Θ is an injective homomorphim.

One next proves that ∀ has a winning strategy for ∃ in
Gt(n)At(CAn(n−1)/2,n), where t(n) = n(n + 1)/2 + 1 using the usual rain-
bow strategy by bombarding ∃ with cones having the same base and dis-
tinct green tints. He needs t(n) nodes to implement his winning strat-
egy. In fact, he needs t(n) nodes to force a win in the weaker game

G
t(n)
ω (AtAn(n−1)/2,n) without the need to resue the nodes in play. To see

why, first it is straightforward to show that ∀ has winning strategy first
in the Ehrenfeucht–Fräıssé forth private game played between ∃ and ∀ on

the complete irreflexive graphs n + 1(≤ n(n − 1)/2 + 1) and n rounds



436 Tarek Sayed Ahmed

EFn+1
 (n + 1, n) since n + 1 is ‘longer’ than n. ∀ lifts his winning strategy

on Atf = At(CAn(n−1)/2,n) see [5, p. 841] forcing a win using t(n) nodes. 
One uses the n(n − 1)/2 + 2 green relations in the usual way to force a red
clique C, say with n(n − 1)/2 + 2. Pick any point x ∈ C. Then there are
> n(n − 1)/2 points y in C \ {x}. There are only n(n − 1)/2 red relations.
So there must be distinct y, z ∈ C \ {x} such that (x, y) and (x, z) both
have the same red label (it will be some rijm for i < j < n). But (y, z) is 
also red, and this contradicts the consistency condition of reds. In more
detail, ∀ bombards ∃ with cones having common base and distinct green
tints until ∃ is forced to play an inconsistent red triangle (where indicies
of reds do not match). He needs n − 1 nodes as the base of cones, plus
|P | + 2 more nodes, where P = {(i, j) : i < j < n} forming a red clique,
triangle with two edges satisfying the same rpm for p ∈ P . Calculating, we 
get t(n) = n − 1 + n(n − 1)/2 + 2 = n(n + 1)/2 + 1. We proved that ∀
lifts his winning strategy from the last private game to the graph game on
Atf = At(CAn(n−1)/2,n forcing a win using t(n) nodes.

2. This follows from the proof of Theorem 1.12; we give a more stream-
lined proof. Like before, we use the construction in [2]. Let R be a re-
lation algebra, with non-identity atoms I and 2 < n < ω. Assume that
J ⊆ ℘(I) and E ⊆ 3ω. (J,E) is an n-blur for R, if J is a complex n-
blur and the tenary relation E is an index blur defined as in item (ii) of
[2, Definition 3.1]. Recall that (J,E) is a strong n-blur, if it (J,E) is an
n-blur, such that the complex n-blur satisfies: (∀V1, . . . Vn,W2, . . .Wn ∈
J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ) (with notation as in [2]). Now let
l ≥ 2n − 1, k ≥ (2n − 1)l, k ∈ ω. One takes the finite integral relation
algebra Rl = Ek(2, 3) where k is the number of non-identity atoms in Rl.
Then Rl has a strong l-blur, (J,E) and it can only be represented on a
finite basis [2]. Then Bbn(Rl, J, E) = NrnBll(Rl, J, E) has no complete
representation, so CmAtBbn(Rl, J, E) is not representable.

3. Let V = nQ and let A ∈ Csn has universe ℘(V ). Then clearly
A ∈ NrnCAω. To see why, let W = ωQ and let D ∈ Csω have universe
℘(W ). Then the map θ : A → ℘(D) defined via a 7→ {s ∈W : (s ↾ α) ∈ a},
is an injective homomorphism from A into RdnD that is onto NrnD. Let
y denote the following n-ary relation: y = {s ∈ V : s0 + 1 =

∑
i>0 si}. Let

ys be the singleton containing s, i.e. ys = {s} and B = SgA{y, ys : s ∈ y}.
It is shown in [17] that {s} ∈ B, for all s ∈ V .

¨ ´from the last private Ehrenfeucht–Fraısse forth game to the graph game
n+1
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Now B and A having same top element V , share the same atom struc-
ture, namely, the singletons, so B ⊆d A and CmAtB = A. Furthermore,
plainly A,B ∈ CRCAn; the identity maps establishes a complete represen-
tation for both, since

⋃
s∈V {s} = V . Since B ⊆d A, then B ⊆c A, so

B ∈ ScNrnCAω ∩ At because A ∈ NrnCAω is atomic. As proved in [17],
B /∈ ElNrnCAn+1(⊇ NrnCAω ∩At)).

Recall that Sc denotes the operation of forming complete sublgebras
and Sd denotes the opeartion of forming dense subalgebras. We let I
denote the operation of forming isomorphic images. For any class of BAO,
IK ⊆ SdK ⊆ ScK. (It is not hard to show that for Boolean algebras the
inclusion are proper).

Definition 2.3. Let 2 < n ≤ l ≤ m ≤ ω. Let O ∈ {S,Sd,Sc, I}.
1. An algebra A ∈ CAn has the O neat embedding property up to m

if A ∈ ONrnCAm. If m = ω and O = S, we say simply that A
has the neat embedding property. (Observe that the last condition is
equivalent to that A ∈ RCAn).

2. An atomic algebra A ∈ CAn has the complex O neat embedding prop-
erty up to m, if CmAtA ∈ ONrnCAm. The word ‘complex’ here refers
to the involvement of the complex algebra in the definition.

3. An atomic algebra A ∈ RCAn is strongly representable up to l and m
if A ∈ NrnCAl and CmAtA ∈ SNrnCAm. If l = n and m = ω, we say
that A is strongly representable.

4. Let L ⊆ K be subclasses of CAn. We say that L is not atom-canonical
relative K if there exists an atomic algebra A ∈ L such that CmAtA /∈
K. Observe that if L is not atom-canonical relative to itself, then L
is not atom-canonical.

Example 2.4.

1. The algebra A constructed in the third item of theorem 2.2 has the
neat embedding property, but not the complex S neat embedding
propery up to m for any m ≥ n(n + 1)/2. In particular, A is not
strongly representable and A lacks a complete representation. Fur-
thermore, the algebra A witnesses that RCAn is not atom-canonical
relative to SNrnCAn+k for any k ≥ n(n+ 1)/2.
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2. For every 2 < n < l < ω, the algebra B = Bbn(Ek(2, 3), J, E) used
in the second item of Theorem 2.2 based on Theorem 1.12, where k
depends on l and (J,E) is the strong l-blur of the Maddux algebra
Ek(2, 3) as specified in op. cit., is in NrnCAl ∩ RCAn, but is not
strongly representable up to l and ω. In particular, B, like A in
the first item, is also not strongly representable and lacks a complete
representation. The algebra B witnesses that RCAn ∩ NrnCAl is not
atom-canonical relative to RCAn.

3. The algebra B used in the last item of theorem 2.2 has the complex
I neat embedding property up to m for any m ≥ n but does not
have the I neat embedding property up to n+1, a fortiori up to any
m ≥ n+ 1, cf. the second item of the forthcoming theorem 2.5.

Let 2 < n ≤ l ≤ m ≤ ω. Let O ∈ {S,Sd,Sc, I}. Denote the
class of CAns having the complex O neat embedding property up to m
by CNPCAO

n,m, and let RCAO
n,m := CNPCAO

n,m ∩ RCAn. Denote the class

of strongly representable CAns up to l and m by RCAl,m
n . Call an algebra

A ∈ CAn strongly representable if A is atomic and AtA is strongly repre-
sentable; that is CmAtA ∈ RCAn. Observe that RCAn,m

n = RCAS
n,m and

that when m = ω both classes coincide with the class of strongly rep-
resentable CAns. For a class K of BAOs, K ∩ Count denotes the class of
countable algebras in K, and recall that K∩At denotes the class of atomic
algebras in K.

Theorem 2.5. Let 2 < n ≤ l < m ≤ ω and O ∈ {S,Sc,Sd, I}. Then the
following hold:

1. RCAO
n,m ⊆ RCAO

n,l and RCAI
n,l ⊆ RCASd

n,l ⊆ RCASc

n,l ⊆ RCAS
n,l. The

last inclusion is proper for l ≥ n(n+ 1)/2,

2. For O ∈ {S,Sc,Sd}, CNPCAO
n,l ⊆ ONrnCAl (that is the complex

O neat embedding property is stronger than the O neat embedding
property), and for O = S, the inclusion is proper for l ≥ n+ 3. But
for O = I, CNPCAI

n,l ⊈ NrnCAl (so the complex I neat embedding
property does not imply the I neat embedding property),

3. If A is finite, then A ∈ CNPCAO
n,l ⇐⇒ A ∈ ONrnCAl and A ∈

RCAO
n,l ⇐⇒ A ∈ RCAn ∩ ONrnCAl. Furthermore, for any positive

k, CNPCAO
n,n+k+1 ⊊ CNPCAO

n,n+k, and finally CNPCAO
n,ω ⊊ RCAn,
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4. (∃A ∈ RCAn∩At ∼ CNPCAS
n,l) =⇒ SNrnCAk is not atom-canonical

for all k ≥ l. In particular, SNrnCAk is not atom-canonical for all
k ≥ n+ 3,

5. If SNrnCAl is atom-canonical, then RCAS
n,l is first order definable.

There exists a finite k > n + 1, such that RCAS
n,k is not first order

definable.

6. Let 2 < n < l ≤ ω. Then RCAl,ω
n ∩ Count ̸= ∅ ⇐⇒ l < ω.

Proof: 1. The inclusions follow from the definition and the strictness of
the last inclusion in this item is witnessed by the algebra C = CZ,N used in
Theorem 3.1, since C satisfies C = CmAtC ∈ RCAn but C /∈ ScNrnCAl for
l ≥ n+ 3.

2. Let O ∈ {S,Sc,Sd}. If CmAtA ∈ ONrnCAl, then A ⊆d CmAtA, so
A ∈ SdONrnCAl ⊆ ONrnCAl. This proves the first part. The strictness of
the last inclusion follows from the first part of Theorem 2.2 since the atomic
countable algebra A constructed in op. cit. is in RCAn, but CmAtA /∈
SNrnCAl for any l ≥ n(n+ 1)/2.

For the last non-inclusion in item (2), we use the set algebras A and B
in item (3) of Theorem 2.2. Now B ⊆d A, A ∈ Csn, and clearly CmAtB =
A(∈ NrnCAω). As proved in [17], B /∈ ElNrnCAn+1, so B /∈ NrnCAn+1(⊇
NrnCAl). But CmAtB ∈ NrnCAω, hence B ∈ RCAI

n,l. We have shown

that B ∈ RCAI
n,l ∼ NrnCAl, and we are through with the last required in

item (2). Here we basically use that NrnCAm is not closed under Sd, a
fortiori under Sc, while, conversely, CRCAn is closed under Sc since Sc is
an idempotent operator (ScSc = Sc), a fortiori CRCAn is closed under Sd.

3. Follows by definition observing that if A is finite then A = CmAtA.
The strictness of the first inclusion follows from the construction in [9]
where it shown that for any positive k, there is a finite algebra A in
NrnCAn+k ∼ SNrnCAn+k+1 (witness the appendix for a simplified ver-
sion of the construction in [9]). The inclusion CNPCAO

n,ω ⊆ RCAn holds

because if B ∈ CNPCAO
n,ω, then B ⊆ CmAtB ∈ ONrnCAω ⊆ RCAn. The

A used in the last item of theorem 2.2 witnesses the strictness of the last
inclusion proving the last required in this item.

4. Follows from the definition and the construction used in item (3) of
theorem 2.2.

5. Follows from that SNrnCAl is canonical. So if it is atom-canonical
too, then At(SNrnCAl) = {F : CmF ∈ SNrnCAl}, the former class is ele-
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mentary [6, Theorem 2.84], and the last class is elementray ⇐⇒ RCAS
n,l

is elementary. Non-elementarity follows from [7, Corollary 3.7.2] where
it is proved that RCAS

n,ω is not elementary, together with the fact that⋂
n<k<ω SNrnCAk = RCAn. In more detail, let Ai be the sequence of

strongly representable CAns with CmAtAi = Ai and A = Πi/UAi is not
strongly representable. Hence CmAtA /∈ SNrnCAω =

⋂
i∈ω SNrnCAn+i, so

CmAtA /∈ SNrnKl for all l > k, for some k ∈ ω, k > n. But for each
such l, Ai ∈ SNrnCAl(⊇ RCAn), so Ai is a sequence of algebras such that
CmAtAi = Ai ∈ SNrnCAl, but Cm(At(Πi/UAi)) = CmAtA /∈ SNrnCAl, for
all l ≥ k. That k has to be strictly greater than n + 1, follows because
SNrnCAn+1 is atom-canonical.

6. ⇐=: Let l < ω. Then the required follows from theorem 1.12, and
item (2) in Theorem 2.2 that there exists a countable A ∈ NrnCAl ∩ RCAn

such that CmAtA /∈ RCAn. Now we prove =⇒ : Assume for contradiction
that there is an A ∈ RCAω,ω

n ∩Count. Then by definition A ∈ NrnCAω, so by
[14, Theorem 5.3.6], we have A ∈ CRCAn. But this complete representation,
induces a(n ordinary) representation of CmAtA which is a contradiction.
Indeed by Lemma 1.10, if f : A → B is a complete representation of
A via f then one extends f to f̂ from CmAtA to B by defining f̂(a) =∑CmAtA

x∈AtA,x≤a f(x).

3. Non-elementary classes

Still Sd stands for the operation of forming dense subalgebras and for K a
class of BAOs, ScK = {B : (∃A ∈ K)(

∑A
X = 1 =⇒

∑B
X = 1}.

Theorem 3.1. Let 2 < n < ω. Any class between SdNrnCAω∩CRCAn and
ScNrnCAn+3 is not first order definable. Furthermore any class between
At(NrnCAω ∩ CRCAn) and At(ScNrnCAn+3) is not first order definable.

Proof: The proof is long and is divided into four parts:

(a) We define an ω-rounded (atomic) game H(α) played on so-called
atomic λ-neat hypernetworks-λ a ‘label’.

(b) If α is a countable atom structure, and ∃ has a winning strategy
in H(α), then any algebra F having atom structure α is completely
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representable, Cmα ∈ NrnCAω and α ∈ AtNrαCAω. In fact, there will
exist a complete D ∈ CAω such that Cmα ∼= NrnD and α ∼= AtNrnD,

(c) Then the game H will be applied to the atom structure of a rainbow-
like CAn denoted below by CZ,N. From a winning strategyof ∃ in
Hk(AtCZ,N) (where Hk is H truncated to k rounds) for all k ≤ ω–so
that Hω = H– it will follow that CZ,N ≡ Tmα for some completely
representable atom structure α ∈ At(NrnCAω), for which Cmα ∈
NrnCAω. On the other hand, we prove that ∀ has a winning strategy
in Gn+3(AtCZ,N), so by lemma 1.3 CZ,N /∈ ScNrnCAn+3.

(d) The term algebra Tmα will be used to show that any class between
SdNrnCAω ∩ CRCAn and ScNrnCAn+3 is not elementary.

(a) Defining the game Hk(k ≤ ω) which is H restricted to k rounds
This new game Hk is stronger than Gk. In Hk not only the moves are more
(which they are), but now the board of the play is different.

Fix k ≤ ω. The new game Hk is played on so-called λ-neat hypernet-
works, λ a ‘hyperlabel’ and it has k rounds. These are similar to m(< n)-
dimensional hypernetworks as defined in item(3) of definition 1.2; they are
roughly networks endowed with labelled hyperedges, whose length gets ar-
bitrarily long, but is still finite. Unlike m-dimensional hypernetworks here
the lengths of hyperedges are not uniformly bounded. So a hypernetwork
of an atomic A ∈ CAn has two parts (Na, Nh) where Na is network whose
n-hyperdges are labelled by atoms of A and Nh :<ω nodes(N) → Λ, where
hyperedges get their hyperlabels from a non-empty set (of hyperlabels) Λ.

There is a compatibility condition between Na and Nh which is a CA
analogue of condition (3) in [6, Definition 12.1] formulated for hypernet-
works of relation algebras. This condition for hypernetworks as defined in
[4], is given in [4, Definition 28]. The form for CAs needed is entirely analo-
gous to the condition in item (3) of definition 1.2. In any such hypernetwork
N = (Na, Nh), there are so-called short hyperedges and long hyperedges in
Nh. The hypernetworks whose short hyperedges are constantly labelled by
a hyperlabel λ ∈ Λ are called λ-neat hypernetworks. The game H offers
∀ three moves delivered by ∀ during the play. There is a cylindrifier move
analagous to the cylindrifier move in G adapted the obvious way to λ-neat
hypernetworks and two more amalgamation moves.

First amalgamation move: ∀ can play a transformation move by picking
a previously played λ-neat hypernetwork N and a partial, finite surjection
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θ : ω → nodes(N), this move is denoted (N, θ). ∃’s response is mandatory.
She must respond with Nθ.

Second amalgmation move: ∀ can play an amalgamation move by
picking previously played λ-neat hypernetworks M,N such that
M ↾nodes(M)∩nodes(N)= N ↾nodes(M)∩nodes(N), and nodes(M) ∩ nodes(N)
̸= ∅. This move is denoted (M,N). To make a legal response, ∃ must
play a λ-neat hypernetwork L extending M and N , where nodes(L) =
nodes(M) ∪ nodes(N).

(b) Forming the required ω-dilation D Fix some a ∈ α. The game
Hω is designed so that using ∃ s winning strategy in the game Hω(α) one
can define a nested sequence M0 ⊆M1, . . . of λ-neat hypernetworks where
M0 is ∃’s response to the initial ∀-move a, such that: IfMr is in the sequence
and Mr(x̄) ≤ cia for an atom a and some i < n, then there is s ≥ r and
d ∈ nodes(Ms) such that Ms(ȳ) = a, ȳi = d and ȳ ≡i x̄. In addition, if Mr

is in the sequence and θ is any partial isomorphism of Mr, then there is
s ≥ r and a partial isomorphism θ+ ofMs extending θ such that rng(θ+) ⊇
nodes(Mr) (This can be done using ∃’s responses to amalgamation moves).
Now let Ma be the limit of this sequence, that is Ma =

⋃
Mi, the labelling

of n−1 tuples of nodes by atoms, and hyperedges by hyperlabels done in the
obvious way using the fact that the Mis are nested. Let L be the signature
with one n-ary relation for each b ∈ α, and one k-ary predicate symbol for
each k-ary hyperlabel λ. Now we work in L∞,ω. For fixed fa ∈ ωnodes(Ma),
let Ua = {f ∈ ωnodes(Ma) : {i < ω : g(i) ̸= fa(i)} is finite}. We make Ua

into the base of an L relativized structure CAlMa like in [4, Theorem 29]
except that we allow a clause for infinitary disjunctions. In more detail, for
b ∈ α, l0, . . . , ln−1, i0 . . . , ik−1 < ω, k-ary hyperlabels λ, and all L-formulas
ϕ, ϕi, ψ, and f ∈ Ua:

CAlMa, f |= b(xl0 . . . , xln−1
) ⇐⇒ CAlMa(f(l0), . . . , f(ln−1)) = b,

CAlMa, f |= λ(xi0 , . . . , xik−1
) ⇐⇒ CAlMa(f(i0), . . . , f(ik−1)) = λ,

CAlMa, f |= ¬ϕ ⇐⇒ CAlMa, f ̸|= ϕ,

CAlMa, f |= (
∨
i∈I

ϕi) ⇐⇒ (∃i ∈ I)(CAlMa, f |= ϕi),

CAlMa, f |= ∃xiϕ ⇐⇒ CAlMa, f [i/m] |= ϕ,

some m ∈ nodes(CAlMa).
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For any such L-formula ϕ, write ϕCAlMa for {f ∈ Ua : CAlMa, f |= ϕ}.
Let Da = {ϕCAlMa : ϕ is an L-formula} and Da be the weak set algebra
with universe Da. Let D = Pa∈αDa. Then D is a generalized complete
weak set algebra [3, Definition 3.1.2 (iv)]. Now we show that α ∼= AtNrnD
and Cmα ∼= NrnD. Let x ∈ D. Then x = (xa : a ∈ α), where xa ∈ Da.
For b ∈ α let πb : D → Db be the projection map defined by πb(xa :
a ∈ α) = xb. Conversely, let ιa : Da → D be the embedding defined
by ιa(y) = (xb : b ∈ α), where xa = y and xb = 0 for b ̸= a. Suppose
x ∈ NrnD\{0}. Since x ̸= 0, then it has a non-zero component πa(x) ∈ Da,
for some a ∈ α. Assume that ∅ ̸= ϕ(xi0 , . . . , xik−1

)Da = πa(x), for some
L-formula ϕ(xi0 , . . . , xik−1

). We have ϕ(xi0 , . . . , xik−1
)Da ∈ NrnDa. Pick

f ∈ ϕ(xi0 , . . . , xik−1
)Da and assume that CAlMa, f |= b(x0, . . . xn−1) for

some b ∈ α. We show that b(x0, x1, . . . , xn−1)
Da ⊆ ϕ(xi0 , . . . , xik−1

)Da .
Take any g ∈ b(x0, x1 . . . , xn−1)

Da , so that CAlMa, g |= b(x0, . . . xn−1).
The map {(f(i), g(i)) : i < n} is a partial isomorphism of CAlMa. Here
that short hyperedges are constantly labelled by λ is used. This map
extends to a finite partial isomorphism θ of Ma whose domain includes
f(i0), . . . , f(ik−1). Let g

′ ∈ CAlMa be defined by

g′(i) =

{
θ(i) if i ∈ dom(θ)
g(i) otherwise

We have CAlMa, g
′ |= ϕ(xi0 , . . . , xik−1

). But g′(0) = θ(0) = g(0) and
similarly g′(n − 1) = g(n − 1), so g is identical to g′ over n and it differs
from g′ on only a finite set. Since ϕ(xi0 , . . . , xik−1

)Da ∈ NrnDa, we get
that CAlMa, g |= ϕ(xi0 , . . . , xik), so g ∈ ϕ(xi0 , . . . , xik−1

)Da (this can be
proved by induction on quantifier depth of formulas). This proves that

b(x0, x1 . . . xn−1)
Da ⊆ ϕ(xi0 , . . . , xik)

Da = πa(x),

and so

ιa(b(x0, x1, . . . xn−1)
Da) ≤ ιa(ϕ(xi0 , . . . , xik−1

)Da) ≤ x ∈ Da \ {0}.

Now every non-zero element x of NrnDa is above a non-zero element of
the following form ιa(b(x0, x1, . . . , xn−1)

Da) (some a, b ∈ α) and these are
the atoms of NrnDa. The map defined via b 7→ (b(x0, x1, . . . , xn−1)

Da :
a ∈ α) is an isomorphism of atom structures, so that α ∈ AtNrnCAω.

Let X ⊆ NrnD. Then by completeness of D, we get that d =
∑D

X
exists. Assume that i /∈ n, then cid = ci

∑
X =

∑
x∈X cix =

∑
X = d,
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because the cis are completely additive and cix = x, for all i /∈ n, since
x ∈ NrnD. We conclude that d ∈ NrnD, hence d is an upper bound of
X in NrnD. Since d =

∑D
x∈X X there can be no b ∈ NrnD (⊆ D) with

b < d such that b is an upper bound of X for else it will be an upper bound
of X in D. Thus

∑NrnD
x∈X X = d We have shown that NrnD is complete.

Making the legitimate identification NrnD ⊆d Cmα by density, we get that
NrnD = Cmα (since NrnD is complete), hence Cmα ∈ NrnCAω.

Finally, to show that any atomic algebra having atom structure α is
completely representable one can reason in one of the two following ways:

One: The game H is stronger than G and a winning strategyof ∃ in
G(α) implies that the atom structure α is completely representable, hence
any atomic algebra having the atom structure α will be completely repre-
sentable.

Two: The complex algebra Cmα has countably many atoms and is in
NrnCAω, so by the third item of theorem 1.4 it is completely representable.
Thus, any atomic algebra F sharing the atom structure α is also completely
representable.

(c) Applying H to a rainbow-like atom structure; excluding first
order definability of classes between SdNrnCAω ∩ CRCAn and
ScNrnCAn+3 We apply the new game H to the rainbow algebra CZ,N
based on the ordered structures Z and N. The reds R are the set {rij : i <
j < ω(= N)} and the green colours used constitute the set {gi : 1 ≤ i <
n − 1} ∪ {gi0 : i ∈ Z}. In complete coloured graphs the forbidden triples
are like the usual rainbow constructions based on Z and N, but we add a
forbidden triple in coloured graphs. The triple (gi0, g

j
0, rkl) is forbidden if

{(i, k), (j, l)} is not an order preserving partial function from Z → N. In
[15], it is shown that CZ,N ≡ B for some countableB ∈ ScNrnCAω∩CRCAn.
This is proved by showing that ∃ has a winning strategy in Gk(AtCZ,N) for
all k ∈ ω, hence using ultrapowers followed by an elementary chain argu-
ment (like the argument used in the proof of theorem 1.15), we get that
CZ,N ≡ B, and ∃ has a winning strategy in Gω(AtB), hence by [7, Theorem
3.3.3] B ∈ CRCAn ⊆ Sc(NrnCAω ∩At); the last inclusion follows from the
first item of theorem 1.4. With some significantly more effort one can prove
more: It can be shown that that ∃ can win the game Hk(AtCZ,N) which is
the gameH truncated to k rounds (on the same CZ,N based on Z andN) for
all k < ω. Recall that H is stronger than G hence Hk is stronger than Gk.
Using ultrapowers followed by an elementary chain argument, it follows ∃



Complete Representations and Neat Embeddings 445

has a winning strategy in H(α) for a countable atom structure α, such that
CZ,N ≡ Tmα. We show that ∀ has a winning strategy in the graph version
of the game Gn+3(AtCZ,N) played on coloured graphs [5]. The rough idea
here, is that, as is the case with winning strategy’s of ∀ in rainbow construc-
tions, ∀ bombards ∃ with cones having distinct green tints demanding a red
label from ∃ to appexes of succesive cones. The number of nodes are lim-
ited but ∀ has the option to re-use them, so this process will not end after
finitely many rounds. The added order preserving condition relating two
greens and a red, forces ∃ to choose red labels, one of whose indices form a
decreasing sequence in N. In ω many rounds ∀ forces a win, so by the first
item of lemma 1.3, CZ,N /∈ ScNrnCAn+3. More rigorously, ∀ plays as fol-
lows: In the initial round ∀ plays a graphM with nodes 0, 1, . . . , n−1 such
that M(i, j) = w0 for i < j < n− 1 and M(i, n− 1) = gi (i = 1, . . . , n− 2),
M(0, n − 1) = g00 and M(0, 1, . . . , n − 2) = yZ. This is a 0 cone. In the
following move ∀ chooses the base of the cone (0, . . . , n− 2) and demands
a node n with M2(i, n) = gi (i = 1, . . . , n − 2), and M2(0, n) = g−1

0 . ∃
must choose a label for the edge (n + 1, n) of M2. It must be a red atom
rmk, m, k ∈ N. Since −1 < 0, then by the ‘order preserving’ condition
we have m < k. In the next move ∀ plays the face (0, . . . , n − 2) and
demands a node n + 1, with M3(i, n) = gi (i = 1, . . . , n − 2), such that
M3(0, n + 2) = g−2

0 . Then M3(n + 1, n) and M3(n + 1, n − 1) both being
red, the indices must match. M3(n+1, n) = rlk andM3(n+1, r−1) = rkm
with l < m ∈ N. In the next round ∀ plays (0, 1, . . . n− 2) and re-uses the
node 2 such that M4(0, 2) = g−3

0 . This time we have M4(n, n − 1) = rjl
for some j < l < m ∈ N. Continuing in this manner leads to a decreasing
sequence in N. We have proved the required.

(d): Putting (a), (b), (c) together We get that CZ,N ≡ Tmα, where
α is a countable atom structure, such that α ∈ At(NrnCAω), any atomic
F ∈ CAn having atom structure α is completely representable, and
Cmα ∈ NrnCAω. So Tmα ⊆d Cmα ∈ NrnCAω, Tmα ∈ CRCAn and CZ,N /∈
ScNrnCAn+3. Let K be any class between SdNrnCAω ∩ CRCAn and
ScNrnCAn+3. Then CZ,N /∈ ScNrnCAn+3 ⊇ K. But CZ,N ≡ Tmα,
and Tmα ⊆d Cmα ∈ NrnCAω, and Tmα ∈ CRCAn, so Tmα ∈
SdNrnCAω ∩CRCAn ⊆ K. We have shown that Tmα ≡ CZ,N, Tmα ∈ K but
CZ,N /∈ K, and we are done.6

6Let m > n. It is easy to show that if D ∈ CAn and AtD ∈ ScNrnCAm, then
D ∈ ScNrnCAm. Since α ∈ At(NrnCAω), by the (contrapositive of the) above obser-
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We have also proved that any K between AtNrnCAω ∩ CRCAn

and AtScNrnCAn+3 is not elementary, because α ≡ AtCZ,N, α ∈
At(NrnCAω ∩ CRCAn) but AtCZ,N /∈ At(ScNrnCAn+3) lest CZ,N ∈
ScNrnCAn+3.

7

Remark 3.2. In forming the required ω-dilation D we made use of the
‘stronger part’ of the game H, involving the amalgamation moves on λ-neat
hypernetworks, where λ is the constant hyperlabel kept on short hypernet-
works to build the ω-dilation D which is a generalized weak set algebra of
dimension ω, that is a set algebra, whose top element is a disjoint union
of weak spaces of dimension ω; any such weak space is a set of sequences
that agree co-finitely with sequences in ωU (some non-empty set U). This
ω-dilation D can be (and was) described in a model theoretic framework.
Using ∃’s winning strategy in H, one builds an ω-dilation Da of Tmα for
every a ∈ α, based on a structure Ma in some signature specified above.
Strictly speaking, Ma is a weak model [13, Definition 3.2.1], where assign-
ments are required to agree co-finitely with a fixed sequence in ωMa. Thus
Da is a weak set algebra of dimension n with base Ma This weak model Ma

was taken in a signature L consisting of one n-ary relation for each b ∈ α
and a k-ary relation symbol for each hyperedge of length k labelled by λ.

For a ∈ α, the weak model Ma is the limit of the play Hω; in the sense
that Ma is the union of the λ-neat hypernetworks on α played during the
game Hω, with starting point the initial atom a that ∀ chose in the first
move. Labels for the edges and hyperedges in Ma were defined the obvious
way, inherited from the λ-neat hypernetworks played during the game;
these are nested so this labelling is well defined, giving an interpretation of
only the atomic formulas of L in Ma.

However, there is some freedom here in ‘completing’ the interpretation.
One can use any extension L, not necessarily a proper one, of Lω,ω as a
vehicle for constructing Da. The algebra Da constructed above was a weak

vation, AtCZ,N /∈ At(ScNrnCAn+3), and α ≡ AtCZ,N because an atom structure of an
atomic algebra is interpretable in the algebra, then we have already proved the required.
However, if AtD ∈ At(NrnCAm) for some D ∈ CAm and some m > n does not imply
that D ∈ NrnCAm, even if the Dedekind–MacNeille completion of D is in NrnCAm, cf.
the last item of Theorem 2.2.

7There is subtle distinction between NrnCAm and the larger ScNrnCAm for 1 < n <
m ≤ ω that we should point out and that is the following: While if AtA ∈ AtNrnKm

this does not imply that A ∈ NrnCAm; but on the contrary if AtA ∈ ScNrnCAm, then
A ∈ ScNrnCAm.
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set algebra of dimension ω consisting of L-formulas taken in the signature
L. The base of Da is Ma, and the set-theoretic operations of Da are
read off the semantics of the connectives avialable in L. In all cases, as
long as L contains Lω,ω as a fragment, we get that Tmα ⊆ NrnD, where
D = Pa∈αDa. There are three possibilites measuring ‘how close’ Tmα is
to NrnD. We go from the closest to the less close. Either (a) Tmα = NrnD
or (b) Tmα ⊆d NrnD or (c) Tmα ⊆c NrnD. It is reasonable to expect that
the stronger (the logic) L is, the ‘more control’ α has over the hitherto
obtained ω-dilation D; the closer Tmα is to the neat n-reduct of D based
on L-formulas.

Suppose we take L = Lω,ω. Then using the fact that in the λ-neat
hypernetworks played during the game H short hyperedges are constantly
labelled by λ, one shows that α ∼= AtNrnD; the isomorphism defined via
b 7→ (bDa(x0, . . . xn−1) : a ∈ α). But using L = L∞,ω in the same signature,
the resulting algebra D which is isomorphic to a generalized ω-dimensionl
weak set algebra in the sense of [3, Definition 3.1.2 (iv)] (with top element
the disjoint union of top elements of the Da) based on the (now) L∞,ω weak
models Ma taken in the same signature L, a ∈ α, will be complete. This is
so, because the Das are complete;

∑Da

i∈I ϕ
Da
i = (

∨
i∈I ϕi)

Da . Here ϕDa is
the set of all sequences s agreeing co-finitely with a fixed sequence in ωMa

such that Ma, s |= ϕ. So both D = Pa∈αDa and its n–neat reduct NrnD
will be complete. Accordingly, one makes the identification NrnD ⊆d Cmα.
By density, we get that NrnD = Cmα (since NrnD is complete), hence
Cmα ∈ NrnCAω and so we get (b) (and (c)) since Tmα ⊆d Cmα. Also
the property that α ∼= AtNrnD is plainly maintained when we passed from
Lω,ω to L∞,ω.

For a class K of algebras, we denote by K ∩ Count the class of
countable algebras in K. Observe that the game Hω ‘captures’ the class
At(NrnCAω) ∩ Count in the sense that if α is a countable atom structure
and ∃ has a winning strategy in Hω(α), then α ∈ At(NrnCAω). Con-
versely, it can be proved that if α ∈ At(NrnCAω ∩ Count), then ∃ has
winning strategy in a game with the same moves as H but played on
networks not λ-neat hypernetworks. However, Hω does not characterize
the class NrnCAω ∩ At ∩ Count for it can be shown that ∃ has a win-
ning strategy in Hω(AtB) where B is the atomic algebra used in item
(3) of Theorem 2.2, but B /∈ NrnCAn+1(⊇ NrnCAω); though (recall that)
AtB ∈ At(NrnCAω) and CmAtB ∈ NrnCAω. On the other hand, the usual
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ω-rounded atomic game G characterizes both the class CRCAn ∩ Count
and the class At(CRCAn ∩Count) (the class of countable completely repre-
sentable atom structures), and [7, Theorem 3.3.3].

Corollary 3.3. For any 2 < n < m, any class K such that

At(NrnCAm ∩ CRCAn) ⊆ K ⊆ AtScNrnCAn+3,

K is not elementary

Proof: . Let β be he atom structure of CZ,N. Then β ≡ α where α is an
atom structure such that Cmα ∈ NrnCAω and α ∈ At(NrnCAω∩CRCAn). So
if K is as in the hypothesis, then α ∈ K, β ≡ α, but β /∈ AtScNrnCAn+3 ⊇
K.

Corollary 3.4. Let 2 < n < ω and k ≥ 3. Then the following classes,
together with the intersection of any two of them, the last four taken at
the same k, are not elementary: CRCAn [5], NrnCAn+k [14, Theorem 5.4.1],
SdNrnCAn+k, ScNrnCAn+k.

4. Appendix

Theorem 4.1. Let 2 < m < n < ω. For any k ≥ 0, the variety
SNrmCAm+k+1 is not finitely axiomatizable over the variety SNrmCAm+k

and RCAm is not finitely axiomatizable over SNrmCAm+l for any 0 < l < ω.

Proof: Fix 2 < m < n < ω. Let C(m,n, r) be the algebra CA(H)
where H = Hn+1

m (A(n, r), ω)), is the CAm atom structure consisting of
all n + 1-wide m-dimensional wide ω hypernetworks [6, Definition 12.21]
on A(n, r) as defined in [6, Definition 15.2]. Furthermore, for any r ∈ ω
and 3 ≤ m ≤ n < ω, C(m,n, r) ∈ NrmCAn, C(m,n, r) /∈ SNrmCAn+1 and
Πr/UC(m,n, r) ∈ RCAm by [6, Corollaries 15.7, 5.10, Exercise 2, p. 484,
Remark 15.13]

Theorem 4.2. For 3 ≤ m ≤ n and r < ω there exists finite algebras
D(m,n, r) ∈ CAm.

1. D(m,n, r) ∈ NrmCAn,

2. D(m,n, r) ̸∈ SNrmCAn+1,

3. Πr/UD(m,n, r) is elementarily equivalent to a C ∈ NrmCAn+1.
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We define the algebras D(m,n, r) for 3 ≤ m ≤ n < ω and r and then
give a sketch of (II) given in detail in [9, pp. 211–215]. We start with.

Definition 4.3. Define a function κ : ω×ω → ω by κ(x, 0) = 0 (all x < ω)
and κ(x, y + 1) = 1 + x× κ(x, y)) (all x, y < ω). For n, r < ω let

ψ(n, r) = κ((n− 1)r, (n− 1)r) + 1.

This is to ensure that ψ(n, r) is sufficiently big compared to n, r for the
proof of non-embeddability to work. The second parameter r < ω may be
considered as a finite linear order of length r. For any n < ω and any linear
order r, let

B(n, r) = {Id} ∪ {ak(i, j) : i < n− 1; j ∈ r, k < ψ(n, r)}

where Id, ak(i, j) are distinct objects indexed by k, i, j. (So here every atom
a(i, j) is split into ψ(n, r) subatoms). The forbidden triples) are:

{(Id, b, c) : b ̸= c ∈ B(n, r)}
∪

{(ak(i, j), ak′
(i, j), ak

∗
(i, j′)) : k, k′, k∗ < ψ(n, r), i < n− 1, j′ ≤ j ∈ r}.

Let 3 ≤ m ≤ n < ω. The set of m-basic matrices on R is is a QEAm

atom structureMatm(AtR). D(m,n, r) is defined to be the complex algebra
of the m-dimensional atom structure Matm(AtR), that is, D(m,n, r) =
CmMatm(AtR). Unlike the algebras C(m,n, r) used to prove theorem 4.1,
the algebras D(m,n, r) are now finite. It is not hard to see that 3 ≤
m, 2 ≤ n and r < ω the algebra D(m,n, r) satisfies all of the axioms
defining CAm except, perhaps, the commutativity of cylindrifiers which
it satisfies because Matm(AtR) is a (symmetric) cylindric basis, so that
overlapping matrices amalgamate. Furthermore, if 3 ≤ m ≤ m′, then
D(m,n, r) ∼= NrmD(m′, n, r) via X 7→ {f ∈ Matm′(AtR) : f ↾m×m∈ X}.

We give a sketch of proof of 4.2(II), which is the heart and soul of
the proof. Assume hoping for a contradiction that D(m,n, r) ⊆ NrmC
for some C ∈ CAn+1, some finite m,n, r. Then for 1 ≤ t ≤ n + 1, it
can be shown inductively that there must be a ‘large set’ St of distinct
elements of C, satisfying certain inductive assumptions, which we outline
next. Here largness depends on t and weakens as t increases; for example
Sn has only two elements. For each s ∈ St and i, j < n + 2 there is an
element α(s, i, j) ∈ B(n, r) obtained from s by cylindrifying all dimensions
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in (n + 1) \ {i, j}, then using substitutions to replace i, j by 0, 1. It can
be shown that the triple (α(s, i, j), α(s, j, k), α(s, i, k)) is consistent (not
forbidden). The induction hypothesis says chiefly that cns is constant, for
s ∈ St, and for l < n there are fixed i < n − 1, j < r such that for
all s ∈ St, α(s, l, n) ≤ a(i, j). This defines, like in the proof of theorem
15.8 in [7, p. 471] , two functions I : n → (n − 1), J : n → r such
that α(s, l, n) ≤ a(I(l), J(l)) for all s ∈ St. The rank rk(I, J) of (I, J)
(as defined in [7, Definition 15.9]) is the sum (over i < n − 1) of the
maximum j with I(l) = i, J(l) = j (some l < n) or −1 if there is no such
j. From St one constructs a set St+1 with index functions (I ′, J ′), still
relatively large (large in terms of the number of times we need to repeat
the induction step) where the same induction hypotheses hold but where
rk(I ′, J ′) > rk(I, J). By repeating this enough times (more than nr times)
we obtain a non-empty set T with index functions of rank strictly greater
than (n−1)×(r−1), an impossibility. We sketch the induction step. Since I
cannot be injective there must be distinct l1, l2 < n such that I(l1) = I(l2)
and J(l1) ≤ J(l2). We may use l1 as a ”spare dimension” (changing the
index functions on l will not reduce the rank). Since cns is constant, we may
fix s0 ∈ St−1 and choose a new element s′ below cls0 · snl cls, with certain
properties. Let St+1 = {s′ : s ∈ St \ {s0}}. Re-establishing many of the
induction hypotheses for St+1 is not too hard. Also, it can be shown that
J ′(l) ≥ J(l) for all l < n. Since (α(s, i, j), α(s, j, k), α(s, i, k)) is consistent
and by the definition of the forbiden triples either rng(I ′) properly extends
rng(I) or there is l < n such that J ′(l) > J(l), hence rk(I ′, J ′) > rk(I, J).
The idea of constructing St+1 from St is given pictorially on [8, Figure 2,
p. 8] in the context of CAs. The essence of the ideas used in [8, 9] is
the same. Suppose we are at stage t. Then every x ∈ St gives a set of
colours (atoms) denoted in [8] by x(i, t) (i < t). One gets St+1 from St by
first ‘glueing together’ any two elements x, z of St, using t + 1 as a spare
dimension, first moving the tth co-ordinate of x to t+1 forming stt+1x. By
fixing z and varying x one gets a huge number of different elements. Their
(t, t+1)th colours cannot be controlled yet; they may not be the same. To
get over this hurdle, one uses the pigeon-hole principal to pick the still large
set St+1 in which the (t, t+ 1)th colour is fixed to be the same. ‘Largness’
enables one to do so.

We summarize next the essence of the idea used in the solution of
[3, Problem 2.12]:
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edges to the intermediate elements that are all connected to a bottom el-
ement. The number of elements (in this figure) is the number of colours
plus one. So one gets the same control as rainbow algebras provided by (the
second independent parameter) G. The key idea here is that the proof of
Ramsey in this context does not require an uncontrollable Ramsey number
of ‘spare dimensions’, which were the versions used by Monk and Mad-
dux before proving non finite axiomatizability but only one more than the
number of colours used.

For the above non-representable Monk-style algebras denoted by A(n, r),
3 ≤ m < n < ω and r ∈ ω, it is easy to see that ∃ cannot win the usual
infinite atomic game. But this time one can use ‘a hyperbasis game’ de-
noted by Gm,n+1

r in [6] with r denoting the number of rounds, to pin
point the leask k > n for which A(n, r) ‘stops to be representable’ get-
ting the sharper result we want. The game Gm,n+1

r is stronger than Gω,
involving additional amalgamation moves played on n+ 1-dimensional m-
wide hypernetworks. One can show that ∀ has a winning strategy in
Gm,n+1

r (AtA(n, r)), using exactly n + 1 nodes (for any r < ω), getting
the same control we get from rainbows using the parameter G, and in fact
the best possible. This is the approach adopted in [7]. Here A(n, r) has an
n-dimensional cylindric basis, but no n+1-dimensional hypebasis. Worthy
of note, is that the last condition is strictly stronger than ‘not having an
n+1-dimensional cylindric basis’. Relation algebras having n-dimensional
cylindric basis but no n + 1-dimensional cylindric basis were constructed
by Maddux. We refer to [8] for more. In the proof of theorem 4.1, one
uses that Πr/UC(m,n, r) ∈ RCAm. As stated in the last item of theorem
4.2, we do not guarantee that the ultraproduct on r of the D(m,n, r)s
(2 < m < n < ω) is representable. A standard Lös argument shows that
Πr/UC(m,n, r) ∼= C(m,n,Πr/Ur) and Πr/Ur contains an infinite ascending
sequence. Here one extends the definition of ψ by letting ψ(n, r) = ω, for
any infinite linear order r. The infinite algebra D(m,n, J) ∈ ElNrnCAn+1

when J is the infinite linear order as above. Since Πr/Ur is such, then we
get Πr/UD(m,n, r) ∈ ElNrmCAn+1(⊆ SNrmCAn+1), cf. [9, pp. 216–217].
This suffices to show that for any positive k, the variety SNrmCAm+k+1 is
not finitely axiomatizable over the variety SNrmCAm+k.

In Figure 2 in [8] there is a top element that is connected by coloured
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H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and

Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer,

Berlin, Heidelberg (2012), pp. 61–90, DOI: https://doi.org/10.1007/978-3-

642-35025-2 4.

[8] R. Hirsch, I. Hodkinson, R. Maddux, Relation algebra reducts of cylin-

dric algebras and an application to proof theory, Journal of Symbolic

Logic, vol. 67(1) (2002), pp. 197–213, DOI: https://doi.org/10.2178/jsl/

1190150037.

[9] R. Hirsch, T. Sayed Ahmed, The neat embedding problem for algebras other

than cylindric algebras and for infinite dimensions, Journal of Symbolic

Logic, vol. 79(1) (2014), pp. 208–222, DOI: https://doi.org/10.1017/jsl.

2013.20.

[10] I. Hodkinson, Atom structures of relation and cylindric algebras, Annals of

Pure and Applied Logic, vol. 89(2–3) (1997), pp. 117–148, DOI: https:

//doi.org/10.1016/S0168-0072(97)00015-8.

https://doi.org/10.1007/978-3-642-35025-2
https://doi.org/10.2178/jsl/1208358743
https://doi.org/10.1016/S0049-237X(08)70001-6
https://doi.org/10.2178/jsl/1185803629
https://doi.org/10.2307/2275574
https://doi.org/10.1016/S0049-237X(02)80054-4
https://doi.org/10.1007/978-3-642-35025-2_4
https://doi.org/10.1007/978-3-642-35025-2_4
https://doi.org/10.2178/jsl/1190150037
https://doi.org/10.2178/jsl/1190150037
https://doi.org/10.1017/jsl.2013.20
https://doi.org/10.1017/jsl.2013.20
https://doi.org/10.1016/S0168-0072(97)00015-8
https://doi.org/10.1016/S0168-0072(97)00015-8


Complete Representations and Neat Embeddings 453

[11] T. Sayed Ahmed, The class of neat reducts is not elementary, Logic

Journal of the IGPL, vol. 9(4) (2001), pp. 593–628, DOI: https:

//doi.org/10.1093/jigpal/9.4.593.

[12] T. Sayed Ahmed, Neat embedding is not sufficient for complete representa-

tions, Bulletin of the Section of Logic, vol. 36(1) (2007), pp. 29–36.

[13] T. Sayed Ahmed, Completions, complete representations and omitting types,
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Unity of Science. From Computing to Relativity Theory Through

Algebraic Logic, vol. 19 of Outstanding Contributions to Logic, Springer,

Cham (2021), pp. 347–359, DOI: https://doi.org/10.1007/978-3-030-64187-

0 14.
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