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Abstract

In abstract algebraic logic, many systems, such as those paraconsistent logics

taking inspiration from da Costa’s hierarchy, are not algebraizable by even the

broadest standard methodologies, as that of Blok and Pigozzi. However, these

logics can be semantically characterized by means of non-deterministic algebraic

structures such as Nmatrices, RNmatrices and swap structures. These structures

are based on multialgebras, which generalize algebras by allowing the result of

an operation to assume a non-empty set of values. This leads to an interest in

exploring the foundations of multialgebras applied to the study of logic systems.

It is well known from universal algebra that, for every signature Σ, there exist

algebras over Σ which are absolutely free, meaning that they do not satisfy any

identities or, alternatively, satisfy the universal mapping property for the class

of Σ-algebras. Furthermore, once we fix a cardinality of the generating set, they

are, up to isomorphisms, unique, and equal to algebras of terms (or propositional

formulas, in the context of logic). Equivalently, the forgetful functor, from the

category of Σ-algebras to Set, has a left adjoint. This result does not extend to

multialgebras. Not only multialgebras satisfying the universal mapping property

do not exist, but the forgetful functor U , from the category of Σ-multialgebras

to Set, does not have a left adjoint.

In this paper we generalize, in a natural way, algebras of terms to multi-

algebras of terms, whose family of submultialgebras enjoys many properties of

the former. One example is that, to every pair consisting of a function, from a

submultialgebra of a multialgebra of terms to another multialgebra, and a collec-

tion of choices (which selects how a homomorphism approaches indeterminacies),

there corresponds a unique homomorphism, what resembles the universal map-

ping property. Another example is that the multialgebras of terms are generated
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by a set that may be viewed as a strong basis, which we call the ground of

the multialgebra. Submultialgebras of multialgebras of terms are what we call

weakly free multialgebras. Finally, with these definitions at hand, we offer a sim-

ple proof that multialgebras with the universal mapping property for the class of

all multialgebras do not exist and that U does not have a left adjoint.

Keywords: Algebras of terms, universal mapping property, absolutely free alge-

bras, multialgebras, hyperalgebras, non-deterministic algebras, category of mul-

tialgebras, non-deterministic semantics.
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1. Introduction

An interesting and fruitful strategy in contemporary formal logic is trying
to find an algebraic counterpart for a given logic or family of logics. This
is the main goal of the area of mathematical logic known as algebraic logic,
or abstract algebraic logic (AAL) in a more general perspective.

The idea behind (traditional) algebraic logic is to develop an algebraic
study of a given class of models (algebras) associated to a given logic. For
instance, it can be insightful to study the relationship between Boolean
(Heyting, respectively) algebras and propositional classical (intuitionistic,
respectively) logic, while an important area of mathematical fuzzy logic
deals with the relationship between fuzzy logics and certain classes of resid-
uated lattices. In turn, AAL is more interested in analyzing and classify-
ing the algebraization methods per se. As one would expect, the scope of
(abstract) algebraic logic is far from being universal: there are important
classes of logics which lie outside the usual methods and techniques of AAL.

A good source of examples to this phenomenon can be found in the
field of paraconsistency. Because of this, certain classes of paraconsistent
logics, as the ones known as logics of formal inconsistency,1 are char-
acterized by means of semantics of non-deterministic character such as
non-deterministic matrices, Fidel structures or swap structures (see for
instance [3]). Besides giving a semantical characterization, as well as
a decision procedure, for these logics, such non-deterministic structures

1LFIs, introduced in [4] and coming from the tradition of da Costa’s approach to
paraconsistency ([9])



Weakly Free Multialgebras 111

constitute an interesting object of study by themselves (see, for instance,
[3, Chapter 6], [5] and [7]).

It is worth observing that non-deterministic matrix semantics (intro-
duced in [1]) and, more generally, swap structures semantics, are (classes
of) multialgebras equipped with a subset of designated elements of their
domains, what generalizes the very idea of logical matrices. Multialgebras,
also known as hyperalgebras or non-deterministic algebras, introduced in
[10], generalize the concept of algebra by replacing operations by multiop-
erations (or hyperoperations), whose results assume multiple values, that
is, a subset of the universe. Here, we will restrict ourselves to multialgebras
whose operations cannot return an empty set of values, which is a common
requirement when working with non-classical logics and their semantics.

In the realm of universal algebra, it is a well known result ([2]) that
there exist algebras A over a given signature Σ that satisfy the so-called
universal mapping property, for the class of all Σ-algebras, over some subset
X of their universe A. This property says that, for any other Σ-algebra
B with universe B and any function f : X → B, there exists exactly one
homomorphism f between A and B that extends f . Such algebras are
called (absolutely) free Σ-algebras generated by X. Moreover, any free
Σ-algebra generated by X is isomorphic to the Σ-algebra of terms over X,
which will be denoted here by T(Σ, X). Thus, free algebras are unique
up to isomorphisms. In the language of categories, the existence of free
Σ-algebras means that the forgetful functor U : Alg(Σ) → Set, from
the category of Σ-algebras to the category of sets, has a left adjoint F ,
associating to a set X any Σ-algebra with the universal mapping property
over X (which, as mentioned above, can be taken as being T(Σ, X)).

While algebras satisfying the universal mapping property always ex-
ist, and are (up to isomorphisms) algebras of terms, the situation is quite
different in the context of multialgebras. Indeed, it is well-known that mul-
tialgebras satisfying the universal mapping property do not exist, and so
the forgetful functor U : MAlg(Σ) → Set, from the category of multial-
gebras over the signature Σ to the category of sets, does not have a left
adjoint. This means that any possible “multialgebra of terms” generalizing
in some sense the notion of algebra of terms to the category of multial-
gebras necessarily will not satisfy the universal mapping property. A new
proof of this fact will be given in Section 4.
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The aim of this paper is proposing a very natural generalization to the
category of multialgebras of the concept of algebra of terms by means of a
family FT (Σ,V) of multialgebras of terms indexed by the cardinals κ > 0.
Any submultialgebra of a multialgebra of this family satisfies several equiv-
alent characterizations, which are necessarily weaker than the standard
characterization of absolutely free algebras by means of the universal map-
ping property. We propose the novel notion of weakly free Σ-multialgebras
as those multialgebras satisfying any, and therefore all, of these weaker
conditions. In particular, all of them are isomorphic to a submultialgebra
of a multialgebra in FT (Σ,V) for some V.

This paper is organized as follows: Section 2 proposes a natural notion
of multialgebras of (non-deterministic) terms. In Section 3, five equiva-
lent characterizations of the submultialgebras of multialgebras of terms are
given, which lead to the notion of weakly free multialgebras. In Section 4 we
apply one of the five characterizations obtained in Section 3 to offer a sim-
ple proof of the well-known result which states that the category MAlg(Σ)
of multialgebras does not have free objects. Finally, some conclusions are
provided in Section 5.

2. Multialgebras of non-deterministic terms

This section introduces the first main notion proposed in the paper: mul-
tialgebras of (non-deterministic) terms. As we shall see, a generalization
to the category of multialgebras of the concept of algebra of terms is at-
tained by means of a family of multialgebras of terms indexed by all the
cardinals κ > 0, instead of considering a single object. This reveals the
complexity required for adapting the notion of free objects to the category
of multialgebras: all the possible sizes for the outputs of the multioperators,
assuming that the outputs consist of sets of terms instead of terms, should
be considered. In this sense, κ represents the maximum of such sizes in a
given multialgebra of terms. Before introducing the definition itself, some
standard notions will be recalled.

A signature is a collection Σ = {Σn}n∈N of (possibly empty) pairwise
disjoint sets Σn. Elements of Σn are functional symbols of arity n. We
will denote by Σ either the collection itself or, when there is no risk of
confusion, the set

⋃
n∈N Σn.
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A Σ-multialgebra, or multialgebra, is a pair A = (A, {σA}σ∈Σ), where
A is a non-empty set (the universe of A) and {σA}σ∈Σ is a collection of
functions indexed by

⋃
n∈N Σn such that, if σ ∈ Σn, σA is a function of the

form
σA : An → P(A) \ {∅},

that is, an n−ary function from A to the set of non-empty subsets of A.
A homomorphism between two Σ-multialgebras A = (A, {σA}σ∈Σ) and

B = (B, {σB}σ∈Σ) is a function f : A→ B such that, for all n ∈ N, σ ∈ Σn
and elements a1, . . . , an ∈ A,

{f(a) : a ∈ σA(a1, . . . , an)} ⊆ σB(f(a1), . . . , f(an)).

When in the previous relation we replace inclusion by equality, we say
that f is a full homomorphism. To denote that the function f is a ho-
momorphism from A to B, we write f : A → B. If the homomorphism
f : A → B is injective, we call it a monomorphism and, if it is surjective,
we call it an epimorphism. A bijective full homomorphism will be called
an isomorphism.

The class of all Σ-multialgebras, equipped with the homomorphisms
between them (where composition and identity homomorphisms are as in
the category of sets), becomes the category MAlg(Σ). In this category,
the epics are precisely the epimorphisms, while any monomorphism is a
monic. In turn, isomorphisms, as defined above, are exactly the isomor-
phisms in the categorical sense (see, for instance, [5], Section 2). Notice,
however, that is not known whether all monics are monomorphisms. Any
standard Σ-algebra can be seen as a Σ-multialgebra in which the operators
return singletons. It is easy to see that the category of Σ-algebras is a full
subcategory of MAlg(Σ).

Given two Σ-multialgebras A = (A, {σA}σ∈Σ) and B = (B, {σB}σ∈Σ)
such that B ⊆ A, we say B is a submultialgebra of A if the identity function
id : B → A is a homomorphism from B to A (being therefore a monic).
That is, for every b1, . . . , bn ∈ B,

σB(b1, . . . , bn) ⊆ σA(b1, . . . , bn).

Given a set V of variables and a signature Σ = {Σn}n∈N, the algebra of
terms generated by V over Σ will be denoted by T(Σ,V), and its universe
will be denoted by T (Σ,V). The set T (Σ,V) is the smallest subset X of
the set of finite, non-empty sequences over V ∪

⋃
n∈N Σn such that:
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1. V ∪ Σ0 ⊆ X;

2. σα1 . . . αn ∈ X, whenever n ≥ 1, σ ∈ Σn and α1, . . . , αn in X.

The set T (Σ,V) becomes the Σ-algebra T(Σ,V) when we define, for any
σ ∈ Σn and terms α1, . . . , αn in T (Σ,V),

σT(Σ,V)(α1, . . . , αn) = σα1 . . . αn.

We define the order (or complexity) o(α) of a term α of T(Σ,V) as:
o(α) = 0 if α ∈ V ∪ Σ0; and o(σα1 . . . αn) = 1 + max{o(α1), . . . , o(αn)}.

Definition 2.1. Given a signature Σ and a cardinal κ > 0, the expanded
signature Σκ = {Σκn}n∈N is the signature such that Σκn = Σn×κ, where we
will denote the pair (σ, β) by σβ for σ ∈ Σ and β ∈ κ.

We demand that κ is greater than zero, which guarantees that, if Σ is
non-empty, so is Σκ.

Definition 2.2. Given a set of variables V, a signature Σ and a cardi-
nal κ > 0, we define the κ-branching Σ-multialgebra of non-deterministic
terms, or simply κ-branching multialgebra of terms, when Σ is obvious
from the context, as

mT(Σ,V, κ) = (T (Σκ,V), {σmT(Σ,V,κ)}σ∈Σ),

with universe T (Σκ,V) and such that, for σ∈Σn and α1, . . . , αn∈T (Σκ,V),

σmT(Σ,V,κ)(α1, . . . , αn) = {σβα1 . . . αn : β ∈ κ}.

Let FT (Σ,V) = (mT(Σ,V, κ))κ≥1 be the family of such multialgebras of
terms.

The intuition behind this definition is that connecting given terms
α1, . . . , αn with a functional symbol σ can, in a broader interpretation
taking into account non-determinism, return many terms with the same
general shape, namely σα1 . . . αn. All of such terms are constructed with
functional symbols σβ , and the collection of them (for β ∈ κ) corresponds
to the non-deterministic term generated from the given input.

In the general case, not all functional symbols should return the same
number κ of generalized terms. Because of this, the submultialgebras of
mT(Σ,V, κ) will be considered, where the cardinality of the outputs will
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vary as long as it is bounded by κ. Here, we will restrict ourselves to the
cases where Σ0 6= ∅ or V 6= ∅, so that mT(Σ,V, κ) is always well defined.

The order of an element α of mT(Σ,V, κ) is, by definition, its order as
an element of T (Σκ,V). Notice that, if

σmT(Σ,V,κ)(α1, . . . , αn) ∩ θmT(Σ,V,κ)(β1, . . . , βm) 6= ∅,

then σ = θ, n = m and α1 = β1, . . . , αn = βm, since if the intersection is
not empty there are β, γ ∈ κ such that σβα1 . . . αn = θγβ1 . . . βm and by
the structure of T (Σκ,V) we find that σβ = θγ .

Example 2.3. The Σ-algebras of terms T(Σ,V), when considered as mul-
tialgebras such that σT(Σ,V)(α1, . . . , αn) = {σα1 . . . αn}, are multialgebras
of terms, with κ = 1. That is, T(Σ,V) and mT(Σ,V, 1) are isomorphic.

From now on, the cardinal of a set X will be denoted by |X|.

Example 2.4. A directed graph is a pair (V,A), with V a non-empty set of
elements called vertices and A ⊆ V 2 a set of elements called arrows. We
say that there is an arrow from u to v, both in V , if (u, v) ∈ A. We say
that the n-tuple (v1, . . . , vn) is a path between u and v if u = v1, v = vn
and (vi, vi+1) ∈ A for every i ∈ {1, . . . , n − 1}. We say that u ∈ V has a
successor if there exists v ∈ V such that (u, v) ∈ A, and u has a predecessor
if there exists v ∈ V such that (v, u) ∈ A.

A directed graph F = (V,A) is a forest if, for any two u, v ∈ V , there
exists at most one path between u and v, and a forest is said to have height
ω if every vertex has a successor. We state that forests of height ω are in
bijection with the submultialgebras of the multialgebras of terms over the
signature Σs with exactly one operator s of arity 1.

Indeed, take as V the set of elements of F that have no predecessor and
define, for u ∈ V ,

sA(u) = {v ∈ V : (u, v) ∈ A}.

It is easy to see that the Σs-multialgebra A = (V, {sA}), submultialgebra
of mT(Σs,V, |V |), carries the same information that F .

Example 2.5. More generally, a directed multi-graph [6], or directed m-
graph, is a pair (V,A) with V a non-empty set of vertices and A a subset of
V +×V , where V + =

⋃
n∈N\{0} V

n is the set of finite, non-empty, sequences

over V . We will say that (v1, . . . , vn) is a path between u and v if u = v1,
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v = vn and, for every i ∈ {1, . . . , n− 1}, there exists vi1 , . . . , vim such that
((vi1 , . . . , vim), vi+1) is in A, with vi = vij for some j ∈ {1, . . . ,m}.

An m-forest is a directed m-graph such that any two elements are con-
nected by at most one path, and an m-forest is said to have n-height ω,
for n ∈ N \ {0}, if, for any (u1, . . . , un) ∈ V n, there exists v ∈ V such
that ((u1, . . . , un), v) ∈ A. Finally, we see that every m-forest F = (V,A)
with n-height ω, for every n ∈ S ⊆ N \ {∅}, is essentially equivalent to the
ΣS-multialgebra A = (V, {σA}σ∈ΣS

), with

σA(u1, . . . , un) = {v ∈ V : ((u1, . . . , un), v) ∈ A},

for σ of arity n, and ΣS the signature with exactly one operator of arity
n for every n ∈ S. It is not hard to see that A is a submultialgebra
of mT(ΣS ,V, |V |), with V the set of elements v of V such that, for no
(u1, . . . , un) ∈ V +, ((u1, . . . , un), v) ∈ A.

3. Being a submultialgebra of mT(Σ,V , κ) as. . .

The class of submultialgebras of the members of FT (Σ, V) = 
(mT(Σ, V, κ))κ≥1 is proposed to be the generalization of the free Σ-algebras 
to the category MAlg(Σ) of multialgebras. Because of this, the next step 
is to characterize the submultialgebras of mT(Σ, V, κ). In this section, 
five different characterizations of such multialgebras will be found, proving 
that all of them are equivalent (see Theorem 3.42). From this we arrive to 
the second main notion proposed in this paper: weakly free multialgebras 
over Σ.

3.1. . . . being cdf-generated

In universal algebra, the algebras of terms T(Σ,V) have the universal map-
ping property for the class of all Σ-algebras over V. This means that there
exists a set, in their case the set of variables V, such that, for every other
Σ-algebra B with universe B and function f : V → B, there exists a unique
homomorphism f : T(Σ,V) → B extending f . As we mentioned before,
this is no longer true when dealing with multialgebras, but we can define
a closely related concept with the aid of what we will call collections of
choices.
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Collections of choices are motivated by the notion of legal valuations,
first defined in Avron and Lev’s seminal paper [1] in the context of non-
deterministic logical matrices. A map ν from T(Σ,V) (seen as the alge-
bra of propositional formulas over Σ generated by V) to the universe of a
Σ-multialgebra A is a legal valuation whenever ν(σα1 . . . αn) ∈
σA(ν(α1), . . . , ν(αn)), for any connective σ in Σ. Essentially, for any for-
mula σα1 . . . αn, ν “chooses” a value from all the possible values
σA(ν(α1), . . . , ν(αn)), possible values which depend themselves on the pre-
vious choices ν(α1), . . . , ν(αn) performed by ν.

A collection of choices automatizes all these aforementioned choices,
what justifies its name.

Definition 3.1. Given multialgebras A = (A, {σA}σ∈Σ) and B =
(B, {σB}σ∈Σ) over the signature Σ, a collection of choices from A to B
is a collection C = {Cn}n∈N of collections of functions

Cn =
{
Cσb1,...,bna1,...,an : σ ∈ Σn, a1, . . . , an ∈ A, b1, . . . , bn ∈ B

}
such that, for σ ∈ Σn, a1, . . . , an ∈ A and b1, . . . , bn ∈ B, Cσb1,...,bna1,...,an is a
function of the form

Cσb1,...,bna1,...,an : σA(a1, . . . , an)→ σB(b1, . . . , bn).

Example 3.2. If B is actually an algebra, that is, all its operations return
singletons, there exists only one collection of choices from any A to B. This
means that in the classical environment of universal algebras, collections
of choices are somewhat irrelevant.

Example 3.3. A directed tree is a directed forest where there exists exactly
one element without predecessor. We say that v ramifies from u if there
exists an arrow from u to v. Then, for a collection of choices C from T1

to T2 (T1 = (V1, A1) and T2 = (V2, A2) are directed trees of height ω,
considered as Σs-multialgebras) and for every v ∈ V1 and u ∈ V2, the
function Csuv chooses, for each of the elements that ramify from v, one
element that ramifies from u.

Definition 3.4. Given a signature Σ, a Σ-multialgebra A = (A, {σA}σ∈Σ)
is choice-dependent freely generated by X if X ⊆ A and, for all Σ-multial-
gebras B = (B, {σB}σ∈Σ), all functions f : X → B and all collections of
choices C from A to B, there is a unique homomorphism fC : A → B such
that:
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1. fC |X = f ;

2. for all σ ∈ Σn and a1, . . . , an ∈ A,

fC |σA(a1,...,an) = CσfC(a1),...,fC(an)
a1,...,an .

For simplicity, when A is choice-dependent freely generated by X, we
will say that A is cdf-generated by X.

In the next definition, we introduce the concept of ground to indicate
what elements of a multialgebra are not “achieved” by its multioperations.
To better visualize this definition one can keep in mind that the ground of
an algebra of terms is its set of indecomposable terms, that is, variables.

Definition 3.5. Given a Σ-multialgebra A = (A, {σA}σ∈Σ), we define its
build as

B(A) =
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn, a1, . . . , an ∈ A
}
.

We define the ground of A as

G(A) = A \B(A).

Example 3.6. B(T(Σ,V)) = T (Σ,V) \ V and G(T(Σ,V)) = V.

Example 3.7. If F = (V,A) is a directed forest of height ω, thought as a
Σs-multialgebra, its ground is the set of elements v in V without predeces-
sors.

Proposition 3.8.

1. If f : A → B is a homomorphism between Σ-multialgebras, then
B(A) ⊆ f−1(B(B)) and f−1(G(B)) ⊆ G(A);

2. If B is a submultialgebra of A, B(B) ⊆ B(A) and G(A)∩B ⊆ G(B).

Proof:

1. If a ∈ B(A), there exist σ ∈ Σn and a1, . . . , an ∈ A such that a ∈
σA(a1, . . . , an). Since f(σA(a1, . . . , an)) ⊆ σB(f(a1), . . . , f(an)), we
find that f(a) ∈ σB(f(a1), . . . , f(an)) and therefore f(a) ∈ B(B),
meaning that a ∈ f−1(B(B)). Using that G(A) = A \ B(A) we
obtain the second mentioned inclusion.
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2. If b ∈ B(B), there exist σ ∈ Σn and b1, . . . , bn ∈ B such that
b ∈ σB(b1, . . . , bn), and given that σB(b1, . . . , bn) ⊆ σA(b1, . . . , bn) we
obtain b ∈ B(A). Using again that G(A) = A \ B(A) we finish the
proof.

From this it also follows that if f : A → B is a homomorphism, G(B)∩
f(A) is contained in {f(a) : a ∈ G(A)}. Indeed, if b is in G(B)∩f(A), any
a ∈ A such that f(a) = b is in f−1(G(B)) and, by the previous proposition,
is also in G(A). And therefore b is in {f(a) : a ∈ G(A)}.

Generalizing Example 3.6, we have that G(mT(Σ,V, κ)) = V, or equiv-
alently B(mT(Σ,V, κ)) = T (Σκ,V) \ V, what we show by induction. If α
is of order 0, either we have α = σβ , for a σ ∈ Σ0 and β ∈ κ, and therefore
α ∈ B(mT(Σ,V, κ)); or we have that α = p ∈ V. In that last case, if there
exist σ ∈ Σm and α1, . . . , αm ∈ T (Σκ,V) such that

p ∈ σmT(Σ,V,κ)(α1, . . . , αm),

we have p = σβα1 . . . αm for β ∈ κ, which is absurd given the structure of
T (Σκ,V), forcing us to conclude that p /∈ B(mT(Σ,V, κ)). If α is of order
n > 0, we have that α = σβα1 . . . αm for σ ∈ Σm, β ∈ κ and α1, . . . , αm of
order at most n − 1, and therefore we have α in σmT(Σ,V,κ)(α1, . . . , αm),
meaning that α ∈ B(mT(Σ,V, κ)).

Definition 3.9. Given a Σ-multialgebra A = (A, {σA}σ∈Σ) and a set
S ⊆ A, we define the sets 〈S〉m by induction: 〈S〉0 = S ∪

⋃
σ∈Σ0

σA; and
assuming we have defined 〈S〉m, we define

〈S〉m+1 = 〈S〉m∪
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn, a1, . . . , an ∈ 〈S〉m
}
.

The set generated by S, denoted by 〈S〉, is then defined as 〈S〉 =
⋃
m∈N〈S〉m.

We say A is generated by S if 〈S〉 = A.

Lemma 3.10. Every submultialgebra A of mT(Σ,V, κ) is generated
by G(A).

Proof: Suppose a is an element of A not contained in 〈G(A)〉 of minimum
order. Given that a cannot belong to G(A) ∪

⋃
σ∈Σ0

σA = 〈G(A)〉0, there
exist n > 0, σ ∈ Σn and a1, . . . , an ∈ A such that a ∈ σA(a1, . . . , an).
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Since σA(a1, . . . , an) ⊆ σmT(Σ,X,κ)(a1, . . . , an) we derive that a1, . . . , an
are of smaller order than a. By our hypothesis, there must exist m1, . . . ,mn

such that aj ∈〈G(A)〉mj
for all j∈{1, . . . , n}; taking m=max{m1, . . . ,mn}

one obtains that a1, . . . , an ∈ 〈G(A)〉m, and therefore

a ∈ σA(a1, . . . , an) ⊆ 〈G(A)〉m+1,

which contradicts our assumption that a is not in 〈G(A)〉.
Theorem 3.11. Every submultialgebra A of mT(Σ,V, κ) is cdf-generated
by G(A).

Proof: Let A = (A, {σA}Σ) be a submultialgebra of mT(Σ,V, κ), let
B = (B, {σB}Σ) be any Σ-multialgebra, let f : G(A) → B be a function
and C a collection of choices from A to B. We define fC : A → B by
induction on 〈G(A)〉m:

1. if a ∈ 〈G(A)〉0 and a ∈ G(A), we define fC(a) = f(a);

2. if a ∈ 〈G(A)〉0 and a ∈ σA, for some σ ∈ Σ0, we define fC(a) =
Cσ(a);

3. if fC is defined for all elements of 〈G(A)〉m, a1, . . . , an ∈ 〈G(A)〉m
and σ ∈ Σn, for every element a ∈ σA(a1, . . . , an) we define

fC(a) = CσfC(a1),...,fC(an)
a1,...,an (a).

First, we must prove that fC is well defined. There are two possibly
problematic cases to consider for an element a ∈ A:

1. the one in which a ∈ G(A) and there are σ ∈ Σn and a1, . . . , an ∈ A
with a ∈ σA(a1, . . . , an), corresponding to a falling simultaneously in
the cases (1) and (2), or (1) and (3) of the definition;

2. and the one where there are σ ∈ Σn, θ ∈ Σm, a1, . . . , an ∈ A and
b1, . . . , bm ∈ A such that a ∈ σA(a1, . . . , an) and a ∈ θA(b1, . . . , bm),
a situation that corresponds to the cases (2) and (3), (2) and (2),2 or
(3) and (3)3 occurring simultaneously.

2That is, a ∈ 〈G(A)〉0, and a ∈ σA and a ∈ θA, for different σ, θ ∈ Σ0, where
defining fC(a) as both Cσ(a) and Cθ(a) could be impossible.

3That is, fC is defined for all of 〈G(A)〉k, a1, . . . , an, b1, . . . , bm ∈ 〈G(A)〉k, and
a ∈ σA(a1, . . . , an) and a ∈ θA(b1, . . . , bm), for σ ∈ Σn and θ ∈ Σm, meaning it could
be impossible to define fC(a) in a systematic way.
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The first case is not possible, since G(A) ⊆ A\σA(a1, . . . , an) for every
σ ∈ Σn and a1, . . . , an ∈ A. In the second case, we find that

a ∈ σA(a1, . . . , an) ∩ θA(b1, . . . , bm) ⊆
σmT(Σ,V,κ)(a1, . . . , an) ∩ θmT(Σ,V,κ)(b1, . . . , bm),

so n = m, σ = θ and a1 = b1, . . . , an = bm, and therefore fC(a) is well-
defined.

Second, we must prove that fC is defined over all of A. That is simple,
for fC is defined over all of 〈G(A)〉 and we established in Lemma 3.10 that
A = 〈G(A)〉.

So fC : A→ B is a well-defined function. It remains to be shown that
it is a homomorphism. So, given σ ∈ Σn and a1, . . . , an, we see that

fC(σA(a1, . . . , an)) =
{
CσfC(a1),...,fC(an)

a1,...,an (a) : a ∈ σA(a1, . . . , an)
}

⊆ σB(fC(a1), . . . , fC(an)),

while we also have that fC clearly extends both f and all Cσ
fC(a1,...,fC(an)
a1,...,an .

To finish the proof, suppose g : A → B is another homomorphism

extending both f and all Cσ
g(a1,...,g(an)
a1,...,an . We will prove that g = fC again

by induction on the m of 〈G(A)〉m. For m = 0, an element a ∈ 〈G(A)〉0 is
either in G(A), when we have g(a) = f(a) = fC(a), or in σA for a σ ∈ Σ0,
when g(a) = Cσ(a) = fC(a).

Suppose g is equal to fC in 〈G(A)〉m and take an a ∈ 〈G(A)〉m+1 \
〈G(A)〉m. Then, there exist σ ∈ Σn and a1, . . . , an ∈ 〈G(A)〉m such that
a ∈ σA(a1, . . . , an) and so

g(a) = Cσg(a1),...,g(an)
a1,...,an (a) = CσfC(a1),...,fC(an)

a1,...,an (a) = fC(a).

This proves that g = fC and that, in fact, fC is unique. That is, A is
cdf-generated by G(A).

The proof of the following lemma may be found in Section 2 of [5].

Lemma 3.12. Let A = (A, {σA}σ∈Σ) and B = (B, {σB}σ∈Σ) be Σ-multi-
algebras, and let f : A → B be a homomorphism. Then, the structure
C = (f(A), {σC}σ∈Σ) such that

σC(c1, . . . , cn) =
⋃
{f(σA(a1, . . . , an)) : f(a1) = c1, . . . , f(an) = cn}
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is a Σ-submultialgebra of B, while f : A → C is an epimorphism. The
Σ-multialgebra C is known as the direct image of A trough f .

Theorem 3.13. If the multialgebra A = (A, {σA}σ∈Σ) over Σ is cdf-
generated by X, then A is isomorphic to a submultialgebra of mT(Σ, X, |A|)
containing X.

Proof: Take f : X → T (Σ|A|, X) to be the identity map (that is, f(x) =
x), and take a collection of choices C such that, for σ ∈ Σn, a1, . . . , an ∈ A
and α1, . . . , αn ∈ T (Σ|A|, X),

Cσα1,...,αn
a1,...,an : σA(a1, . . . , an)→ σmT(Σ,X,|A|)(α1, . . . , αn)

is an injective function. Such collection of choices exists since
σA(a1, . . . , an) ⊆ A and σmT(Σ,X,|A|)(α1, . . . , αn) is of cardinality |A|. Since
A is cdf-generated by X, there exists a homomorphism

fC : A →mT(Σ, X, |A|) extending f and each Cσ
fC(a1),...,fC(an)
a1,...,an .

Let B = (fC(A), {σB}σ∈Σ) be the direct image of A trough fC , so that
fC : A → B is an epimorphism, what is possible given Lemma 3.12. Notice
too that

X = X ∩ fC(A) = G(mT(Σ, X, |A|)) ∩ fC(A) ⊆ G(B)

because B is a submultialgebra of mT(Σ, X, |A|). Now, take any g :
G(B) → A such that g(x) = x, for every x ∈ X, and a collection of
choices D from B to A such that, for any σ ∈ Σn, b1, . . . , bn ∈ fC(A) and
a1, . . . , an ∈ A, the function

Dσa1,...,anb1,...,bn
: σB(b1, . . . , bn)→ σA(a1, . . . , an)

satisfies the following: if a ∈ σA(a1, . . . , an) is such that Cσb1,...,bna1,...,an(a) ∈
σB(b1, . . . , bn), then Dσa1,...,anb1,...,bn

(Cσb1,...,bna1,...,an(a)) = a. Given that Cσb1,...,bna1,...,an
is injective, this condition is well-defined.

Since B is cdf-generated by G(B), we know there exists a homomor-

phism gD : B → A extending g and the functions Dσ
gD(b1),...,gD(bn)
b1,...,bn

.
Finally, we take gD ◦ fC : A → A. It extends the injection id = g ◦ f :

X → A, for which id(x) = x. It also extends the collection of choices E
defined by
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Eσ
a′1,...,a

′
n

a1,...,an = Dσ
a′1,...,a

′
n

fC(a1),...,fC(an) ◦ C
fC(a1),...,fC(an)
a1,...,an :

σA(a1, . . . , an)→ σA(a′1, . . . , a
′
n),

for σ ∈ Σn and a1, . . . an, a
′
1, . . . , a

′
n ∈ A. This way, Eσa1,...,ana1,...,an is the

identity on σA(a1, . . . , an). Indeed, for any a ∈ σA(a1, . . . , an),

CσfC(a1),...,fC(an)
a1,...,an (a) = fC(a)

by definition of fC , and, given that fC : A → B is a homomorphism, fC(a)

belongs to σB(fC(a1), . . . , fC(an)), meaning that Cσ
fC(a1),...,fC(an)
a1,...,an (a) ∈

σB(fC(a1), . . . , fC(an)). Then

Eσa1,...,ana1,...,an (a) = Dσa1,...,anfC(a1),...,fC(an)(C
fC(a1),...,fC(an)
a1,...,an (a)) = a

by the definition of D.
But notice that the identical homomorphism I : A → A also extends

both id and E and, given the uniqueness of such extensions on the definition
of being cdf-generated, we obtain that I = gD ◦ fC . The fact that fC :
A → B has a left inverse implies that it is injective, and by definition of B
it is also surjective, meaning that it is a bijective function. Moreover, gD
is the inverse function of fC . Finally, for σ ∈ Σn and a1, . . . , an ∈ A,

fC(σA(a1, . . . , an)) ⊆ σB(fC(a1), . . . , fC(an)),

since fC is a homomorphism. However, given that gD is also a homomor-
phism,

gD(σB(fC(a1), . . . , fC(an))) ⊆ σA(gD ◦ fC(a1), . . . , gD ◦ fC(an))

= σA(a1, . . . , an),

and by applying fC to both sides, one obtains

σB(fC(a1), . . . , fC(an)) = fC(gD(σB(fC(a1), . . . , fC(an))))

⊆ fC(σA(a1, . . . , an)).

This proves that fC is a bijective full homomorphism, that is, an isomor-
phism.
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Notice that, from the proof above, we can see that if A = (A, {σA}σ∈Σ)
is cdf-generated by X, then A is in fact isomorphic to a submultialgebra
of mT(Σ, X,M(A)), where

M(A) = max
{
|σA(a1, . . . , an)| : n ∈ N, σ ∈ Σn, a1, . . . , an ∈ A

}
.

It is clear that M(A) = κ for the multialgebra A = mT(Σ,V, κ). The
value M(A) has been already regarded in the literature as an important
aspect of multialgebras, see [8] (observe, however, that their definition of
homomorphism is quite different from ours).

Notice, furthermore, that written in classical terms, the previous Theo-
rems 3.11 and 3.13 state a well known result: an algebra is absolutely free
iff it is isomorphic to some algebra of terms over the same signature.

Corollary 3.14. Every cdf-generated multialgebra A is generated by its
ground G(A).

Proof: Since every cdf-generated multialgebra is isomorphic to a sub-
multialgebra of some mT(Σ, X, κ), from 3.13, and every submultialgebra
of mT(Σ, X, κ) is generated by its ground, the result follows.

Corollary 3.15. Every cdf-generated multialgebra A is cdf-generated
by its ground G(A).

Definition 3.16. A Σ-multialgebra A = (A, {σA}σ∈Σ) is said to be dis-
connected if, for every σ ∈ Σn, θ ∈ Σm, a1, . . . , an, b1, . . . , bm ∈ A,

σA(a1, . . . , an) ∩ θA(b1, . . . , bm) 6= ∅

implies that n = m, σ = θ and a1 = b1, . . . , an = bm.

Example 3.17. T(Σ,V) is disconnected.

Example 3.18. All directed forests of height ω, when considered as Σs-mul-
tialgebras, are disconnected, given that no two arrows point to the same
element.

It is clear that if B is a submultialgebra of A and A is disconnected,
then B is also disconnected, since if σB(a1, . . . , an)∩θB(b1, . . . , bm) 6= ∅, for
a1, . . . , an, b1, . . . , bm ∈ B, given that σB(a1, . . . , an) ⊆ σA(a1, . . . , an) and
θB(b1, . . . , bm) ⊆ θA(b1, . . . , bm), we find that σA(a1, . . . , an) ∩
θA(b1, . . . , bm) 6= ∅ and therefore n = m, σ = θ and a1 = b1, . . . , an = bm.
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We noticed before that mT(Σ,V, κ) is disconnected, and by Theo-
rem 3.13 we obtain that every cdf−generated algebra is disconnected. This
also means something deeper: being disconnected is, in a way, a measure
of how free of identities a multialgebra is. After all, the fact that no two
multioperations agree on any elements is strongly indicative that the mul-
tialgebra does not satisfy any identities.

3.2. . . . being disconnected and generated by its ground

Now, we continue to look at other possible characterizations of the submul-
tialgebras of the multialgebras of terms. One sees that algebras of terms
do not have identities, what would partially correspond in our study to the
concept of being disconnected. But what is possibly more representative of
our intuition for terms is that one starts by defining them from elements
that are as simple as possible (variables), and continues indefinitely. The
concept of indecomposable element is here replaced by that of being an el-
ement of the ground, so one would expect that being generated by it plays
some role in what we have defined so far.

Lemma 3.19. If A is cdf-generated by X, then X ⊆ G(A).

Proof: If A is cdf-generated by X, then A is isomorphic to a submultial-
gebra of mT(Σ, X, |A|) containing X, from Theorem 3.13. Let us assume
that A is equal to this submultialgebra, without loss of generality. Then,
X = G(mT(Σ, X, |A|)) ∩A ⊆ G(A).

Lemma 3.20. If A is cdf-generated by both X and Y , with X ⊆ Y , then
X = Y .

Proof: Suppose X 6= Y and let y ∈ Y \ X. Take a Σ-multialgebra B,
over the same signature as that of A, such that |B| ≥ 2, and a collection
of choices C from A to B.

Take also two functions g, h : Y → B such that g|X = h|X and g(y) 6=
h(y), what is possible since |B| ≥ 2. Given that A is cdf-generated by Y ,
there exist unique homomorphisms gC and hC extending both g and C,
and h and C, respectively.

However, gC and hC extend both g|X : X → B and C, and since A
is cdf-generated by X, we find that gC = hC . This is not possible, since
gC(y) 6= hC(y), what must imply that Y \X = ∅ and therefore X = Y .
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Theorem 3.21. Every cdf-generated multialgebra A is cdf-generated only
by its ground.

Proof: From Corollary 3.14, A is cdf-generated by G(A), and from
Lemma 3.19, if A is also cdf-generated by X, then X ⊆ G(A). By
Lemma 3.20, this implies that X = G(A).

We have proved so far that if A is cdf-generated, then A is generated by
its ground and disconnected. We would like to prove that this is enough to
characterize a cdf-generated multialgebra. That is, if A is generated by its
ground and disconnected, then it is cdf-generated, exactly by its ground.

The idea is similar to the one we used to prove that all submultialgebras
of mT(Σ,V, κ) are cdf-generated: take a multialgebra A that is both gen-
erated by its ground G(A), which will be denoted by X, and disconnected,
and fix a multialgebra B over the same signature, a function f : X → B
and a collection of choices C from A to B.

We define a function fC : A → B using induction on the 〈X〉n. For
n = 0, either we have an element x ∈ X, when we define fC(x) = f(x), or
we have a ∈ σA for some σ ∈ Σ0, when we define fC(a) = Cσ(a). Notice
that, up to this point, there are no contradictions in this definition, given
that an element cannot belong both to X and to a σA, since X = G(A).

Suppose we have successfully defined fC on 〈X〉m and take an a ∈
σA(a1, . . . , an) for a1, . . . , an ∈ 〈X〉m. We then define

fC(a) = CσfC(a1),...,fC(an)
a1,...,an (a).

Again the function remains well-defined: a cannot belong to X, since X =
G(A), and cannot belong to a θA(b1, . . . , bp) unless p = n, θ = σ and
b1 = a1, . . . , bp = an, since A is disconnected.

Clearly fC is a homomorphism, since the image of σA(a1, . . . , an) under
fC is contained in σB(fC(a1), . . . , fC(an)), and fC extends both f and C.

Lemma 3.22. If a multialgebra A is both generated by its ground X and
disconnected, A is cdf-generated by X.

Proof: It remains for us to show that fC , as defined above, is the only
homomorphism extending f and C. Suppose g is another such homomor-
phism and we shall proceed yet again by induction.

On 〈X〉0, we have that fC(x) = f(x) = g(x) for all x ∈ X; and for
σ ∈ Σ0 and a ∈ σA we have that
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fC(a) = Cσ(a) = g(a),

hence fC and g coincide on 〈X〉0. Suppose that fC and g are equal on
〈X〉m and take a ∈ σA(a1, . . . , an) for a1, . . . , an ∈ 〈X〉m. We have by
induction hypothesis that

fC(a) = CσfC(a1),...,fC(an)
a1,...,an (a) = Cσg(a1),...,g(an)

a1,...,an (a) = g(a),

which concludes our proof.

Theorem 3.23. A multialgebra A is cdf-generated iff A is generated by its
ground and disconnected.

It is important to analyze, by means of examples, the differences be-
tween the several concepts involved: are there multialgebras that are dis-
connected but not generated by their grounds? Are there multialgebras
that are generated by their grounds but not disconnected? If not, does
being generated by its ground imply being disconnected or vice-versa? We
show below that this is not the case by providing examples answering pos-
itively both previous questions.

Example 3.24. Take the signature Σs from Example 2.4. Consider the
Σs−multialgebra C = ({−1, 1}, {sC}) such that sC(−1) = {1} and sC(1) =
{−1} (that is, sC(x) = {−x}).

We state that C is disconnected, but not generated by its ground. C is
clearly disconnected since sC(−1)∩sC(1) = ∅; now, B(C) = sC(−1)∪sC(1) =
{−1, 1}, and so G(C) = ∅.

Since Σs has no 0-ary operators and G(C) = ∅, it follows that 〈G(C)〉0 =
∅ and therefore 〈G(C)〉n = ∅ for every n ∈ N, meaning that G(C) does not
generate C.

Example 3.25. Take again the signature Σs with a single unary operator,
from Example 2.4. Consider the Σs-multialgebra B = ({0, 1}, {sB}) such
that sB(0) = {1} and sB(1) = {1} (that is, sB(x) = {1}).

Then B is clearly not disconnected, since sB(0) ∩ sB(1) = {1}, yet B is
generated by its ground: B(B) = {1} and so G(B) = {0}, and we see that
〈G(B)〉1 is already {0, 1}.
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−1 1

sC

sC

The Σs-multialgebra C

0 1
sB sB

The Σs-multialgebra B

3.3. . . . being disconnected and having a strong basis

We give another characterization of being cdf-generated, that is, being dis-
connected and having a strong basis, in a sense we now define. Remember
that Σ-algebras with the universal mapping condition for the entire class
of Σ-algebras (i.e. algebras of terms) are easier to be defined than the ones
with the universal mapping property for some proper variety. That is why
in this article we define only multialgebras of terms. The “strong basis”
carries the qualifier “strong” for we hope that, once an adequate generaliza-
tion of algebras satisfying the universal mapping property for some proper
variety is found for the subject of multialgebras, these multialgebras will
have minimal, not minimum, generating sets, i.e. basis.

Definition 3.26. We say B ⊆ A is a strong basis of the Σ-multialgebra
A = (A, {σA}σ∈Σ) if it is the minimum of the set G = {S ⊆ A : 〈S〉 = A}
ordered by inclusion.

Example 3.27. The set of variables V is a strong basis of T(Σ,V).

Example 3.28. The set of elements without predecessor of a directed forest
of height ω is a strong basis of the forest, considered as a Σs-multialgebra.

Lemma 3.29. For every subset S of the universe of a Σ-multialgebra A,
G(A) ∩ 〈S〉 ⊆ S.

Proof: Suppose x ∈ G(A) ∩ 〈S〉: if x /∈ S, we will show that x cannot be
in 〈S〉, which contradicts our assumption. Indeed, if x /∈ S then

x /∈ 〈S〉0 = S ∪
⋃
σ∈Σ0

σA,
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since x /∈ S, and x ∈ G(A) implies that

x ∈ A \B(A) ⊆ A \
⋃
σ∈Σ0

σA.

Now, for induction hypothesis, suppose that x /∈ 〈S〉m. Then,

x /∈ 〈S〉m+1 = 〈S〉m ∪
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn,

a1, . . . , an ∈ 〈S〉m
}

since x /∈ 〈S〉m, and x ∈ G(A) implies that

x ∈ A \B(A)⊆A \
⋃{

σA(a1, . . . , an) : n∈N, σ ∈ Σn, a1, . . . , an∈〈S〉m
}
.

Theorem 3.30. If the Σ-multialgebra A has a strong basis B, G(A) ⊆ B.

Proof: By Lemma 3.29, G(A) = G(A) ∩A = G(A) ∩ 〈B〉 ⊆ B.

Definition 3.31. If B is a strong basis of a disconnected Σ-multialgebra
A, we define the B-order of an element a ∈ A as the natural number

oB(a) = min
{
k ∈ N : a ∈ 〈B〉k

}
.

This is a clear generalization of the order, or complexity, of a term. In
fact, the order of a term in T (Σ,V) is exactly its V-order.

It is clear that, if a ∈ σA(a1, . . . , an) and oB(a) ≥ 1, then
oB(a1), . . . , ob(an) < oB(a). In fact, suppose m + 1 = oB(a), implying
that

a ∈ 〈B〉m+1 = 〈B〉m ∪
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn,

a1, . . . , an ∈ 〈B〉m
}
.

Since m + 1 = min{k ∈ N : a ∈ 〈B〉k}, we have that a /∈ 〈B〉m and
therefore

a ∈
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn, a1, . . . , an ∈ 〈B〉m
}
.

Finally, we obtain that there exist p ∈ N, θ ∈ Σp and b1, . . . , bp ∈ 〈B〉m
such that a ∈ θA(b1, . . . , bp). Since a ∈ σA(a1, . . . , an), this implies that
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σA(a1, . . . , an)∩θA(b1, . . . , bp) 6= ∅, and therefore p = n, θ = σ and b1 = a1,
. . . , bp = an, so that oB(a1), . . . , oB(an) ≤ m.

But what if a ∈ σA(a1, . . . , an), for n > 0, and oB(a) = 0, implying
a ∈ B? We claim this case cannot occur, for if it does,

B∗ =
(
B ∪ {a1, . . . , an}

)
\ {a}

generates A, while clearly not containing B. We have that a ∈ 〈B∗〉1, since
a1, . . . , an ∈ B∗ and a ∈ σA(a1, . . . , an), and given that B \ {a} ⊆ B∗, it
follows that B ⊆ 〈B∗〉1, and so 〈B〉0 ⊆ 〈B∗〉1.

It is then true that 〈B〉m ⊆ 〈B∗〉m+1 for every m ∈ N. Indeed, if
this is true for m, let b ∈ 〈B〉m+1, and then either b ∈ 〈B〉m, so that
b ∈ 〈B∗〉m+1 ⊆ 〈B∗〉m+2, or there exist θ ∈ Σp and b1, . . . , bp ∈ 〈B〉m such
that b ∈ θA(b1, . . . , bp). In this case, since 〈B〉m ⊆ 〈B∗〉m+1, we have that

b∈θA(b1, . . . , bp)⊆
⋃{

σA(a1, . . . , an) : n∈N, σ∈Σn,

a1, . . . , an∈〈B∗〉m+1

}
⊆〈B∗〉m+2,

so once again b ∈ 〈B∗〉m+2. Since 〈B〉 =
⋃
m∈N〈B〉m equals A, we have

that 〈B∗〉 also equals A, as we previously stated. This is absurd, since
B is the minimum of {S ⊆ A : 〈S〉 = A}, ordered by inclusion, and
B 6⊆ B∗. The conclusion must be that if a ∈ σA(a1, . . . , an) for n > 0, then
oB(a1), . . . , oB(an) < oB(a), regardless of the value of oB(a).

Lemma 3.32. If A is disconnected and has a strong basis B, then B = G(A)
and so A is generated by its ground.

Proof: Suppose a ∈ B \ G(A). Since a is in the build of A, there exist
σ ∈ Σn and elements a1, . . . , an ∈ A such that a ∈ σA(a1, . . . , an). If n > 0,
oB(a) > oB(a1) ≥ 0, which contradicts the fact that a ∈ B and therefore
oB(a) = 0.

If n = 0, it is clear that B∗ = B\{a} is a generating set smaller than B:
generating set because, if σ ∈ Σ0 and a ∈ σA, a ∈

⋃
σ∈Σ0

σA and therefore
B ⊆ 〈B∗〉0, so that 〈B〉m ⊆ 〈B∗〉m+1. This is also a contradiction, since B
is a strong basis.

Theorem 3.33. A is generated by its ground and disconnected iff it has a
strong basis and it is disconnected.

Proof: We already proved, in Lemma 3.32, that if A is disconnected and
has a strong basis B, then it is generated by its ground and disconnected.
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Conversely, if A is disconnected and generated by its ground, first of all it
is clearly disconnected.

Now, if 〈G(A)〉 = A, one has that G(A) ⊆ S for every S ∈ {S ⊆ A :
〈S〉 = A}, by Lemma 3.29. Therefore, the ground is a strong basis.

Once again, we ask ourselves: does being disconnected imply having
a strong basis or vice-versa? We show that this is not the case by provid-
ing examples of a multialgebra that is disconnected but does not have a
strong basis, and one of a multialgebra that has a strong basis but is not
disconnected.

Example 3.34. Take the signature Σs and the Σs-multialgebra C from Ex-
ample 3.24.

We know that C is disconnected, but we also state that it does not have
a strong basis: in fact, we see that the set

{
S ⊆ {−1, 1} : 〈S〉 = {−1, 1}

}
is exactly

{
{−1}, {1}, {−1, 1}

}
, and this set has no minimum.

Example 3.35. Take the Σs-multialgebra B from Example 3.25.
As we saw before, B is not disconnected. However we state that it has

a strong basis: B = {0} generates B and, since {1} does not generate the
multialgebra, we find that B is a minimum generating set.

From these two examples, one could hypothesize that for a multialge-
bra being generated by its ground is equivalent to having a strong basis.
Clearly, being generated by its ground implies having a strong basis, that
is, the ground. But as we show in the example below, having a strong basis
does not imply being generated by its ground.

Example 3.36. Take the signature Σs from Example 2.4, and consider the
Σs-multialgebra M = ({−1, 0, 1}, {sM}) such that sM(0) = {0}, sM(1) =
{1} and sM(−1) = {1} (that is, sM(x) = {abs(x)}, where abs(x) denotes
the absolute value of x).

We have that G(M) = {−1} and that 〈{−1}〉 = {−1, 1}, so that M is
not generated by its ground. But we state that {−1, 0} is a strong basis.
First of all, it clearly generates M. Furthermore, the generating sets of
M are only {−1, 0} and {−1, 0, 1}, so that {−1, 0} is in fact the smallest
generating set.
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−1 0 1

sM

sM

sM

The Σs-multialgebra M

3.4. . . . being disconnected and chainless

The last equivalence to being a submultialgebra of mT(Σ,V, κ) we give
depends on the notion of being chainless, which is rather graph-theoretical
in nature. Think of a tree that ramifies ever downward. One can pick any
vertex and proceed, against the arrows, upwards until an element without
predecessor is reached. More than that, it is not possible to find an infinite
path, starting in any one vertex, by always going against the arrows: such
a path, if it existed, would be what we shall call a chain. A multialgebra
without chains is, very naturally, chainless.

As it was in the case of strong basis, there isn’t a parallel concept
to being chainless in universal algebra: it seems that this concept is far
more natural when dealing with multioperations, although it can be easily
applied to algebras if one wishes to do so. Closely related (although not
equivalent) to chains are the branches in the formation trees of terms: if
allowed to grow infinitely, these would became chains.

Given a permutation τ : {1, . . . , n} → {1, . . . , n} in Sn, the group of
permutations on n elements, the action of τ in an n-tuple (x1, . . . , xn) ∈ Xn

is given by
τ(x1, . . . , xn) = (xτ(1), . . . , xτ(n)).

Given 1 ≤ i, j ≤ n, we define [i, j] to be the permutation such that [i, j](i) =
j, [i, j](j) = i and, for k ∈ {1, . . . , n} different from i and j, [i, j](k) = k.

Definition 3.37. Given a Σ-multialgebra A, a sequence {an}n∈N of ele-
ments of A is said to be a chain if, for every n ∈ N, there exist a positive
natural number mn ∈ N \ {0}, a functional symbol σn ∈ Σmn

, a permuta-
tion τn ∈ Smn and elements an1 , . . . , a

n
mn−1 ∈ A such that

an ∈ σnA(τn(an+1, a
n
1 , . . . , a

n
mn−1)).
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A Σ-multialgebra is said to be chainless when it has no chains.

Example 3.38. Take a directed forest of height ω and add a loop to it, that
is, choose a vertex v and add an arrow from v to v. Then, {an}n∈N such
that an = v, for every n ∈ N, is a chain.

Example 3.39. T(Σ,V) is chainless.

Lemma 3.40. If A is chainless, then it is generated by its ground.

Proof: Suppose that A is not generated by its ground. Thus, A \ 〈G(A)〉
is not empty, and must therefore contain some element a0. We create a
chain {an}n∈N by induction, the case n = 0 being already done.

So, suppose we have created a finite sequence of elements a0, . . . , ak ∈
A \ 〈G(A)〉 such that, for each 0 ≤ n < k, there exist a positive integer
mn ∈ N\{0}, a functional symbol σn ∈ Σmn , a permutation τn ∈ Smn and
elements an1 , . . . , a

n
mn−1 ∈ A such that

an ∈ σnA(τn(an+1, a
n
1 , . . . , a

n
mn−1)).

Since ak ∈ A\〈G(A)〉, we have that ak is not an element of the ground.
So, there must exist mk ∈ N, a functional symbol σk ∈ Σmk

and elements
bk1 , . . . , b

k
mk
∈ A such that

ak ∈ σkA(bk1 , . . . , b
k
mk

).

Now, if all bk1 , . . . , b
k
mk

belonged to 〈G(A)〉, so would ak: there must be an

element ak+1 ∈ {bk1 , . . . , bkmk
}, say bkl , such that ak+1 ∈ A\〈G(A)〉. We then

define aki as bkj , for j = min{i ≤ p ≤ mk : p 6= l} and i ∈ {1, . . . ,mk − 1},
and

τk = [l − 1, l] ◦ · · · ◦ [1, 2],

and then it is clear that {an}n∈N becomes a chain, with the extra condition
that {an}n∈N ⊆ A \ 〈G(A)〉. Therefore A is not chainless.

It becomes clear that a disconnected, chainless multialgebra is, by
Lemma 3.40, disconnected and generated by its ground. We state that,
in fact, the converse also holds, when we arrive to yet another characteri-
zation of being a submultialgebra of mT(Σ,V, κ).
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So, suppose A is disconnected and generated by its ground, and let
{an}n∈N be a chain in A. Clearly no an can belong to the ground, since

an ∈ σnA(τn(an+1, a
n
1 , . . . , a

n
mn−1)),

and therefore oG(A)(an+1) < oG(A)(an), that is, the G(A)-order of an+1

is smaller than the G(A)-order of an. We obtain a contradiction, since if
oG(A)(a0) = m, then oG(A)(am+1) < 0, what is impossible. Then, A must
be chainless.

Theorem 3.41. A is generated by its ground and disconnected iff it is
chainless and disconnected.

Finally, Theorems 3.11, 3.12, 3.23, 3.33 and 3.41 can be summarized as
follows:

Theorem 3.42. Let A be a Σ-multialgebra. The following statements are
equivalent:

1. A is a submultialgebra of some mT(Σ,V, κ);

2. A is cdf-generated;

3. A is generated by its ground and disconnected;

4. A has a strong basis and is disconnected;

5. A is chainless and disconnected.

This leads us to the second main notion introduced in the paper:

Definition 3.43. A weakly free multialgebra over Σ is a multialgebra over
Σ satisfying any of the equivalent conditions of Theorem 3.42.

By definition, weakly free multialgebras over Σ coincide, up-to isomor-
phisms, with the submultialgebras of the members of the families FT (Σ,V),
for some set V of generators (recall Definition 2.2).

It is important to stress the point that, although not all concepts present
in the previous theorem have natural counterparts in universal algebra, by
defining them for algebras presented as multialgebras we find that all of
the conditions in the theorem are valid only for Σ-algebras of terms. This
follows easily from the fact that the only cdf-generated algebras are the
algebras of terms themselves. That is, weakly free algebras coincide with
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(absolutely) free algebras. Note that any subalgebra of T(Σ, X) is of the
form T(Σ, Y ) for some Y . Thus, it can be observed that the generalization
in MAlg(Σ) of the collection of subalgebras of T(Σ,V) corresponds to the
class of submultialgebras of the members of the family FT (Σ,V). In turn,
the meaning of T(Σ,V) itself is generalized in the category MAlg(Σ) of
Σ-multialgebras through the class of submultialgebras of the members A
of FT (Σ,V) such that G(A) = V.

Now, a few examples concerning being chainless, disconnected, having
a strong basis and being generated by the ground will be given.

Example 3.44. Take the signature Σs from Example 2.4, and consider the
Σs−multialgebra Y = (N ∪ {a, b}, {sY}) such that sY(n) = {n + 1}, for
n ∈ N, and sY(a) = sY(b) = {0}.

We see that Y is chainless since, given a chain {an}n∈N, it must be
contained in the build of Y, that is, N: but then an+1 = an − 1, what is a
contradiction, since there is only a finite number of elements smaller than
a0. At the same time, Y is not disconnected, since sY(a) = sY(b).

a

0 1 · · ·

b

sY

sY sY

sY

The Σs-multialgebra Y

Example 3.45. Take the Σs-multialgebra C from Example 3.24.
We know that C is disconnected, however it is also not chainless: in

fact, {(−1)n}n∈N and {(−1)n+1}n∈N are chains in C.

As we saw, being chainless implies being generated by its ground and
having a strong basis. The converse, however, is not true.

Example 3.46. Take the Σs-multialgebra B from Example 3.25.
We have already established that B has a strong basis and is generated

by its ground, {0}, yet it is not chainless: {1}n∈N is a chain in B.
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4. Multialgebras cannot satisfy the universal
mapping property

Now, we turn to a somewhat folkloric result: the category of multialgebras
does not have free objects. This is equivalent to saying that there do not
exist multialgebras satisfying the universal mapping property for the class
of all Σ-multialgebras, or better yet, that the forgetful functor from this
category to Set does not have a left adjoint. Of course, such a result can be
stated in various ways, depending on the adopted definition of homomor-
phism and even on the definition of multialgebra to be considered. So, we
offer what we consider to be a simple proof of such result for the category
MAlg(Σ) as we have defined it.

Definition 4.1. A Σ-multialgebra A = (A, {σA}σ∈Σ) satisfies the univer-
sal mapping property for the class of all Σ-multialgebras, over a set X ⊆ A,
if, for every Σ-multialgebra B = (B, {σB}σ∈Σ) and map f : X → B, there
exists a unique homomorphism f : A → B extending f .

In other words, if j : X → A is the inclusion, there exists only one
homomorphism f : A → B commuting the following diagram in Set.

A

X B

fj

f

Proposition 4.2. If A and B satisfy the universal mapping property for
the class of all Σ-multialgebras over, respectively, X and Y such that |X| =
|Y |, then A and B are isomorphic.

Proof: Since X and Y are of the same cardinality, there exist bijective
functions f : X → Y and g : Y → X inverses of each other. Take the exten-
sions f : A → B and g : B → A and we have that g ◦ f is a homomorphism
extending g ◦ f = id, the identity on X.

Since the identical homomorphism IdA : A → A also extends id, we
have that IdA = g ◦ f . In a similar way we have that IdB = f ◦ g; proving
both f and g are full is trivial, so A and B are isomorphic.

This way we can refer ourselves to the single Σ-multialgebra satisfying
the universal mapping property over X, up to isomorphisms.
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Remember that we have defined MAlg(Σ) as the category whose ob-
jects are exactly all Σ-multialgebras and for which, given Σ-multialgebras
A and B, HomMAlg(Σ)(A,B) is the set of all homomorphisms from A to
B. We will denote by U : MAlg(Σ)→ Set the forgetful functor.

Lemma 4.3. The functor F : Set→MAlg(Σ), associating a set X with a
Σ-multialgebra satisfying the universal mapping property over X, which we
will denote FX, and a function f : X → Y with the only homomorphism
f : FX → FY extending f , is a left adjoint of U .

Proof: For X a set and A a Σ-multialgebra with universe A we consider
the functions, indexed by pairs consisting of a Σ-multialgebra A and a set
X,

ΦA,X : HomSet(X,UA)→ HomMAlg(Σ)(FX,A)

taking a map f : X → A to the only homomorphism f : FX → A extending
f . Each ΦA,X is clearly a bijection given that FX satisfies the universal
mapping property over X.

Now, given sets X and Y , Σ-multialgebras A and B, a function f :
Y → X and a homomorphism h : A → B, we have only to prove that the
following diagram commutes in Set.

HomSet(X,UA) HomMAlg(Σ)(FX,A)

HomSet(Y,UB) HomMAlg(Σ)(FY,B)

ΦA,X

Hom(f,Uh) Hom(Ff,h)

ΦB,Y

So we take a function g : X → UA. Taking the upper right side of the
diagram we have ΦA,Xg = g and Hom(Ff, h)g = h ◦ g ◦ Ff ; on the lower
left one, Hom(f,Uh)g = Uh ◦ g ◦ f and ΦB,Y Uh ◦ g ◦ f = Uh ◦ g ◦ f .

Now, both h ◦ g ◦ Ff and Uh ◦ g ◦ f are homomorphisms from FY to
B extending Uh ◦ g ◦ f : Y → UB. For the second one this is obvious, for
the first we take an element y ∈ Y and see that

h ◦ g ◦ Ff(y) = h ◦ g ◦ f(y) = h ◦ g ◦ f(y) = Uh ◦ g ◦ f(y)

since, respectively: Ff = f (and f extends f); g extends g (which is defined
on X 3 f(y)); and Uh = h, (considered only as a function between sets).
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Given that FY satisfies the universal mapping property over Y , we have
that h ◦ g ◦ Ff = Uϕ ◦ g ◦ f and the diagram in fact commutes.

Theorem 4.4. Given a non-empty signature Σ and a set X, there does not
exist a Σ-multialgebra which satisfies the universal mapping property over
X.

Proof: Suppose that A = (A, {σA}σ∈Σ) satisfies the universal mapping
property over X and let V be a set that properly contains X, meaning that
V 6= ∅ and therefore that T(Σ,V) is well defined. Then, take the identity
function j : X → T (Σ,V), such that j(x) = x for every x ∈ X, and the
homomorphism j : A → T(Σ,V) extending j.

Now, take the identity function id : V → T (Σ2,V) and the collections
of choices C and D from T(Σ,V) to mT(Σ,V, 2) such that, for σ ∈ Σn,

Cσβ1,...,βn
α1,...,αn

(σα1 . . . αn) = σ0β1 . . . βn

and
Dσβ1,...,βn

α1,...,αn
(σα1 . . . αn) = σ1β1 . . . βn,

and consider the only homomorphisms idC , idD : T(Σ,V) → mT(Σ,V, 2)
extending, respectively, id and C, and id and D, which we know to exist
given that T(Σ,V) is cdf -generated by V. Since idC ◦ j, idD ◦ j : A →
mT(Σ,V, 2) both extend the function j′ : X → T (Σ2,V) such that j′(x) =
x for every x ∈ X (recalling that V properly contains X), we have idC ◦j =
idD ◦ j.

Now, if α ∈ T (Σ,V) \ V, we have that there exist σ ∈ Σn, for some
n ∈ N, and elements α1, . . . , αn ∈ T (Σ,V) such that α = σα1 . . . αn. In
this case,

idC(α) = σ0idC(α1) . . . idC(αn) 6= σ1idD(α1) . . . idD(αn) = idD(α),

given that the leading functional symbols are distinct. From this, idC and
idD are always different outside of V.

Since idC ◦ j = idD ◦ j, we must have that j(A) ⊆ V, and this is absurd
since we are assuming Σ non-empty. Indeed, if Σ0 6= ∅, for a σ ∈ Σ0

and a ∈ σA we have that j(a) = σ is in T (Σ,V), but not in V. If it
is another Σn which is not empty, given a ∈ A (which exists since the
universes of multialgebras are assumed to be non-empty) we have that, for
b ∈ σA(a, . . . , a), it holds that j(b) = σ(j(a), . . . , j(a)), which is not in V.
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We must conclude that there are no multialgebras with the universal
mapping property.

Corollary 4.5. The category MAlg(Σ) does not have an initial object.

Proof: We state that, if A is an initial object, A has the universal map-
ping property over ∅. In fact, for every Σ-multialgebra B and map f : ∅ →
B, there exists a single homomorphism !B : A → B extending f = ∅, that
is, the only homomorphism between A and B. But multialgebras with the
universal mapping property do not exist, by Theorem 4.4. This concludes
the proof.

Theorem 4.6. The forgetful functor U : MAlg(Σ)→ Set does not have a
left adjoint.

Proof: For suppose we have a left adjoint F : Set → MAlg(Σ) of U ,
so that F has a right adjoint and is therefore cocontinuous. Since ∅ is
the initial object in Set, we have that F∅ must be an initial object in
MAlg(Σ), which does not exist by Corollary 4.5.

5. Conclusions and future work

The results obtained along the paper indicate that multialgebras of terms
constitute a rich topic of study, and deserve to be further analyzed. Their
connections to the theories of graphs and of partial orders seem clear, and
suggest other properties of these objects, and possibly other characteri-
zations. Multialgebras have been used in order to get satisfactory non-
deterministic semantics for some non-classical logics, in particular para-
consistent logics (see, for instance, [3, Chapter 6], [5] and [7]). From the
present study, we hope to obtain, with the aid of mT(Σ,V, κ) (now seen
as the multialgebra of propositional formulas) and its submultialgebras,
new interpretations of existing semantics for logic systems and new seman-
tics altogether. Clearly, decision problems concerning these multialgebras
become relevant and need to be addressed.

Finally, in what is possibly the most important open question concern-
ing multialgebras of terms, we refer back to something we have already
mentioned in this text. In universal algebra, a Σ-algebra A has the uni-
versal mapping property for a variety V of Σ-algebras over a subset X of
its universe when, for every B in V and every function f : X → B, there
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exists a unique homomorphism f : A → B extending f . These are known
as the relatively free algebras, which can be obtained in a variety from a
quotient of T(Σ,V). Some questions naturally arise: are there analogous
of cdf-generated multialgebras with respect to classes of multialgebras? If
so, are they obtained in some reasonable way from the multialgebras of
terms?
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Matias for making suggestions that greatly improved the clarity of this ex-
position.

References

[1] A. Avron, I. Lev, Canonical Propositional Gentzen-Type Systems, [in:]

R. Goré, A. Leitsch, T. Nipkow (eds.), Automated Reasoning,

vol. 2083, Springer (2001), pp. 529–544, DOI: https://doi.org/10.1007/

3-540-45744-5 45.

[2] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, vol. 78

of Graduate Texts in Mathematics, Springer New York (1981).

[3] W. A. Carnielli, M. E. Coniglio, Paraconsistent logic: Consistency,

Contradiction and Negation, vol. 40 of Logic, Epistemology, and the

Unity of Science, Springer (2016), DOI: https://doi.org/10.1007/978-3-319-

33205-5.

[4] W. A. Carnielli, J. Marcos, A taxonomy of C-systems, [in:] W. A. Carnielli,

M. E. Coniglio, I. M. L. D’Ottaviano (eds.), Paraconsistency: The

Logical Way to the Inconsistent. Proceedings of the 2nd World

Congress on Paraconsistency, vol. 228 of Lecture Notes in Pure and

Applied Mathematics, Marcel Dekker, New York (2002), pp. 1–94, DOI:

https://doi.org/10.1201/9780203910139.

https://doi.org/10.1007/3-540-45744-5_45
https://doi.org/10.1007/3-540-45744-5_45
https://doi.org/10.1007/978-3-319-33205-5
https://doi.org/10.1007/978-3-319-33205-5
https://doi.org/10.1201/9780203910139


Weakly Free Multialgebras 141

[5] M. E. Coniglio, A. Figallo-Orellano, A. C. Golzio, Non-deterministic alge-

braization of logics by swap structures, Logic Journal of the Interest

Group in Pure and Applied Logics, vol. 28(5) (2020), pp. 1021–1059,

DOI: https://doi.org/10.1093/jigpal/jzy072.

[6] M. E. Coniglio, A. Sernadas, C. Sernadas, J. Rasga, A graph-theoretic ac-

count of logics, Journal of Logic and Computation, vol. 19(6) (2009),

pp. 1281–1320, DOI: https://doi.org/10.1093/logcom/exp023.

[7] M. E. Coniglio, G. V. Toledo, A simple decision procedure for da Costa’s Cn
logics by Restricted Nmatrix semantics (2020), arXiv:2011.10151 [math.LO].
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