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1. INTRODUCTION

M ethods o f causality analysis are commonly used in research. Since 
the moment of its formulation until recently the least squares method has 
been developed in terms of its theoretical foundations by the so-called 
diagnostic support. These are advanced statistical methods making it po
ssible to determine which units have a significantly large effect on the 
quality of estimated parameters of the linear regression model. In con
sequence this leads to the determination of the so-called influential ob
servations. Frequently they take the form of outliers or leverage obser
vations.

Influential observations may occur separately or in groups. While in the 
former case numerous methods have been developed to detect them, statis
tical methods are still being developed for the detection of many such 
observations occurring simultaneously. Separation of such observations one 
by one, even at the applied step procedure, does not necessarily provide

* Ph.D., Agricultural University o f Poznań.
** Professor, University o f Information Technology and M anagement in Rzeszów.



correct solutions. This is so due to the fact that in the set of observable 
explanatory variables the so-called masking effect may occur, i.e. single 
observations may individually be influential observations, although their 
cluster may not confirm it.

In this study problems connected with the detection of influential ob
servations are investigated in the linear regression model using the least 
squares estimation of structural parameters. This issue has been presented 
in three cuts: the complete model, 1-cut model and m-cut model. Detailed 
m ethods to investigate influential observations are presented in each case. 
For this purpose the primary statistics are diagonal elements of the so-called 
orthogonal projection matrices. Their high values, while all belonging to 
the (0, 1) interval, and exceeding set threshold values, make it possible to 
indicate the occurrence of influential observations. Obviously, various po
ssible statistics being to some extent functions of elements of the above 
mentioned matrix will provide diagnostic information of varying importance 
concerning influential observations.

2. DETERM INATION OF THE LINEAR REGRESSION M O D EL

It is assumed that the investigations covered “causality” x,, x2, xp_i -* у 
of set p — 1 of established causes defined by the system x |5 x2, ..., хр_, “of 
independent variables” (explanatory, clarifying, regression variables) and 
effect у  being a “dependent variable” (explained or clarified variable, 
predictor). Moreover, it is assumed that the set effect, apart from the 
mentioned controlled causes, is affected also by random causes expressed by 
variable e. In relation to it stochastic assumptions are made:

(E l) E(e) =  0, expected value equals 0,
(E2) D(e) =  a, standard deviation equals a certain positive constant a >  0,
(E3) e ~  N(0, a), random variable e has a “normal distribution” (Gaus

sian distribution) with indicated parameters.
Assumptions (E l) and (E2) concern moments of random variable e, 

whereas assumption (E3) defines its distribution type. This means that 
random variable e is of the continuous type and its distribution belongs 
to the class of normal distributions ц  = 0, o >  0}. The connection
between variable у  and variables x„ x2, ..., xp_,, e is presented by an “ad
ditive linear model”

У ~  Ä) +  ß\X\ +  — + ß p -{Xp-l +  e (1)



also called the “multiple rectilinear regression m odel” . Constants 
A, Д. are called “structural parameters or regression coefficients” ,
where paameter ß0 is a free term, whereas / ? , , are slopes expressing 
unitary changes of variables x,, x2, x p_ l on variable y.

Variables у  and e are treated as certain “random variables” with set 
“probability distributions” , whereas x , ,x 2, .. . ,x p_ l are set “real variables” . 
Random variable e in model (1) is called “random error” (component).

Random variable у  due to the set equation (1) and adopted assumptions 
(El), (E2), (E3) for random variable e assumes the following parameters 
and type of distribution:

(Y l)E (y) =  YßjXj, (Y2)D2(}>) =  a 2, ( Y 3 )y ~ N Y ß jX i ,a ) .
1 - 0  J - 0

Thus assumption (Y3) means that random variable у  belongs to the 

class of normal distributions ^ |( / i ,< r) :  ^ =  £/?pc; e.R, a >  o|. For the pur

pose of estimation of unknown structural parameters ßQ,ß v ...,ßP- \  and 
standard deviation о of the random component, statistical testing is con
ducted on a finite set n of “units” (cases) J ,, J 2, ..., J n. These units constitute 
a “random sample” selected from a certain “general population” according 
to a set “sampling pattern” . It is assumed that for each unit J, a (p — 1)- 
-dimensional “vector of observation” ж,'=  (xa,x i2, . . . ,х ,р_,) is known and
yt, i=  1 ,2......n on independent variables and the dependent variable. This
system of n vectors of observation constitutes a “multidimensional sample” 
with size n. This sample makes it possible to present model (1) in the form 
of a vector-matrix linear model

y =  Xß +  e (2)

where X =  (x0, x,, x2, ..., x„)': n x p -  the system matrix at x0: n x 1 unit vector, 
y : n x l ,  ß =  (ß0,ß t, ...,ßp- i )  :p x 1 -  vector of structural parameters, 
e =  (e„ e2, ..., e j : n x  1 -  vector of random errors.

From  the adopted stochastic assumptions for random errors in model 
(1), we obtain the following assumptions for the vector of random errors 
e in model (2):

(W EI) E(e) =  0, vector of expected values is equal to the zero vector,
(WE2) D 2(e) =  cr2I, variance-covariance matrix is equal to the scalar 

diagonal matrix, where cr2> 0  is the variance of random errors. This as
sumption states also that components of random vector e are not correlated,
i.e. “covariance” cov(e,, ef ) — 0 for i Ф ť; i, ť  = 1, 2,..., n,



(WE3) c ~  N n(0, cr2I), random vector e has an n-dimensional normal 
distribution with a zero vector of expected value ц =  0 and covariance 
m atrix E =  a2I, i.e. belongs to the class of normal distributions 
.Ж„{0а,:Е ):ц =  О ,1 =  ст21}.

Assumption (WE3) implies that vector of observation у has also an 
n-dimensional normal distribution belonging to  class .Жп{(ц, E): 
: |i =  Xp, E =  a21}, which means that E(y) =  Xp and D 2(y) =  cr2I.

3. SELECTED PROPERTIES OF LINEAR REGRESSION M ODEL

For the purposes of investigations of the influence o f influential obser
vations on the quality of evaluation of the structural parameter vector, 
numerous analytical results, connected with a complete linear regression 
model, are derived. These results may be found in many publications 
concerning the theory of linear models. Some of them have been presented 
in new versions using orthogonal projection matrices. Proofs of many of 
them are available in literature. While presenting results we are using their 
specification in the set problem groups.

(51) Estimation using the least squares method:

a) X'Xp =  X'y -  the system of standard equations, where X'X -  matrix 
of moments on explanatory variables, X'y -  vector of moments of ex
planatory variables and the explained variable,

b) p =  (X'X)- 'X'y =  GX'y =  Ay -  estimator of structural parameters 
vector, where G =  (X'X)_I and A =  GX' -  associated matrix,

c) E(ß) =  AE(y) =  AXß =  p -  property of unbiasedness,
d) D 2(fi) =  AD2(y)A' =  ст2АЛ' =  e^G -  a variance-covariance matrix,
e) ß ~  ^T(P, ct2G) -  distribution of estimator p.

(52) Vector o f estimated observations:

a) ý =  Xß =  ХАу =  XGX'y =  Ну -  evaluation of vector ý, where 
H  =  XGX' =  X (X 'X )"‘X' -  orthogonal projection matrix,

b) E(ý) =  HE(y) =  HXp =  Xp -  expected value of vector y,
c) D 2(y) =  D 2(Hy) =  H D 2(y)IT =  II(er2I)II =  ct2H II =  a2H  -  variancc-co- 

variance matrix.

(53) Residuls

a) r =  y — ý =  (I — H)y =  My -  vector of residuals, where M =  I — H,
b) E(r) =  ME(y) =  MXp =  0 -  expected value of vector of residuals,



c) D 2(r) =  D(My) =  MD(y)M' =  <r2M M  =  er2M  -  variance-covariance ma
trix of vector o f residuals.

(S4) Sum of squares for SSE error of the least squares method:

a) SSE = r 'r  =  y'My -  sum of squares for error,
y'y y'X 
X'y X'X

b) SSE = y'y — y'Hy = SSE expression as a quotient of two
IX X i

determinants of an augmented matrix of the (X, y) system, and the matrix of
An A12

the X system, which results from formula — |a 22||a „  — A |2A22 'a 2i\,
A2| a 22

where A,, and A22 are square matrices and A22 is non-singular,

c) E (SSE) =  E(y'My) =  E(y')ME(y) +  tr[MD(y)] =  a 2tr(M ) =  ( n -  p )a \
d) SSE  ~  /п -p -  the chi-square distribution of sum of squares for error,
e) E (SSE) = ( n -  p )a2 and D 2(SSE) =  2(n -  p)a 4 -  moments of random 

variable SSE resulting directly from the distribution given in point c),
0  SSY  = SSR + SSE -  the factorization of sum of squares of deviations 

into two summands: sum of squares for regression and sum of squares for 
error, where S S Y  =  y'(I -  ll'/n )y  and SSR = y'(H — 11'/«)У-

(55) Estimation of parameter a2:

, . , SSE  y'My r 2(a) s2 = ------ =  —— L -  estimator of parameter a%
n - p  r(M )

(b) E(s2) =  a2 -  property of unbiasedness of estimator s2,

c) D 2(s2) =  D 2f - - ^ = ——  -  variance of estimator s2. 
\ n - p j  ( n - p )2 n - p

(56) Augmented matrix of orthogonal projection

a) H* =  Z (Z 'Z )“ Z', H* : n x n, Z  =  (X, y ) : n  x (j> + 1),
b) H* possesses all properties of matrix H,

c ) H *  =  H  +  £  =  H  +  - " ~ ,

d) H'j:=hlj +  M E ' U j =  U 2’ - ,n ’

e) h" =  h,l + J s É ’
while properties c) and d) are given after J. B. G r a y  and R.  F.  L i n g  
(1984).



4. TH E CONCEPT OF INFLUENTIAL OBSERVATIONS

For the purpose of formal determination of influential observations let 
us introduce the notation of a sample of n (p +  l)-dimensional observations 
as a sequence of row vectors of matrix X and of vector у in the form of 
(X,y) =  ((хь у,), (x2,y 2) , ..., (xn, y j ) '  = ((xh y j;  i =  1,2, =  P np+1, while 
(x„ y ,)e R p+l. It is necessary to use the transposition sign, as vectors are 
always treated as column vectors.

The concept of influential observations is given in the following de
finition.

Definition. The system o f  m ( m >  1) vector observations 
{(x/,, y ti) , ..., (x,'m, yim)} in sample P p+I indexed by the discriminanted set of 
m indexes {i(, i2, ..., im} e { l ,2, . . . ,n} is called influential observations (points) 
if  they significantly contribute to changes in the values o f analyzed numerical 
characteristics referring to the investigated model o f linear regression.

The above definition indicates that among numerical data there may be 
one (m =  1) or more observable vectors (m >  1), which will constitute outliers 
in the direction of the x-axis or in the direction of the у-axis, or both at 
the same time. In the first case such influential points may be detected by 
inspecting diagonal elements of matrix H, whereas in the second case -  by 
investigating Studentized residuals. There are numerous solutions to this 
problem.

While determining influential observations diagonal elements of matrix 
H are used. These elements are expressed by vector values referring to 
explanatory variables. This makes it possible to investigate the behaviour 
of atypicality of these vectors manifested in their distance from the regression 
cluster. Excessive concentration is understood as a homogenous set corres
ponding to the regression dependency characteristic. In case of a regression 
model with one explanatory variable this is equivalent to the configuration 
of points on a plane arranged along a certain straight line, whereas in case 
of a multiple regression model such a configuration constitutes a generalized 
ellipsoid with an intersecting hyperplane. This means that the vector cases 
will vary in their number in the estimated linear regression model. In 
connection with the above remarks, we arc going to introduce the following 
definition.

Definition. Observations o f cases, i.e. row vector o f matrix X corresponding 
to diagonal values o f matrix II  are called levearage points.



Values of diagonal elements of matrix H  fall within the interval of 
(1/n, 1), i.e. they are normalized numbers independent of the number of 
cases n and the number of properties p — 1. Thus, assuming the a priori 
set threshold value, let’s say h0 for these diagonal elements, “leverage points” 
may be distinguished among them, exceeding this value. They are commonly 
referred to as “high-leverage points” . Such points are interesting in terms 
of their effect on the estimated linear regression model.

5. 1-CUT LINEAR REGRESSION M O DEL

In case of investigations of regression models, it is interesting to study 
the dependency between the complete system matrix and its submatrix 
divided with the use of vectors. Such a division is most frequently connected 
with the fact that it is necessary to investigate the submatrix distinguished 
from the matrix of system X in the context of estimating model parameters 
excluding any o f the observed vectors of matrix X.

The row division of matrix X is understood as follows. Let us say set 
{ 1 , 2 denotes successive numbers of row vectors of matrix X. Let us 
assume that in this set an i-th vector was distinguished, which is transposed 
with the n-th vector. Vectors with numbers i+  1, i +  2 ,..., n — 1, n will be 
transposed by one position to loci with numbers /, i +  1,..., n — 1. Such 
a procedure is called the operation of re-numbering and translocation of 
row vectors of matrix X.

Let us denote with the symbol X(0 a submatrix formed from matrix 
X without the г'-th row vector x,'. According to the operation presented

whereabove, this means the division of the system matrix into X =

X : n x p ,  X(Q: (n — 1) x p is a cut matrix and x j: 1 x p  is a distinguished

vector, and moreover X'X =  [X^ x,] л (0
x,:

X(j)X(0 +  x,x,'. To the above di-

vision we make a permanent assumption of rank r(Xw) =  p and we introduce 
the following denotations:

a) G(i) — (X(0 X(0) \  G(l) :p x p,
b) Идо =  X(j)G(j)X(f), Щ : (n — 1) x (n
c) v(0 =  Х(0С (0х„ v(0: (n -  1) x 1,
d) c, =  x ;g (0x„
e) dt = (1 -f- c ,)_l,
0  ft**o =  XfcG(0x„ k, / = 1, 2,



In correspondence to the given division of matrix X with one row 
vector, the division is conducted of the vector of observable random variables

у =  where y(l): (n — 1) x  1, while y, is the i-th component of vector y.

We will further use the denotation “ 1-cut” to emphasize that it refers 
to a linear model investigated for vector у and the matrix of system X after 
elimination of the i-th component of vector у and the i-th row vector in 
m atrix X. Let us denote a 1-cut model in the ternary form

{Уи .Х юРю. оЧ } (3)

where here the identity matrix I is of the (n —l)-th degree. We will add 
to the previously given characteristics ß, ý, r, SSE  their equivalents ß(4, ý(í), 
r{0, SSE((], after the application of the row division of the system matrix 
X and vector y.

Stochastic properties for the 1-cut model will be noted according to the 
same principle as for the complete model, but denotation “-1” is additionally 
placed for emphasize the fact that the cut model is used.

(Sl-1) Least squares estimation:

a) j$(() =  G(0X(0y(0 =  A(0yw -  estimated vector of structural parameters,

b) ß — ß(0 =  G(j) x, г, = —  GXj -  the difference between estimated vectors
m n

of structural parameters o f the complete and 1-cut models, where r, denote 
residuals,

(S2-1) Forecasting vector у in the 1-cut model:

a) 9(o = X(0 ß(o =  9(0 -  estimation (prediction) of vector y,
b) h o  -  xj ß« =  9,(o -  y-th component of vector y(i), i.e. forecast of the 

j-th  observation after the elimination of the i-th observation,

c) ýj — ýJ(l) =  —  x j  Gx, -  the difference of the y'-th component estimated
mu

in the complete and 1-cut models,
d) 9, = ЬцУ, + тн0щ -  results from (Sl-1) b) -  linear combination of 

observations y, and 0 (i) =  xf at weights expressed by the i-th diagonal 
element of matrix X,

(S3-1) Residuals and sum squares for error:

T
a) r(0 =  y t — x', ß (i) =  y i — 9(0 =  —  -  residuals in the 1-cut model,



b) SSE(i) = yw(I -  H (0)y(0 -  sum of squares for error in the 1-cut model, 
where H (0 is the submatrix of matrix H,

c) SSE = SSEw + djfa  -  connection between sum of squares for error 
in the complete and 1-cut models,

<*> 4  -  ~ h > ,  -  xi h )’ = S  -  ^ ° f

parameter a2 in the 1-cut model,

e) D 2(r(,0) =  s(0[ l + x ; G (0xJ1/2 =  4S =  -  standard error for residuals in
\Jmu

the 1-cut model ( H a o g l i n ,  W e l s c h  1978),
f) vs2 =  ( v -  l)S(o +  w„r(20 -  equation b) expressed by estimators s2 and

s/n of parameter a1 of the complete and 1-cut models, where wlt = >
ma

a2 ig) s?,-,---------- y , - 1 ~ chi-square distribution of estimator s(i),
v — 1

h) squares of residuals r 2 and estimates s 2̂ are statistically independent 
(L a  M o t t e  1994),

(S4-1) Studentized residuals:

a) t =  - r<iL =  — Ti == -  expression of parameter a2 by estimator s(20 in
D(r(i)) 5(i)Vmli

the l 4mt model (the so-called “external Studentized residuals of least 
squares”),

b) t =  t j V~  -  expression by standardized residuals and i-Student
' л /  V — t 2

distribution with v -  1 degrees of freedom.

6. M -CUT LINEAR REGRESSION M ODEL

Apart from the investigations of influential observations in the 1-cut 
model, the problem of the m-cut model is also studied. Let us denote 
submatrix X(/) formed without the subset of I row vectors of matrix X and 
X, the system of such discriminated vectors. Matrix X will be denoted by

the form: X 40 where X : n x p ,  X w : ( n - m )  x p -  m-cut matrix and
L x t J

X 'r .m x p  -  discriminated matrix (discriminated system of m row vectors).
■“Xo)"1

The following ratio occurs for it X'X =  [X(̂ X f]
X,

— X(n +  Xj X/, and



moreover for the given division we adopt a permanent assumption with 
rank r(X(/)) =  p and we introduce the following denotations:

a) G(/) =  (X(r) X (n) G ( / ) : p x  p,
b) H (/) =  X(i)G(i)X(i), H (/) : (n — m) x (и — m),
c) F; =  X',G(/)X„ F , : m x m ,
d) Vw =  X(0 Gw X„ Vm :(n — m) x m,
e) E; =  [I +  F,]~ 1, E, : mxf f l .

The given division of matrix of system X is applied to the vector of

observable random  variables у = where y(/): (n — m) x  1, whileУ w

- У  > _
y, : m x  1 is a column vector containing, without the loss o f generality, the 
last m components of vector y. Further we apply the “m-cut” denotation to 
emphasize that we are considering a linear model of vector у and system 
matrix X after the elimination from the above the indicated subvector y, 
and matrix X;. Let us present the m-cut model in the ternary form

{У(/)> X(j) ß(i), a21} (4)

where here the identity matrix I is a matrix o f (n — m)-th degree. Let us 
also stress that symbol ß(/) does not refer to the cutting of the vector of 
structural parameters in model (4), but that we apply such a denotation to 
emphasize that a p-dimensional vector of parameters ß is estimated from 
the m-cut model.

To stochastic characteristics ji, y ,r, SSE  for the complete model, we will 
give their equivalents ß(/), ý(í), r(/), S SE ^  after the application of row division 
of the system matrix X and vector y. Stochastic properties of the m-cut 
model will be denoted according to the same principle as for the 1-cut 
model, but additionally the denotation “ -m” will be placed to emphasize 
the application of the m-cut model. Earlier we will give several denotations:

•  x  =  i  X :n x  p, X/n: ( n - m )  x p ,  X ' f . m x p ,

• r(X(i) X(/)) — p, G(/) — (X(l) X(i)) 1.

(Sl-m) Estimation of least squares:

a) X(,j X(/) ß(/) =  X(7) y(/) -  system of normal equations,
b) Р(д =  g (7) X(/) У(/) -  estimator of vector of structural parameters ß,
c) E(ß(/)) =  ß(/) and D 2(p(í)) =  о2 G(/) at the assumptions of model (4),
d) ß(/) =  ß +  GX;(I — where matrix II, is the submatrix from



- H
G[Xa)X,]

X(/) GX(/) X(i)
x ; g x ;„ x

n Gx/1 _ гн(0
; g x J  [Н ад H j ’

a n d  r/ =  y / - x ; p ,
e) ý(/) = II(i) y(r) -  estimated vector y(n from model (4),
О X', ß(/) =  Xj ß +  Н(Лг„ which results from expression d) and formula

G(f) X, = GX, +  G X /I -  Н ,)_1Н ; =  GX,(I -  H,) ~ 1.

(S2-m) Vectors of residuals r(7) and r,:

a) г(/) — У (í) — X(i)ß =  ( I — Н (/))У(/) — Н(7), у,,
b) r; -  у, -  X,ß =  (I -  H ,)у, -  Н /(0 у(/),
c) E(r(I)) =  0, D 2(r(/)) =  ff2(I -  Н (/)),

Е(г(/)) =  (I -  И(//))Е(у(/)) -  Н(0/ Е(у;) =  [(I -  Над)Х(,  -  II(f)iX,]ß =

=  [Н(7)7 X/ — H(/)j X/]ß =  О,

D 2(r(0) =  (I -  H (//))D 2(yfŕ))(I -  H (ł)) +  Hw D 2(y;)H (I)í =

=  a \{ \  -  I I(Í))(I -  H (0) +  Нда Над] =

=  ст2 [I — H (í) — H(/),H,(Í) +  H(/)fHí(,)] =  ct2(I — Hw),

d) E(r;) =  0, D 2(r,)- =  a \ I -  H,), as is shown analogically as in c),
e) rw =  [(I -  Над) -  Н ад (1 -Н ,)- 'Н ад ]у м -  vector of residuals expressed 

by the vector of observations in the m-cut model,
0  Qm =  r ; ( i - H , ) - ‘ 

m-dimensional
Е(У(,)Л =
E(y,)J

r XCD О* 
[_X, l_

vector
P

Y
t l e m a n ,  W i l k  1975; D r a p e r ,  J o h n  1981),

-  “outlier sum of squares” connected with the 
of parameters у in the extended model

in comparison to model
E(yw) ]  =  ГХ(„ j

E (y ,)J
ß (G e n •

g) Q m =  r ‘,T , +  Г(0Н (0г(/) -  outlier sum of squares split into sum of squares 
of direct residuals indexed with the vector of observations y; of residuals 
from the m-cut model (4).

(S3-m) Sum of squares for error and estimation of variance:

a) SSEm =  yw(I -  H (J))y(/) =  SSE -  r X l - H ^ - ’r, =  SSE -  Qm, where H (/) 
is the matrix of orthogonal projection for the system matrix in model (4),



matrix H ; was given and vector of residuals r, is given by formula S2-m b), 
whereas Qm was given in S2-m 0,

b) s,2n =  —~— (vs2-Q m ) -  estimation of variance for error expressed by
w  v — m

the variance of the complete model s2 corrected by the outlier sum of 
squares,

c) F(l) =  V - m • ----- the F distribution with v — m and m degrees of
771 SSE(J)

freedom at stochastic assumptions of model (4).
In connection with these stochastic considerations for the m-model of 

linear regression, let us supply two more important results ( C o o k ,  W e i s -  
b e r g  1980):

a) Г;(1 — ~ generalized Studentized residual for the set of
ie l

cases I, i.e. it is directly expressed by the sum of squares of diagonal 
elements of matrix H, indexed by set 1,

b) tr[H,(I — H;) ~ '] -  generalized leverage point for set I of discriminated 
cases.

7. CO NC LUSIO N S

The paper presents theoretical results referring to the complete, 1-cut 
and m-cut models in linear regression. Individual observations or the m- 
-system are investigated in the above mentioned cut models. As it was 
shown in the last two chapters, this investigation may be conducted on 
units from the complete model. This makes it possible to considerably 
simplify numerical operations. Various testing statistics are derived from 
the data determined for the 1-cut and m-cut models in order to analyze 
the occurrence of influential observations. They are used for the purpose 
of practical identification of influential observations found in the linear 
regression model. A  list of such statistics will be supplied у the authors in 
another study.
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ANALIZA M ODELU REGRESJI LINIOW EJ 
PRZY PODZIELO NEJ MACIERZY UKŁADU

W pracy przedstawiono zagadnienia związane z wykrywaniem obserwacji wpływowych 
w modelu regresji liniowej przy zastosowaniu estymacji parametrów strukturalnych za pomocą 
M N K . Temat ten jest ujęty w trzech przekrojach: model pełny, 1-ucięty oraz model m-ucięty. 
W każdym przypadku prezentowane są szczegółowe metody badania obserwacji wpływowych. 
Podstawowymi dla tych celów statystykami są elementy diagonalne tzw. macierzy ortogonalnego 
rzutu. Ich duże wartości, przy czym wszystkie należą do przedziału (0, 1), przekraczające 
zadane wartości progowe pozwalają na wskazanie istnienia obserwacji wpływowych. Oczywiście 
różne możliwe statystyki będące w jakimś stopniu funkcjami elementów wspomnianej macierzy 
będą dostarczały informacji diagnostycznych o różnym znaczeniu, dotyczącym obserwacji 
wpływowych.


