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DYNAMIC PROGRAMMING WITH RETURNS
IN RANDOM VARIABLES SPACES

Nlistrad This paper presents a model of dynamic, discrete decision-making problem (finite
number of periods, states and decision variables). Described process has returns in random
variables spaces equipped with partial order. The model can be applied for many multi-stage,
multi-criteria decision making problems. There are a lot of order relations to compare random
variables. Properties of those structures let us apply Bellman’s Principle of dynamic programming.
The result of using this procedure is obtainment of a whole set of optimal values (in the
sense of order relation). For illustration, there is presented a numerical example.
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L INTRODUCTION

The paper presents an optimal model involved into a shape of dynamic
programming. This theory was introduced by R. Bellman (a method of
solving such tasks is named Bellman’s principle). Next T. A. Brown and
R. E. Strauch (1965) generalized Bellman’s principle to a class of
multi-criteria dynamic programming with a lattical order. Then, the use of
optimality principle was the interest of L. Mitten (1974) who considered
preferences relation, M. I. Henig (1985) - who developed the theory of
infinite dynamic process with values of criteria function in a partially
ordered set. Others who took interest in the use of multicriterial methods
in dynamic programming have been: T. Trzaskalik (1998), D. Li and
Y. Y. Haim es (1989).

In the meantime some theories of comparing random variables has
developed as well T. Rolski (1976), M. Shaked and J. G. Shant-
hikumar (1993). It enabled us to use such structures in our dynamic
model, which is the essence of the paper. In the example, there is shown
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a combination of fields, namely, dynamic programming and random variables
with stochastic dominance.

2. DYNAMIC MODEL

We consider multistage dynamic process with finite number of periods,
states and decision variables. To describe the process we will use the
following notation:

T - the number of periods,

S, - the set of all feasible state variables at the beginning of period
te{1, .., T),

D,(st) - the set of all feasible decision variables for period t and state
s,eS,, we assume that all these sets are finite,

P - denotes the process, where all sets: T, S,, Dt(s,) are identified, on
the base of these terms we define:

r, = (sf, s(+i) - the period realization, s,eS, and st+leD,(st),

R, - the set of all period realizations in period £

(s,, ..., sr+i) - the partial realization in period t and sweSw, and
Sw+irDJsJ for we(t, T),

R,(s,) - the set of all partial realizations which begin at state s,,
R,(St) = Rt(st):s,eSt - the set of all partial realizations which begin at the
beginning of period t,

R = Ri(Sj) - the set of all process realizations,

We consider the following structure, functions and operators to describe
multi-period criteria function of process realization.

(W, <, °) - the structure in which (W, <) is the partially ordered set, and
(W, °) is semigroup satisfies following condition

a*b=>(a°c”boc and c°a”“c°b)\ a b, ce W (monotonicity condition)

(1)
For each finite subset Ac W we define
Tax(/1) s {a*eA: ~306/la*<a and a* da) 2)
Values of the criteria function are given by the structure (W, *~ ,°)

ft:Rt—*W - the period criteria functions with returns in W.
F, :R,(S)—*W - the functions defined in the following way



=T, .. 1 3)

F = FI - the multi-period criteria function,

(P, F) - denotes discrete dynamic decision process. It is given, if there
arc discrete dynamic process P and multi-period criteria function F de-
fined.

Realization d*eD is said to be efficient, if

F(d*)e max F(D) 4

Theorem 1. Let (P, F) be decision dynamic process.

g?)r all t=T—1, 1and all y,eY, holds
max {F,(R,(s,)} = max s(+1)°max F,+1(Rt+I(s, + 1)):sf+1eD f(s)}
®)
(i)
max {F(R)} = maxjmax F1(RI(si)):sieSI} ®)

3. PROCEDURE

Wc now present an algorithm for determination of the set of all
maximal returns of the process, which is based on Th. 1 This procedure
is stated as follows:

step 1
Calculate the set: max”*~K ~)} for all states sTeST.
step (T+ 1-t), fort=T- 3, T—4, i
Calculate the set: max{Ff(Rf(st)) using Th. 1 (i).
step T+ 1

Calculate the set: max{F(R)} using Th. 1 (ii).

4. EXAMPLE

The algorithm presented in the third section is now applied to solve
dynamic problem. We use different orders to compare values of the criteria



function i.e. random variables. The notation below agrees with symbols
previously used.

The process (P, F) is defined as follows:
We consider a process, which consists of 3 periods [T = 3], in which:

S, = {0,1}, for t= 1, 2, 3, 4; D,(0) = D,(I) = {0, 1}, for t= 1, 2, 3 (7)

The terms connected with the criteria function arc defined as follows. Set
W is described as the set of discrete random variables

WEwo, H, B2 -, B) reN a0, pO ing, = @®

where [Idenotes probability of number i.
Operator p is defined as a sum of random variables.
The values of the criteria function are presented in the Fig. 1

5. THE ORDERS USED IN THE EXAMPLE

To compare such values of the criteria function we use known orders
generated by:

1) first order stochastic dominance FSD,

2) second order stochastic dominance SSD,

3) second order inverse stochastic dominance SISD,

4) mean-variance model (as two-criteria: maximizing mean and minimizing
variance).

Those classical definition can be found among others in M. Shaked
and J. G. Shanthikumar (1993) - stochastic orders; and mean-variance
model in H. M. Markovitz (1989). The relations used in this example



arc not antisymmetric, which is one of the conditions of partial order, but
one can consider the equivalence relation (x< 'yo x<y and y<x)
G. Birkhoff (1973). The monotonicity conditions of these structures are
shown in M. Shakcd and J. G. Shanthikumar (1993). Moreover the
rest of the conditions which are needed to hold the Th. 1 are easy to check.

6. RESULTS

Below, there arc results of using algorithm presented. The tables show
maximal values obtained in each step.

Table 1

The computation in the case of first order stochastic dominance (FSD) and second order
stochastic dominance (SSD). The values connected with SSD case are bold

| max{F,(R,(0)) max{F,(R,())
3 0,1) (2, .3, .5), (0, .6, 4)
2 (0, .2, .3, 5), (0, 0, .6, .4) 0, 0, 1), (1, .25, .4, .25), (0, .3, .5, .2)
1 0, 0, .2, .4, .4), o, 0, 0, 1),
(02, .09, .22, .31, .26, .1), (0,0, .24, 52, .24),
(0, .06, .22, .36, .28, .08) (0, .08, .24, .38, .3)
max F(R)

0, 0, 0, 1), (0, 0,. 2, .4, .4), (.02, .09, .22, .31, .26, .1), (0, .06, .22, .36, .28, .08)

Table 2

The computation in the case of second order inverse stochastic dominance (SISD)

t max{F,(R,(0)) max{F,(R,(1))

3 0, 1) (2, .3, .5), (0, .6, .4)

2 (0, .2, .3, 5), (0, 0, .6, .4) (0, 0, 1), (1, .25, .4, .25), (0, .3, 5, .2)
1 (0,0, .2, .4, 4)

(0, 0, .24, 52, .24),

(02, .09, .22, .31, .26, .1) ©. 08, 24, 38 3)

(0, .06, .22, .36, .28, .08)
max F(R)

(0, 0, .2, .4, 4), (.02, .09, .22, .31, .26, .1), (0, .06, .22, .36, .28, .08)



The computation in the case of mean-variance model. There arc values of the mean and
variance, instead of elements of W, in the following form: (mean, variance)

t (mean, variance) of nrnfFA"R"0)) (mean, variance) of max{F,(R,(l))
3 (1, 0) (1.4, .24)

2 (1.8, .16), (2.4, .24) @2, 0)

1 (3.2, .56), (2.9, .49), (2.3, 41) (3, 0)

(mean, variance) of max F(R)
(3.2, .56), (3, 0)

max F(R) = (0, 0, .2, .4, .4), (0, 0, 0, 1)
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ZMIENNE LOSOWE W DYSKRETNYM PROGRAMOWANIU DYNAMICZNYM

W artykule opisano dyskretny model programowania dynamicznego z wartosciami funkcji
kryterium z przestrzeni zmiennych losowych wyposazonej w cze$ciowy porzadek. Opisany
proces dynamiczny ma charakter deterministyczny. Poréwnujgc zmienne losowe stosowane sg
rézne rodzaje relacji porzadkujgcych. Wtasnosci struktur zmiennych losowych pozwalajg
stosowa¢ uogdlniong metode programowania dynamicznego - tzw. zasade Bellmana. Efektem
tej procedury jest uzyskanie petnego zbioru wartosci optymalnych (w sensie relacji czeSciowego
porzadku). Analogicznie, jak w programowaniu wielokryterialnym, tak i tu rozwigzaniem
problemu optymalizacyjnego moze by¢ duzy zbiér wartosci optymalnych. Przedstawione sg
metody zawezajgce ten zbidr, wykorzystujagce dynamiczng posta¢ zadania oraz wiasnosci
zmiennych losowych.



