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Abstract. In survival analysis the subject o f observation is duration o f time until some 
event called failure event. Often in such studies only partial information on the length o f  
failure time is available what yields the so-called right-censored observations. The main interest 
in survival analysis is either to estimate the distribution of the true failure time or to identify 
the relationship between the true failure time and a set o f some covariates. Additional 
troublesome point o f theory and application o f survival techniques is treatment o f grouped 
observations (life-tables) along with incorporating covariates.

In the paper a new approach is considered which allows to treat the censored life-table 
with qualitative covariates as a standard contingency table. Such a table can be further 
analysed by means o f  log-linear models or other standard multivariate inference techniques.
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1. INTRODUCTION

The usual representation o f the right-censored random  sam ple with 
covariates takes the form

(Tj, Xj), i =  L 2, ..., n (1)

where öt =  1 if an i-th individual actually failed at time T t, St =  0 if an 
individual was right-censored at time T t and X t is a p-dim ensional vector 
of known covariates, for example, sex, age and other characteristics o f an 
individual.

Nearly all the statistical m ethods for censored survival d a ta  are based 
°n the assum ption th a t censoring mechanism is not related to mechanism  
causing failures. T hus the usual m odel for censored survival analysis 
assumes independent random  censoring. In this m odel variables T t and ô\ 
can be defined as follows
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T, =  m in (У,, Z (), S, =
1, if T l = Y l

(2)
0, if Г,if 7’, =  Z,

where У, are independent copies o f a positive random  variable У representing 
true failure time with a cum ulative distribution function (cdf) F. Similarly, 
Z, arc independent copies o f a positive random  variable Z  with a cdf G. 
It is assumed tha t variables У and Z  are independent, conditionally on X. 
Thus the observed variables T, represent here independent copies of 
a variable m in (y , Z ) w ith a cd f II  satisfying the equality

A special case o f  independent censoring occurs in studies where failure 
time is m easured from entry into the study and one observes the true 
failure times o f those individuals who fail by the time o f analysis and 
censored times for those individuals who do not. In such a case all 
censoring times Z, are know n and the sequence

instead of sequence (1) is observed. It is w orth noting tha t in the repeescn- 
tation (3) variables St are redundant and therefore can be om itted.

The m ain interest in survival analysis is either to estim ate the distribution 
o f the true failure tim e У represented by F or the so-called survival 
function F  =  1 — F o r to identify the relationship between the true failure 
time У and a set o f covariatcs X. A dditional troublesom e point o f theory 
and application o f survival techniques is treatm ent o f grouped observations 
(life-tables) along with incorporating covariates.

Standard life-tables techniques are the oldest techniques m ost extensively 
used by actuaries, m edical statisticians and dem ographers, starting from the 
work o f J. G raun t in 1662 (cf. D. V. G l a s s  (1950), B. B e n j a m i n  (1978)).

The life-table da ta  arise from a partition of the range [0,7” ] o f obser
vations into some time intervals =  [tk, tt + 1 ) ,  к =  0, 1, К  — 1 where 
the endpoints 0 =  I0 <  < . . .  <  tK < T*  are pre-specified. The life-table data  
can be characterized by defining num bers o f individuals alive at the 
beginning o f each tim e interval and by defining num bers o f failures and 
censored observations in these intervals.

The m ain purpose is to estim ate conditional probabilities o f failure in 
the intervals Qt given survival to tk or to estim ate probabilities o f  survival

11=  1 - ( 1  - F ) ( l  - G ) .

(3)
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past in +1 for к =  0, 1, К  — 1 (sec E. L. K a p l a n  and P. M e i e r  (1958), 
C. L. C h  i a n  g (1968)).

D. R. C o x  (1972) gave a First systematic study o f use o f covariates in 
the analysis o f failure time. He proposed a regression m odel for a hazard 
function and introduced a vector o f unknown regression param eters specifying 
the effect o f covariates on survival. If the covariates are not time-varying 
then C ox’s m odel can be termed “ proportional hazards” because the ratio  
of hazard functions for any two individuals is independent o f time. 
Sub-sequent papers by J. D. K a l b f l e i s c h  and R.  L. P r e n t i c e  (1973), 
N. B r c s l o w  and J. C r o w l e y  (1973), N. B r e s l o w  (1974, 1975), O. O. 
A a l e n  (1978), P. K. A n d e r s e n  and R.  I). G i l l  (1982) are the substantial 
contributions to  this subject.

T. R. H o i  f o r d  (1976) introduced the proportional hazards m odel for 
life-table data. In his m odel the baseline hazard function was assum ed to 
be constant within each time interval i l k, what implies piecewise exponential 
distributions for failure times.

This approach was further developed by T. R. II о 1 f o r d  (1980) and 
N. L a i r d  and D.  O l i v i e r  (1981), who discussed application o f log-linear 
analysis techniques to  life-tables with categorical covariates. T heir key result 
refers to  two im portan t observations. F irst, log-linear m odel for cell m eans 
of Poisson contingency table data  is equivalent to log-linear m odel for 
a hazard function in piecewise exponential survival model. Second, the 
likelihoods for both  models are equivalent. Thus, the statistical inference 
m ethods based on m axim um  likelihood for these models are also equivalent.

The broad survey o f the developm ent of the survival analysis th roughout 
the twentieth century can be found in T. R. F l e m i n g  and D. Y. L i n  
(2000) or D. O a k e s  (2001).

3. LOG-LINEAR M O D ELS FOR LIFE-TABLES WITH CATEGORICAL COVARIATES

Log-linear m odels provide a flexible and popular tool o f  treating  the 
m ultivariate categorical d a ta  arranged in a m ultidim ensional contingency 
table. Some o f the m ore attractive features o f this approach are the easy 
of model specification, flexibility in treating both dependent and independent 
variables and the fact tha t the equivalent m aximum likelihood estim ates o f 
model param eters m ay be obtained from different sam pling distributions, 
such as Poisson, m ultinom ial and product m ultinom ial distributions.

As it was pointed out by N. L a i r d  and D.  O l i v i e r  (1981), log-linear 
techniques can be easily applied in life- tables analysis to identify the 
relationship between the survival time and a set o f categorical covariates.



'Г. R. H o l  f o r  d (1976) considered the following representation for the 
hazard function h(y; X) o f failure time Y

where hk denotes a constan t baseline hazard in the time interval í)*, X is 
a fixed covariatc vector and ß is a vector of unknown param eters. N on
proportional hazards m odel can be reform ulated from (4) by allowing the 
baseline hazard hk, к = 0, 1, К  -  1 to depend also on X.

The representation (4) implies that, conditional on X, hazard function 
h(y;X)  is a stepwise function o f time and failure times have piecewise 
exponential d istributions. Log-linear hazard model proposed by Laird and 
Olivier flows directly from H olfo rd’s m odel and takes the form

Let us assum e tha t the vector X specifies the levels o f p categorical 
covariates and each covaria te  X , o f X has / ,  levels indexed by iv  
s = l ,  2, ..., p. D enote for simplicity by i0 the index o f tim e intervals, 
i0 =  0, 1, 2, ..., К — 1. Thus, for the given time interval Q io and for the 
fixed set o f  covariates at levels (iu  i2, ..., ip) the hazard function h(y;X)  
given in (4) takes a constant value, which can be denoted by 0ioii if. Then 
employing the usual log-linear “ u-term s” notation, introduced by M. W. 
B i r c h  (1963), the m odel (5) can be rewritten in the following form

where param eters {effects} on the right-hand side o f  (6 ) satisfy the following 
linear constrains

The non-proportional hazards m odel can be introduced here by a simple 
generalization o f (6 )

K y i X) =  /v c x p { X T/0  for ye Clk, fc =  0, 1, K - l  (4)

h(y; X) =  \nhk +  X Tß  for y e Q k, к =  0, 1, ..., К  -  1 (5)

(6)

where



Thus, the problem  o f estim ating survival distributions under the m odel
(6 ) or (7) reduces to  estim ating the u-param etcrs, what can be done by 
means o f slightly m odified Iterative Proportional F itting Routines (see 
N. L a i r d  and I). O l i v i e r  (1981) for details).

I'he form ula o f estim ating the log-survival function lnS (i) derived from 
the piecewise exponential distribution is expressed as follows

ln£(i) =  -exp{ú*} I  ( 0 + 1 -  +  0  -  i*)exp(t2jt°>}l teClk + 1

(8)

where ü* represents here the estimated total covariate effect.
The modified log-linear m odel for censored life-table d ata  proposed here 

allows to handle m any IPF  routines for log-linear m odels w ithout any 
m odification. The proposed m odel is closely related to the one given in
(7), however we will assum e that 0 , represent  probabilities o f  failure 
in time intervals Qio for fixed sets o f covariates at levels (ilt i2, ..., ip), This 
approach is based on the extended life-table da ta  and is based on a m ethod 
called here “ the com pletion m eth o d ” . T he approach  allows to  apply 
standard inference.

4. EXTENDED LIFE-TABLES WITH RIGHT-CONSORED DATA

F o r simplicity, let us assume th a t the covariate vector X is n o t observed. 
Let T * >  0 be a fixed real num ber such th a t H ( T * ) < 1 .  Let 
® =  fo <  h  < — <  tK = T* < o° constitute a partition o f [0,T*] into К  sub- 
-intervals o f the form Qk =  [t*, í, + J  for к = 0, l , . . . ,  К - I .  Let us also 
assume that n A. =  [ix , oo).

Let us assum e that individuals enter the follow-up study at random  
time points. F o r an i-th individual we observe a pair o f random  variables 
f^i> Zj), where T t and Z ; are defined in Section 1. The observation o f 
mdividuals term inates when for s items ( 0  2  is a fixed integer) we obtain  
T'ij>T*, j  = I, 2, s. Let N s denote the total num ber o f individuals 
observed in the experim ent. Thus, N ,  is a random  variable d istributed 
according to  the negative binomial distribution with param eters s and 
P =  1 -

We will consider an  extended life-table d a ta  characterized by the 
following statistics



N.
Dk =  1 1  ( T i e Slk, Z ^ t k+l), 

/=1
k = 0 , 1 , .... K -  1

DK =  0,

Ok = Í O ( T leClk, Z l eClk), к 
i= i

=  0, 1, ..., К

N.
M k =  ^  0 (T, ^  i*, Z ; ^  tk + j), 

1 = 1

1оII

оII*5

Wk = Ok + M k, к = 0, 1 , ..., К

where 1 (A)  denotes a characteristic function of a set A. Notice that there 
is W0Ok + M 0 = N ,  and WK =  0 K.

Statistics defined in (9) constitute an extended censored life-table and 
will be employed in the procedure called “ a com pletion m ethod” .

5. CO M PLETION M ETHO D KOR EXTENDED LIFE-TABLES

Let us consider a probability  qklk defined as follows

qklk = P (Y eC lk\ Y > t k), к =  0, 1, ..., К  -  1 (10)

This is the probability  o f failure in Q*, conditional on survival past tk. This 
probability will be estim ated by m eans o f the following statistics

^ ' ‘ =  л Г ? Т  к = 0 ' 1  K ~ l  (11)

The sim ilar estim ator o f qk]k was firstly considered by E. L. K a p l a n  
and P. M e i e r  (1958) for the sample with a fixed size. It is usually called 
the Reduced-Sam ple E stim ator (RSE). Let us define a probability qkll as 
follows

qk[l = P ( Y e a k \ Y ^ t , ) ,  k =  1 , 2, ..., К - i ,  I =  0 , 1 , ..., к -  1 ( 12)

This is the probability  o f failure in the interval Qk conditional on survival 
past i, for 0  <  / <  к and can be estimated from the following recurrent formula



W  — 1
Ük\t = _  j к = I, 2, ..., К  — 1 , 1 = 0, 1, к — 1 (13)

and the estimated number o f failures in the interval П, for О, individuals, 
who survived past th can be calculated as

Ą .I  *  O r  &II-; l = k,k-  1........  1 , 0 ,  к = 0, 1, ..., К — 1 (14)

Let

6 = Dk + £ ß u , k = 0, 1........  K -  1

i = ° (15)

0 K = N , -  е Ч  
* = 0

I he sum Ef=0 Dt /  on the right-hand site of (15) can be treated as an 
estimated num ber o f failures in the interval Clk for those items for which 
Zi< tk + i -  Thus, Ďk is an estim ated total num bers o f failures in the intervals 
0» for k =  0 , 1 ,  ..., K.

The set o f estim ates Dk determines a completed version o f an extended 
censored life-table defined by the statistics (9). This com pletion procedure 
!S esplained in details in an example in Section 6 .

Generally, we can consider extended life-tables constructed for a categorical 
covariate vector X fixed at levels (iu  i2, ip) and calculate the estim ated 
numbers o f failures similarly as in Tab. 2. Proceeding in such a way for
each com bination  o f levels (i lt i2....... ip) o f X we ob ta in  as a result
a P +  1-dim ensional contingency table with estim ated num bers o f failures 
ior each com bination (ij, i2, ip) and for each tim e interval П,о in its 
body. Such a table can be next analysed by m eans o f standard  log-linear 
techniques m entioned in Section 3.

6. A NUM ERICAL EXAMPLE

We will consider a sam ple o f patients who have had received a valve 
•niplantation (bioprothesis or m echanical valve) and had to  be reopered 
because o f some valve com plications. Patients enter the study at random  
time points. T he subject o f  observation was the length o f their life after 
feoperation (in years). T he study was term inated  when s =  8 patients



survived past T*  =  7 years. Thus, the length of life after reoperation is 
a random  right-censored variable, for some o f the patients were alive 
by the end of the study. T he to tal num ber o f patients N a observed 
in such an experim ent is a random  variable. Its realization observed 
here was equal to 50.

Let f0 =  0, tj =  1, t 2 = 1 and í í 0 =  [0, t j),  Q, =  [ix, t 2), П 2 =  [l2, со). 
We will consider an extended life-table determined by the statistics Dk, M k, 
Ok for к =  0, 1 ,2  (see T ab. 1).

T a b l e  1

The Extended Life-Table

Time Dk o k My

Qo =  [0, 1) 8 9 41
0 , - [ l .  7) 2 23 10

=  [7, oo) 0 8 0

From  T ab. 1 we can now estim ate total num bers of deaths Dk in each 
interval by m eans o f  form ulae given in (15). These estim ates constitute 
“ a com pleted version” o f T ab . 1 (see Tab. 2).

T a b l e  2

Completed Version o f  Tab. 1

Time intervals б к

fto =  [0, D 9.8
=  [1. 7) 8.0

«2 =  17, 00] 32.2

Note, that first two estim ates in the second colum n o f Tab. 2 represent 
estimated values o f Dk for /c =  0, 1, and the last value is calculated as 
N , - U = 0 Ď k.

7. SO M E THEORETICAL RESULTS

Theorem. T he estim ators Qklk and Qkll defined in (11) and (13) are 
unbiased estim ators o f respective conditional probabilities qk}k and qkц.



Proof.
Let us assume the following notation

P k - P ( T > x k) for /c =  0, 1, ..., K ,

4k = P ( T > x k, Z > x k+l) for k = 0, 1, K - l .

F or 0 ^ l < k  and l ^ k ^ K  — 1 the estim ator Qkll according to  (13) 
equals to

= Wl+lJ- \  Wl+2 - I Wk. t - 1 Wk -  1 Dk
М , -  1 M n i - \  ' M k- 2 - l '  M k- t - l '  M k - l

For I = к and 0 ^ k  ^  К  — 1 we have from (11)

Dk
Qklk~ M ^ i '

The expression Dk/ ( M  - 1) can be also w ritten  equivalen tly  as
* ~ (W *+ i — l)/(Af* — 1), thus for 0 ^ l < k  and l ^ k ^ K — 1

л  Wl + i - 1 Wl+a - 1  W i - i - 1  W i- 1  /  Wi+ 1 - 1
M, — 1 M, + 1 — 1 Л/ц _ 2 — 1 M*-j — 1 у M* — 1 

and for / =  к and 0 <  к <  К  — 1

ô  - i  W^ ~ l 
“  M ,  -  1

Let us denote by A rl, the following expression o f  the form

w , * i - i  Wi+г - i  w t - i - i  w ; - i  w t+ i — i
Ar\i — M , -  1 M 1+1- l  "■ M r_ 2 - 1  M r_ ! - 1  M r -  1

(16)

where r > / .  N ow the estim ator Q*,, expresses as follows

- _  {Ak- m  — A k\t for 0 ^ l < k ,  l ^ k ś K - l  
У*| , _  [1 - A kik for / =  k, O^k^K-  1 ( '



Let us find the expectation o f A rU defined in (16) using the jo in t 
distribution o f the variables N„ M t, Wl + l , ..., M r_ 2, Wr- X, M r- lt Wr, 
M T, Wr+i.

Notice, tha t the sam ple size N ,  is a random  variable with a negative 
binomial distribution and that given N ,  =  n the variables Wl+l , M r_ 2, 
Wr- i ,  M r- i ,  Wr, M r, Wr+l have a m ultinom ial distribution. T hus the jo in t 
probability distribution  function is o f the form

P ( N , =  n, M ,  =  m„ Wl + 1 =  w) + 1, M r _ ,  =  mr _ , ,  W, =  wr, M ,  =  mr, , =  wr+1) =

n - l V n - Л /  m , _ S  V  r mr - l ~ S\ f W' ~  s \ (  m' ~ S
S _  1 ) \ m l ~  s j \ w l + l  — SJ  \  Wr ~ S ) \ m r -  y \ W r + l ~ S

( l - q () " " И'(9 < -P l + l )m' ” W,+ , •

■ ( P l + 1 -  q,+ 1 • ...(Я г- i  -  Р г Г ' - ' - №'(Рг -  Я гГ '~ т ’(Яг -  P r+ l ) " ' "

( P r + l - P K ) W,+í~ ‘PK>

where

n =  s, s +  1, 

ffl, =  s, s + 1, n ,  

w i + i = s ,  s + 1 ,  m„ i = /, / + 1 ,  r, 

m, =  s, s + 1 , w, i =  / +  1 , r.

The distribution function o f N s, M (, Wi + l , ..., M r- 2, Wr- U i , W,, 
M r, VFr+ 1  can be expressed also equivalently as

P (N S = n, M,  = m„ Wl+1 =  Air_! =  m ,- ! ,  W, =  wr, M r = mr, Wr+1 =

=  wr+1) =

n - l V  m ' _ 1  V  . ( m ' - l - S\ ( Wr - ' \ (  m r ~ ] V  Wr+1 -  1

i / \ w« + i ~ v  v wr — 1 A n v - i A w r +1 - i A  s - 1

( 1 - 9 ,  )"-"■ 9Г -

gi -  p i + i \ m,~w,* ' ( p i + -д1+1\ щ+'~т,*%(д1+1\ т,*г .
\  4i J  v  Л + 1  у  W v



^ p r -  qry  m̂ q ry ^ r ~  P r . Л " ' w' " ^ P r  < A " '4' / ,Рг+ i - P kY ' * 1 V  Pk

P r + 1 /  \P r  + 1

where

w r + 1  =  5,  s +  1,

m, =  wl+1, wi+1  +  l ,  .... i =  r, r - 1 , / +  1 , I, 

w, =  m(, m ,+  l ,  i =  r, r - 1 , / + 1 , I, 

n = m(, m, + 1, ...

T hus, the expectation o f Aril is equal to

00 00 00 00 00 Ш — 1 Ul 1 111 I
£M ,„> =  I  E  ... I  S

* r)1 =  i  ą = w , ( l  W|+ ) =mi*i m, = w,+1 n = m, m l * m r - l  I M r 1

• p (w s =  n , ..., w ;+ ! =  wP+ j) =  

w f + ! — 1 \ /  P r + 1 P k \ w ’ * x ~ ‘ (  Р к \ ’  у  w r + 1 - 1 /  m r —у  / " r +1  * W Kr+1 I'K 1 / ť í  1 v-1

Wr+ 1  = * \  s  — 1 / V  P r + l  /  \ P r + l )  m , .w r+ | w r — 1 V w r + 1 1

. | 4  ~  "  Wr+ ‘^ r +  1 \ W,+1 _

£  / 4 + , - 1  V pI+ 1 -  *,+ i y , ł l ' w,łV ^ t i \ " ,łł £  W,+ 1 - 1/  m, — 1 \

W| + 1=m ,+ 1\ m ( + l  — V \  P l + l  /  \ P ( + l /  mi-wi+i m l ~  1 \ W! + 1 — V

i  ( " ~  \ \  1 - ЧГ =  & ± i - Ł . . . . . P t t l . ? ! i i
n = m \ m l ~  V  <7r 9 r - l  9 i - l  <?!

P ( T ^ t r+1) P (T ^ £ r) P ( T ^ t l+2)
P ( T > t „ Z > t r+1) P ( T ^ i r_ i , Z ^ i r) P ( T > t l+uZ > t l+2)

P ( T > t l+1)
P(T> t[, Z  ^  i |+ i)



P ( y > t r+1, Z > t r + ł )  P { Y  ^  t„ Z  t r) P ( Y  ž  í |+ 2 i Z  ^  íi + 2) 

P ( Y ž t r, Z ž t r l l ) P ( Y > t r - u Z > t f)  P ( Y > t „ u Z > t l + i )

' P ( Y > t l t l L Z > t l t l ) _
P ( Y ž  t i , Z ^ t i + 1)

= p ( y ^ t r+1) р (У 5 * о  P ( ľ > t l+i) P ( y > t ,+1) f ( ľ > < r t l ) 

Р ( У > * , )  P ( Y > t r - \ )  Р ( У > í | +1)  P ( ľ > í , )  P ( ľ > t , )  '

F rom  the result ju st o b ta in ed  and usin g  the d e fin itio n  (17) w e h a v e  for 0 < / < / c ,  

U U K - 1

,  ч Р (У > « * )  P ( Y > t k+1)  Р ( У е П . )

Я (& к ) -  Я ( Л - щ )  - -E(^*tí) =  p ( Y p t , )  ~  Р ( У > 0  ~~ P ( Y > t , )  ~  qk>1’

and for I =  k,  O ^ k ^ K  -  l

v r t  П А  Ф > Ь + 1) P jYeCK)  _
( ( M  ( *1*) P ( y > í * )  P ( ľ > ý

w hat co m p letes  the p ro o f.
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A g n ie s z k a  R o ssa

ANALIZA TABLIC TRW ANIA ŻYCIA DLA DANYCH CENZUROW ANYCH  
Z W YKORZYSTANIEM  M ODELI LOGARYTM ICZNO-LINIOW YCH

W pracy przedstawiono propozycję analizy tablicy trwania życia dla danych prawostronnie 
cenzurowanych. Przedstawiona metoda pozwala na sprowadzenie takiej tablicy do wielo
wymiarowej tablicy kontyngencyjnej, którą można analizować standardowymi technikami 
wielowymiarowego wnioskowania statystycznego, np. za pomocą modeli logarytmiczno-liniowych.


