ACTA UNIVERSITATIS LODZIENSIS

FOLIA MATHEMATICA 4,1991

Janusz Jaskuła, Bożena Szkopińska
ON THE SYMMETRIC CONTINUITY
S. Marcus proved in [4] that, for any set $E \in G \mathcal{G}$, there exists a function $f: R \rightarrow R$ for which $S_{f}=E$ where $S C_{f}$ denotes the set of all points of symmetric continuity of the function f. Next, C. L. B e 1 n a in [1] that, for any function $f: R \rightarrow R$, the set $S C_{f} \cap D_{f}$ is of interior measure zero, where D_{f} denotes the set of points of discontinuity of the function f.

In the present paper, some necessary conditions (Theorem 2) and sufficient ones (Theorem 3) are given in order that a given set be the set of points of symmetric continuity for some function $f: R \rightarrow R$. Moreover, from Theorem 4 and our example it follows that there exists a set which is not the set of all points of symmetric continuity for any function $f: R \rightarrow R$. The example is, at the same time, an example of a function $f: R \rightarrow R$ for which $S C_{f}$ is a non-measurable set. The existence of such a function was proved, with the continuum hypothesis applied, by P. E r d ös in [2].

DEFINITION 1. The symmetric oscillation of a function at a point is given by

$$
S_{\text {osc }} f\left(x_{0}\right)=\overline{\lim }_{h \rightarrow 0}\left|f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right|
$$

The following theorem is self-evident:
THEOREM 1. If a set E is such that $E=S_{f}$ for some $f: R \rightarrow R$ then $E=\bigcap_{p \in N} E_{p}$ where $E_{p}=\left\{x \in R: S_{\text {osc }} f(x)<\frac{1}{p}\right\}$.

DEFINITION 2. We say that a set A is a weak section of sym-
metry if there exists a decreasing sequence of sets $\left\{A_{p}\right\}_{p \in N}$ such that
(i) $A=\bigcap_{p \in N} A_{p}$,
(ii) $\left(x_{0} \in A_{p}\right) \Rightarrow\{\exists \delta>0 \quad \forall|h| \in(0, \delta) \quad \forall r<p \quad \exists \in \in\{0,1\}$ $\left.\left[\left(\left(x_{0}+h\right) \in A_{r+\theta}\right) \Leftrightarrow\left\{\left(x_{0}-h\right) \in A_{r+\theta}\right)\right]\right\}$.

DEFINITION 3. If there exists a decreasing sequence of sets $\left\{A_{p}\right\}_{p \in N}$ such that
(i) $A=\bigcap_{p \in N} A_{p}$,
(ii) $\left(x_{0} \in A_{p}\right) \Rightarrow\left\{\left(\exists \delta>0 \quad \forall|h| \in(0, \delta) \quad \forall r<p\left[\left(\left(x_{0}+h\right)\right.\right.\right.\right.$
$\left.\left.\left.\in A_{r}\right) \Leftrightarrow\left\{\left(x_{0}-h\right) \in A_{r}\right)\right]\right\}$,
then the set A is said to be a section of symmetry.
THEOREM 2. If $f: R \rightarrow R$, then the set $E=S C_{f}$ is a weak section of symmetry.

Proof. Using theorem 1, it is enough to prove that the sequence of sets $\left\{E_{k}\right\}_{k \in N}$ where $E_{k}=\left\{x \in R: S_{\text {Osc }} f(x)<\frac{1}{9^{k}}\right\}$ has property (ii) from Definition 2, since the monotonicity of the sequence $\left\{E_{k}\right\}_{k \in N}$ and property (i) are obvious. From the monotonicity of the sequence $\left\{\mathrm{E}_{\mathrm{k}}\right\}$ and the negation of condition (ii) we have that there exist a point x_{0} and a number $j \in N$ such that $x_{0} \in E_{j}$ and, for any number $\delta>0$, there exists $h,|h| e$ $\in(0, \delta)$, and an index $k<j$ such that

$$
\begin{equation*}
x_{0}+h \in E_{k+1} \wedge x_{0}-h \notin E_{k} \tag{1}
\end{equation*}
$$

From (1) and Definition 1 and the way the sets E_{k} are defined we have

$$
\begin{align*}
& \lim _{|t| \rightarrow 0} \sup \left|f\left(x_{0}+h+t\right)-f\left(x_{0}+h-t\right)\right|<\frac{1}{9^{k+1}} \tag{2}\\
& \lim _{|t| \rightarrow 0} \sup \left|f\left(x_{0}-h+t\right)-f\left(x_{0}-h-t\right)\right| \geqq \frac{1}{9^{k}} \tag{3}
\end{align*}
$$

Since $x_{0} \in E_{j}$, we have

$$
\begin{equation*}
\lim _{\mid 1,1+0} \sup \left|f\left(x_{0}+u\right)-f\left(x_{0}-u\right)\right|<\frac{1}{9^{j}} \tag{4}
\end{equation*}
$$

So, there exists $\delta_{1}>0$ such that

$$
\begin{equation*}
\left|f\left(x_{0}+u\right)-f\left(x_{0}-u\right)\right|<\frac{1}{9^{j}} \text { for } u \in\left(0, \delta_{1}\right) \tag{5}
\end{equation*}
$$

Let now $\delta_{2}=\frac{\delta_{1}}{2}$. Then there exists $h \in\left(0, \delta_{2}\right)$ such that, for k, conditions (2) and (3) are satisfied. So, there exists t_{0} such that $\left|t_{0}\right| \in\left(0, \delta_{2}\right)$ and

$$
\begin{align*}
& \left|f\left(x_{0}+h+t_{0}\right)-f\left(x_{0}+h-t_{0}\right)\right|<\frac{1}{9^{k+1}} \tag{6}\\
& \left|f\left(x_{0}-h+t_{0}\right)-f\left(x_{0}-h-t_{0}\right)\right|>\frac{8}{9} \cdot \frac{1}{9^{k}}
\end{align*}
$$

Note that $\left|h+t_{0}\right| \in\left(0, \delta_{1}\right)$ and $\left|h-t_{0}\right| \in\left(0, \delta_{1}\right)$. Consequently, from (5) we have

$$
\begin{equation*}
\left|f\left(x_{0}+h+t_{0}\right)-f\left(x_{0}-h-t_{0}\right)\right|<\frac{1}{g^{j}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f\left(x_{0}+h-t_{0}\right)-f\left(x_{0}-h+t_{0}\right)\right|<\frac{1}{g^{j}} \tag{9}
\end{equation*}
$$

From conditions (6), (7), (8) and (9) we get

$$
\begin{align*}
\frac{8}{9} \cdot \frac{1}{9^{k}} & <\left|f\left(x_{0}-h+t_{0}\right)-f\left(x_{0}-h-t_{0}\right)\right|= \\
& =\mid f\left(x_{0}-h+t_{0}\right)-f\left(x_{0}+h-t_{0}\right)+ \\
& +\left(f\left(x_{0}+h-t_{0}\right)-f\left(x_{0}+h+t_{0}\right)\right)+ \\
& +\left(f\left(x_{0}+h+t_{0}\right)-f\left(x_{0}-h-t_{0}\right)\right) \mid< \\
& <\frac{1}{9^{j}}+\frac{1}{9^{k+1}}+\frac{1}{9^{j}} \tag{10}
\end{align*}
$$

Thus we have

$$
\begin{equation*}
\frac{8}{9} \cdot \frac{1}{9^{k}}<\frac{1}{9^{j}}+\frac{1}{9^{k+1}} \tag{11}
\end{equation*}
$$

which is impossible because of the fact that $k<j$.
Consequently, the sequence $\left\{\mathrm{E}_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{N}}$ satisfies condition (ii) from Definition 2. This ends the proof of the theorem.

If a set $E \subset R$ is a section of symmetry, let us denote

$$
\begin{aligned}
\hat{E}= & \left\{x \in R: \forall p \in \mathbb{N} \quad \exists \delta_{x}>0 \quad \forall|h| \in\left(0, \delta_{x}\right) \quad \forall r<p\right. \\
& {\left.\left[\left((x+h) \in E_{r}\right) \Leftrightarrow\left((x-h) \in E_{r}\right)\right]\right\} . }
\end{aligned}
$$

REMARK. If E is a dense set and a section of symmetry, then the interior measure of the set $\hat{B} \backslash E$ is equal to zero.

Proof. Let the sequence $\left\{\mathrm{E}_{\mathrm{p}}\right\}_{\mathrm{p} \in \mathrm{N}}$ satisfy the conditions of Definition 3. Put

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \in E \\
\frac{1}{p} & \text { for } & x \in E_{p} \backslash E_{p+1}
\end{array}\right.
$$

Then $\hat{\mathrm{E}}=\mathrm{SC}_{\mathrm{f}}$ (see the proof of Theorem 3) and $\mathrm{R} \backslash \mathrm{E} \subset \mathrm{D}_{\mathrm{f}}$ where D_{f} denotes the set of all points of discontinuity of the function f .

Making use of the result of C. L. B e 1 n a in [1] stating that the set $\mathrm{SC}_{f} \cap \mathrm{D}_{\mathrm{f}}$ has the interior measure equal to zero and from the fact that $\hat{E} \backslash E=\hat{E} \cap(R \backslash E) \subset \hat{E} \cap D_{f}$, we obtain that the set $\hat{E} \backslash E$ has the interior measure equal to zero.

THEOREM 3. If E is a section of symmetry and the set $\hat{E} \backslash E \in F_{\sigma}$, then there exists a function $f: R \rightarrow R$ such that $E=$ $=S C_{f}$.

Proof. Let the sequence $\left\{E_{p}\right\}_{p \in N}$ satisfy the conditions of Definition 3 and $E_{1}=R$. Then

$$
R=E \cup \bigcup_{p \in N}\left(E_{p} \backslash E_{p+1}\right), \quad\left(E_{p} \backslash E_{p+1}\right) \cap\left(E_{s} \backslash E_{s+1}\right)=\emptyset
$$

for $\mathbf{s} \neq \mathrm{p}$.
Define the function

$$
\phi(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \in E, \\
\frac{1}{p} & \text { for } & x \in E_{p} \backslash E_{p+1}
\end{array}\right.
$$

If $x_{0} \in \hat{E}$, then, for any $\varepsilon>0$ and any number $p_{0} \in N$ such that $\frac{1}{p_{0}}<\varepsilon$, there exists $\delta>0$ such that, for each h such that $|h| \in(0, \delta)$, there is

$$
\left|\phi\left(x_{0}+h\right)-\phi\left(x_{0}-h\right)\right|<\varepsilon,
$$

whence we get
$\hat{E} \subset S_{\phi}$
If now $x_{0} \in R \mid \hat{E}$, then $\exists p_{0} \in N \quad \forall \delta>0 \quad \exists|h| \in(0, \delta) \vee r<p_{0}$ $\left[\left(x_{0}+h\right) \in E_{x} \wedge\left(x_{0}-h\right) \notin E_{r}\right]$. Consequently, we have

$$
\left|\phi\left(x_{0}+h\right)-\phi\left(x_{0}-h\right)\right|=\left|\frac{1}{k}-\frac{1}{s}\right|, \quad s<r<p_{0}, \quad k \geqq r .
$$

Then we obtain

$$
\left\lvert\, \phi\left(x_{o}+h\right)-\phi\left(x_{o}-h\right)=\frac{1}{s}-\frac{1}{k} \geq \frac{1}{s}-\frac{1}{s+1} \geq \frac{1}{p_{0}\left(p_{0}+1\right)} .\right.
$$

Hence we infer that

$$
\begin{equation*}
x_{0} \notin S C_{\phi} \tag{13}
\end{equation*}
$$

From (13) and (12) we have
$\hat{\mathbf{E}}=\mathrm{SC}_{\phi}$
The set $H=S C_{\phi} \backslash E \in F_{\sigma}$. Then
$R \backslash H \in G_{\delta}$.
From the theorem in paper [4] by S. Marcus it follows that there exists a function $\psi: \mathrm{R} \rightarrow \mathrm{R}$ such that

$$
\mathrm{R} \backslash \mathrm{H}=\mathrm{SC}_{\psi^{*}} .
$$

Put $f=\phi+\psi$. If $x_{0} \in E$, then $x_{0} \in S C_{\phi} \wedge x_{0} \in S C_{\psi}$, and so, $x_{0} \in S C_{f}$. That is, $E \subset S C_{f}$. Whereas if $x_{0} \in R \mid E$, then $x_{0} \in$ $\in H V x_{0} \notin S C_{\phi}$. If $x_{0} \in H$, then $x_{0} \notin S C_{\psi^{\prime}}$ and since $x_{0} \in S C_{\phi^{\prime}}$, therefore $x_{0} \notin S C_{f}$. Whereas if $x_{0} \notin S C_{\phi^{\prime}}$ then $x_{0} \in S C_{\psi^{\prime}}$ thus also $X_{0} \notin{S C_{f}}$. Consequently, we have proved that $E=S C_{f}$, which completes the proof of the theorem.

E x a m ple. There exist a non-measurable set E and a function $f: R \rightarrow R$, such that $E=S C_{f}$.

Let H be a (Hamel) basis for the space R over the field of rational numbers, such that $1 \in H$. Every real number x has a unique representation of the form

$$
\begin{equation*}
x=\sum_{h \in H} x_{h} \cdot h \tag{15}
\end{equation*}
$$

where $x_{h} \neq 0$ only for a finite number of coefficients $h \in H$,
$x_{h} \in Q$. Let $E=\left\{x \in R: x_{1}=0\right\}$. From papers [3] and [5]it follows that E is a dense set with empty interior in R and that it is a non-measurable linear subspace of the space R over the field Q. We consider the characteristic function of the set E:
$f(x)=\left\{\begin{array}{lll}1 & \text { for } & x \in E, \\ 0 & \text { for } & x \notin E .\end{array}\right.$
We now prove that $E=S C_{f}$. Let $X_{0} \in E$. Then from the assumption that E is a linear space we have

$$
\begin{equation*}
f\left(x_{0}+h_{n}\right)-f\left(x_{0}-h_{n}\right)=0 \tag{16}
\end{equation*}
$$

for any sequence $\left\{h_{n}\right\}_{n \in N}$ converging to zero. It follows from (16) that
$\lim _{n \rightarrow \infty}\left(f\left(x_{0}+h_{n}\right)-f\left(x_{0}-h_{n}\right)\right)=0$.
Thus
$\mathrm{E} \subset \mathrm{SC}_{f}$.
Now, let $x_{0} \notin E$. Since $\bar{E}=R$, there exists a sequence $\left\{x_{n}\right\}_{n \in N}$ such that $x_{n} \in E$ for each $n \in N$ and such that $\lim _{n \rightarrow \infty} x_{n}=$ $=x_{0}$. Let $h_{n}=x_{n}-x_{0}$. Then $x_{0}+h_{n}=x_{n} \in E$, while $x_{0}-h_{n}=$ $=2 x_{0}-x_{n} \notin E$. Otherwise, if $2 x_{0}-x_{n} \in E$, then $\left(2 x_{0}-x_{n}\right)+$ $+x_{n}=2 x_{0} \in E$, so that $x_{0} \in E$, and this contradicts the choice of the point x_{0}. Therefore we have shown that there exists a sequence of real numbers converging to zero, such that

$$
\begin{equation*}
f\left(x_{0}+h_{n}\right)-f\left(x_{0}-h_{n}\right)=0+1=1 \tag{18}
\end{equation*}
$$

for any n, which means that $\mathrm{x}_{\mathrm{o}} \notin \mathrm{SC}_{f}$. From this and from (17) we have $E=S C_{f}$.

THEOREM 4. If the set $G \subset R$ is a linear space over the field Q of the second Baire category in R, and $\bar{R} \backslash G=R$, then the set $G^{\prime}=R \backslash G$ is not a weak section of symmetry.

Proof. Let us assume that $G^{\prime}=R \backslash G$ is a weak section of symmetry. Then there exists a monotone decreasing sequence of sets $\left\{G_{p}\right\}_{p \in N}$ fulfilling the sonditions
(a) $G^{-}=\bigcap_{p \in N} G_{p}$.
(b) $\quad\left(x_{0} \in G^{*}\right) \Rightarrow\{\forall p \in N \exists \delta>0 \quad \forall h \in(0, \delta) \quad \exists 0 \in\{0,1\}$ $\left[\left(\left(x_{0}-h\right) \in G_{p+\theta} \wedge\left(x_{0}+h\right) \in G_{p+\theta}\right) \vee\left(\left(x_{0}-h\right) \notin G_{p+\theta} \wedge\left(x_{0}+h\right)\right.\right.$ $\left.\left.\notin G_{p+\theta}\right)\right]$.
Let

$$
\begin{equation*}
\mathrm{G}_{\mathrm{p}}=\mathrm{H}_{\mathrm{p}} \cup \mathrm{G}^{\circ} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{R}_{\mathrm{p}}=\mathrm{G} \backslash \mathrm{H}_{\mathrm{p}} \quad \mathrm{p}=1,2, \ldots \tag{20}
\end{equation*}
$$

Using (20), we have

$$
\begin{equation*}
G \supset \bigcup_{p \in N} R_{p} \tag{21}
\end{equation*}
$$

Now, let $x \in G$. Then from (20), for any $p \in N, x \in H_{p}$ or $x \in R_{p}$. If, for each $p \in \mathbb{N}, x \in H_{p}$, then, by (19), $x \in G_{p}$ for any $p \in N$. Hence from (a) we have that $x \in G$, which contradicts the choice of x. Thus there exists $p \in N$ such that $x \in R_{p}$. Therefore $x \in \bigcup_{p \in N} R_{p}$. Thus we have obtained that $\bigcup_{p \in N} R_{p} \supset G$, which, together with (21), gives

$$
\begin{equation*}
G=\bigcup_{\mathrm{p} \in \mathrm{~N}} R_{\mathrm{p}} \tag{22}
\end{equation*}
$$

Since G is of the second category, thus it follows from (22) that there exists $p_{0} \in N$ such that $R_{p_{0}}$ is of the second category in R. So, there exists an interval (a, b) for which (ab) $\subset \bar{R}_{\mathrm{p}_{\mathrm{o}}}$. Now, let

$$
\begin{equation*}
x_{0} \in(a, b) \cap G^{-} \tag{23}
\end{equation*}
$$

Then there exists a sequence of points $\left\{w_{n}\right\}_{n \in N^{\prime}} \quad \lim _{n \rightarrow \infty} w_{n}=x_{0}$, $w_{n}>x_{0}$ and $w_{n} \in R_{p_{0}}$ for $n \in N$. From (20) we have that $w_{n} \in G$ for $n=1,2, \ldots$ Thus $W_{n}=\left(x_{0}+h_{0}\right) \notin\left(G \cup H_{p_{0}}\right)=G_{p_{0}}$ for $n=1,2, \ldots$ From condition (b) it follows that for sufficientmy large $n>n_{0}$, we have $\left(x_{0}-h_{n}\right)=\left(2 x_{0}-w_{n}\right) \notin G_{p_{0}+1}$. Because of (a), we have that, for $n>n_{0},\left(2 x_{0}-w_{n}\right) \notin G$ and hence

$$
\begin{equation*}
\left(2 x_{0}-w_{n}\right) \in G . \tag{24}
\end{equation*}
$$

Since $W_{n} \in G, G$ is a linear space over the field Q and, because of (24), we have

$$
\begin{equation*}
x_{0}=\frac{1}{2}\left[\left(2 x_{0}-w_{n}\right)+w_{n}\right] \in G . \tag{25}
\end{equation*}
$$

Condition (25) contradicts (23). This contradiction completes the proof of the theorem.

Theorems 2 and 3 give a partial characterization of the set S_{f} for a function $f: R \rightarrow R$. Our example shows that the set SC_{f} may even be non-measurable. Moreover, let us notice that the set E from the example is a linear space over the field Q of rational numbers, fulfilling the hypothesis of Theorem 4. Thus $R \backslash E$ is not the set of points of symmetry continuity for any real function of a real variable f.

REFERENCES

[1] B elna C. L., Symmetric continuity of real functions, Proc. Amer. Math. Soc., 87 (1983), 99-102.
[2] $E r d \ddot{o} s$ P., Some remarks on subgroups of real numbers, Colloq. Math., 42 (1979), 119-120.
[3] Filipezak M. F., Sur les derivées symetriques des functions approximativement continues, Colloq. Math., 34 (1976), 249-256.
[4] Marcus S., Multiple F_{6} si continuitatea simetrica, Bull. Stun., 4 (1955), 871-886.
[5] S zkopiñ k a B., Some structural properties of measurable sets, Demonst. Math., 4 (1982), 1-26.

Janusz Jaskuła, Bożena Szkopińska
 O ZBIORZE SYMETRYCZNEJ CIĄGLOŚCI

Abstract

W artykule podane są pewne warunki konieczne oraz pewne warunki dostateczne na to, by zbiór był zbiorem wszystkich punktów symetrycznej ciągłości funkcji $f: R \rightarrow R$. Ponadto dowodzi się, że istnieją zbiory nie będące zbiorami punktów symetrycznej ciągłości dla zadnej funkcji f: R \rightarrow R.

