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GEE ESTIMATORS IN MIXTURE MODEL WITH 

VARYING CONCENTRATIONS 
 
Abstract. We discuss a semiparametric mixture model where some components are 

parameterized with common Euclidean parameter and others are fully unknown. We introduce 
GEE (generalized estimating equations) approach and adaptive GEE-based approach for parameter 
estimation. Derived estimators are consistent and asymptotically normal, and they are optimized in 
terms of their dispersion matrices. Proposed techniques are tested on simulated samples. 
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1. INTRODUCTION 
 
The cumulative distribution function (CDF) of one observation in a mixture 

model is expressed by a linear combination of some CDFs with 

probabilities ,  (i.e. 

MFF ,...,1

Mpp ,...,1 1
1

 

M

m

mp  


M

m m
mFpxF

1
()(

mp
mp

x) ). Note that 

 is called the CDF of the -th mixture component, and − the component 

concentration. In mixture model with varying concentrations depends on the 

observation index: , 
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We consider the case when some parametric model is known for the first K  

components: , );()( txFxF mm  .,1 Km   Parameter  is assumed to be 

Euclidean:  The true value of t we designate as 

t

.dt   and assume that it 
is unknown. The CDFs of the last KM   mixture components are assumed to
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be fully unknown. We also assume that concentrations  are known. Our goal 

is to estimate 

m
jp

.  To do this, we derive consistent and asymptotically normal 
estimators, and optimize them in terms of their dispersion matrices. 

 
 

2. NONPARAMETRIC ESTIMATE FOR DISTRIBUTION 
FUNCTION 

 
CDF of the m-th component may be estimated through the weighted 

empirical distribution function: 
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Weights  are taken as the solution of the minimization problem of 

maximal variance of unbiased estimates of  for all possible CDFs  (i.e. 

 where 
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M,...,1im}) m ie {(:   ). See Maiboroda et al. (2008) for details. 

Note that weights  can be negative. Thus, we can improve  by 

introducing improved empirical distribution function (see Maiboroda et al. (2005)): 
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3. GEE ESTIMATE 
 

Consider some set of measurable functions  

Theoretical moment  may be estimated by the weighted 

empirical moment as 
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Define the joint weighted empirical moment of  as )(ˆ tg k
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Definition. GEE estimator  for ̂   is the measurable function from sample 

N ,...,1

N
 such that  Next we assume that  as 
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Example. Moment estimators can be represented as GEE estimators. Let 
 be the set of estimating functions. Denote theoretical moment of  
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 GEE estimator  can be represented as 
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Analogous improved moment estimate with  can be 

introduced. 
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Consistency for moment estimators is shown in theorem 3.1 from Doronin 

(2014a). 
 
 

4. ASYMPTOTICS OF GEE ESTIMATOR 
 
Assume that CDFs  are absolutely continuous with respect to 

sigma-finite measure 
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  on the space of observations. Denote densities of each 

component's distributions as ,
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Expectation of  from the m-th component designate as )(xG

,)()(:  dxFxGG mm   .M,...,1m 

Introduce the following notations. 
 

KK

Klk

N

j

s
j

r
j

l
j

k
jNKlk

lk
srsr ppaa

N



 






 

,1,
1,1,

,
,,

1
lim:)(:  , Msr ,1,  . 



Oleksii Doronin, Rostislav Maiboroda 18 

KK

Klk

N

j

m
j

l
j

k
jNKlk

lk
mm paa

N



 






 

,1,
1,1,

, 1
lim:)(:  , Mm ,1 . 

KK
m

M

m m xfxR 


 )(:)(
1
 . 

ddM

sr ssr
T
r

T GGdxxGxRxGZ 


   1, ,)()()()(:  . 

dd
kt

K

k
k dxF

t

txg
V 







  )(
);(

:
1  . 

 

Theorem 4.1. (Theorem 3.4 from Doronin (2014a)) Let  be GEE 
estimator in introduced definitions, and  be some open neighborhood of the 
true parameter value 

̂
U

.  Assume the following.: 

(i)  converges in probability to ̂   as .N  

(ii) Derivatives  exist and are integrable (i.e. 

) for , where  denotes expectation under condition 

that the true parameter value is 
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zero mean and covariance matrix  .1 TZVV 

 
 

5. LOWER BOUND OF DISPERSION MATRIX FOR GEE 
ESTIMATOR 

 
Assume that the matrix Z  and nonsingular matrix V  exist. Without loss of 

generality we can assume that two conditions for GEE estimator  are fulfilled: ̂
(i1) ,   0)();( dxFxg kk  Kk ,1  (unbiasedness); 

(i2) matrix V  is the unit matrix. 
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Consider the minimization problem of dispersion matrix Z  in Loewner 
ordering (i.e. BA   if BA  is non-negatively defined) over all );( xgk

.dc 
,

 

satisfying conditions (i1), (i2). Thus, we have to minimize  for all  

The solution of this problem is the set of estimating functions )  which 

give us the lower bound of dispersion matrix 
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Z  (see theorem 4.1 from Doronin 
(2014a)). 

 
6. ADAPTIVE ESTIMATE 

 
Unfortunately, it is impossible to use in practice the optimal estimating 

functions  which give the lower bound of dispersion matrix. The first 

reason is that they depend on unknown densities  
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is the difficulty to solve the GEE in the general case. Therefore, we consider the 
adaptive approach. 

Each function  can be approximated as  where  
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Consistency and asymptotic normality of introduced adaptive estimate is 

shown in lemma 3.3 from Doronin (2014b). 
 
 

7. NUMERICAL RESULTS 
 
We chose a three-component mixture model to simulate. All components are 

taken Gaussian, with parameter values ),( m  as ),2.3(   for each 

component, respectively. The first two components are assumed to be 

), 2.0(2.3(  ),



Oleksii Doronin, Rostislav Maiboroda 20 

parameterized with  (different means, common standard 

deviation). Distribution of the third component is assumed to be fully unknown. 
Concentrations were also generated as the pseudo-random values, derived by 

formula  where  is taken from uniform distribution on 

. Series of samples with sizes 50, 100, 250, 500, 750, 1000, 2000, 5000 

were simulated, 2000 samples in each series. Vectors of basis functions  

for adaptive estimate were chosen as the set of uniform cubic B-splines with 
knots at points 
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im   where  and m   are the mean and standard deviation of 
the -th component,  respectively, k .5,...,5i  Matrices  were chosen to 

minimize dispersion matrix. Results are shown in Figure 1. 
kB

 
 

CONCLUSIONS 
 
The mixture model with varying concentrations is considered. Several 

estimators for this model are introduced (moment, GEE, adaptive). The proposed 
estimators are consistent and asymptotically normal under some conditions. 
Performance of moment and adaptive estimators are compared on simulated 
samples. Dispersion of introduced estimators converges to its theoretical 
asymptotic value for samples with 1000 and more observations. 
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